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Development of a checklist for the evaluation of models for extrapolation 

Checklists have been successfully used in a variety of disciplines in order to improve 

the quality and reliability of work. In both public health and ecology, checklists have 

been used to organize a broad literature (e.g., Bosshard 2000; de Groot et al. 2002; de 

Groot et al. 2003), to assess the quality of epidemiologic studies, (e.g., Downs and Black 

1998) or ecological management strategies (e.g., Lindenmayer et al. 2008), and to 

facilitate communication and comparison of related work (e.g., Bosshard 2000; 

Vandenbroucke et al. 2007). To improve the methodological quality of landscape model 

extrapolation in vector-borne disease risk assessment, we provide checklist criteria for 

the qualitative assessment of models being considered for extrapolation. Here, we briefly 

describe model characteristics that appear on the checklist, and distinguish between 

conceptual extrapolation and spatial extrapolation. 

Conceptual extrapolation 

Applying existing models to new research questions—a conceptual extrapolation—

raises the importance of key characteristics of the original analysis, including its 

predictor and outcome variables, scale and resolution, reproducibility, and data quality 

and availability. 

Characteristics of the original analysis. Ascertaining the quality of the original 

analysis includes assessment of the modeling technique used, the species being modeled, 



and the model selection technique employed. For species distribution modeling, multi-

model comparisons have found that different modeling techniques (e.g., generalized 

linear models, artificial neural networks, etc.) exhibit varying generalizability, 

robustness and predictive capacity (Pearson et al. 2006; Randin et al. 2006; Dormann et 

al. 2008), and thus no one class of model is universally preferred for conceptual 

extrapolation (Dormann et al. 2008; Jeschke and Strayer 2008; Elith and Leathwick 

2009). Models drawn from research conducted on the exact species of interest are 

preferred (MacArthur 1958; Elith and Leathwick 2009); however, at times, a model 

describing a related organism may be useful (Raxworthy et al. 2003). The model 

selection technique employed in the original analysis should be examined, as models 

selected using fit as the sole criterion may not be appropriate given that over-fit models 

are often uninformative beyond the spatial or temporal confines of the original analysis 

(Ginzburg and Jensen 2004; Hitchcock and Sober 2004). Additional criteria such as 

parsimony, agreement with previous findings or theories, and predictive capability can 

strengthen the model selection process (Ginzburg and Jensen 2004).  

Predictor and outcome variables. The predictor and outcome variables that appear 

in a model, and how they were selected and treated in the analysis, are primary 

considerations for determining the model’s value and generalizability. Using indirect 

predictor variables (e.g., elevation), which act as proxies for other influential variables 



(e.g., temperature, humidity), may decrease predictive ability (Austin and Smith 1989; 

Elith and Leathwick 2009). Proxy variables, often chosen because of limited data 

availability (Dormann et al. 2008), should be selected only after a careful assessment of 

the appropriateness of the proxy in light of the underlying variables of interest. The 

data type (continuous, categorical, nominal, ordinal, etc.) utilized in the original 

analysis may affect the utility of a candidate model, as inaccurate assumptions about 

the true distribution the data (Sauerbrei et al. 2007), and inappropriate categorical 

transformations (Brooker et al. 2002; Araujo et al. 2005; Royston et al. 2006), can 

contribute to bias yielding a model unsuitable for conceptual extrapolation.  

Scale and resolution. At different spatial and temporal scales and resolutions of 

analysis, both the magnitude and direction of a relationship between predictor and 

outcome variables can vary (Chase and Leibold 2002; Jackson et al. 2006). In the spatial 

domain, such variation may be produced by disappearance of non-dominant habitat 

types with decreasing resolution, which influences variable collinearity, or bias 

associated with alternate methods of averaging over areas (Turner et al. 1989; Benson 

and MacKenzie 1995). Models which were developed using data at coarse resolution may 

have low predictive ability if used at fine scale (Kunin 1998), for instance. Thus, a 

model fit at a scale that is mismatched with the scale of the new research question may 

be inappropriate for conceptual extrapolation. Likewise, the predictive ability of species 



distribution models across timescales may also be limited if, for instance, species rapidly 

evolve leading to changes in habitat suitability and violating the assumption of niche 

conservatism (Pearson and Dawson 2003; Chaves and Koenraadt 2010). 

Reproducibility. Logistical issues in reproducing candidate models also arise. When 

researchers fail to specify the full model, or do not completely define the methods used 

for data transformation or for dealing with missing data, it may be impossible to re-

apply the model unless the original authors can be consulted. Such unspecified models 

were excluded from our analyses. Access to appropriate computer applications and 

versions may also be a barrier to successful replication of the model.  

Data quality and availability. Finally, the quality of the data used to fit candidate 

models is an important consideration when choosing a model for conceptual 

extrapolation (Dormann et al. 2008). In many cases, the most robust parameter 

estimates result from species distribution models fit to datasets that balance quantity 

with quality, i.e., achieving a sufficient number of points with adequate quality 

(Dormann et al. 2008). 

Spatial extrapolation  

Extrapolation of models across spatial domains beyond what was included in the 

original analysis requires many of the same considerations as when undertaking 

conceptual extrapolation, but must also take into account additional issues related to 



the spatial aspects of model variables, choice of predictor and outcome variables, and 

spatial extent, as described briefly here. 

Spatial aspects of model variables. Issues surrounding spatial extrapolation of species 

distribution models are covered in a wide body of literature that has been 

comprehensively reviewed elsewhere (e.g., Miller et al. 2004; Peters et al. 2004). Several 

key issues routinely arise, such as the fact that suitable habitats tend to be more varied 

in the center of the geographical range occupied by a species, leading the relationships 

between predictors and outcomes to differ by range position (Peterson et al. 2000; 

Swihart et al. 2003; Randin et al. 2006). Thus applying a model fit at the center of a 

species’ range to an area at the edge of the range could lead to overestimation of 

presence at the edge, for instance, or underestimation of presence at the center. Models 

must therefore incorporate locations throughout a species’ range (e.g. Webber et al. 

2011), and testing models against independent observations rather than observations 

used in model fitting is of course preferred (Fielding and Bell 1997; Guisan and 

Zimmerman 2000). 

Choice of predictor and outcome variables. The relevance, range, and relationships 

between predictor and outcome variables often differ across space. Issues of spatial 

stationarity of predictor-outcome relationships are well-described elsewhere (e.g., 

Brunsdon et al. 1998). Predictor variables may become irrelevant in new geographical 



areas where these variables are missing or where their explanatory power decreases 

(Rodder and Lotters 2010). The use of indirect or proxy predictors, which may fail to 

describe true habitat preferences of a species, may also limit a model’s spatial 

transferability (Austin and Smith 1989; Austin 2002). Even when the exact predictor of 

interest can be measured across the extrapolation zone, its numerical range may fall 

outside the range over which the original model was fit, limiting model performance 

(Peters et al. 2004). Finally, the categorization of outcome variables may have limited 

meaning in new locations. For example, the category of ‘high’ risk for mosquito bites 

may represent a different range of risk values in Albany, New York than in New 

Orleans, Louisiana.  

Spatial extent. The spatial extent of the data used to fit the model, and that of the 

new domain, raise similar issues. Research conducted over a large area in which there is 

significant variance in predictors and outcomes may lead to a more robust and 

transferable model, particularly with respect to extreme values (Wiens 1989). 

Additionally, predictor data must be available across the extrapolation zone, and 

attention must be paid to missing data and data collected at a resolution that differs 

from the intended resolution of the analysis (Kistemann et al. 2002).
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