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Abstract

“Popcorn workers’ lung” is an obstructive pulmonary disease produced by inhalation of volatile 

artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, 

and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway 

epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and 

acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to 

methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) 

were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100–

360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly 

decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on 

reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity 

to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione 

(≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas 

initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no 

effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced 

hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led 

to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on 

airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle 

relaxants and constrictors, thus indicating a complex mechanism.

Employees at microwave popcorn manufacturing factories have developed “popcorn 

workers’ lung” (Department of Health and Human Services, 2004; Kreiss et al., 2002; 

Lockey et al., 2009; Schachter, 2002), a lung disease resembling bronchiolitis obliterans 

(King, 1989), following inhalation of butter flavoring. Sahakian et al. (2008) demonstrated 

that butter flavoring-exposed workers have an increased risk of occupational asthma and 
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exacerbated asthma symptoms. The flavorings in popcorn also find use in other foods, 

including caramel, butterscotch, and vanilla flavors and muffin and cake mixes (Day et al., 

2011; Harber et al., 2006; Martyny et al., 2008). Employees in a cookie factory developed 

bronchiolitis obliterans after artificial butter flavoring exposure while preparing the cookie 

dough (Cavalcanti Zdo et al., 2012). One patient who had worked in a microwave popcorn 

factory was diagnosed initially with reactive airways disease with a positive methacholine 

(MCh) challenge test, only to be diagnosed a few years later with bronchiolitis obliterans 

with no response to a bronchodilator (Zlotolow et al., 2007). Another patient with a positive 

MCh test eventually acquired bronchiolitis obliterans (Zlotolow et al., 2007). Flavoring 

inhalation may also pose a respiratory risk to consumers. Upon opening a bag of microwave 

popcorn, sufficient butter flavoring is released into the air to produce respiratory disease 

(Egilman and Schilling, 2012).

Over 150 volatile agents are present in popcorn butter flavoring (Boylstein et al., 2006). The 

primary component in butter flavoring mixture that is thought to be toxic to the lungs of 

workers is diacetyl (2,3-butanedione; C4H6O2) (Hubbs et al., 2008; van Rooy et al., 2007). 

Diacetyl is a low-molecular-weight, four-carbon α-diketone largely responsible for the taste 

of butter (Harber et al., 2006; Hubbs et al., 2008). 2,3-Pentanedione (acetyl propionyl; 

C5H8O2), an α-diketone with a structure similar to diacetyl’s, is used as a diacetyl substitute. 

This compound produces pulmonary toxicity in animal models, although its toxicity is not as 

well characterized as that of diacetyl (Day et al., 2011; Hubbs et al., 2012; Morgan et al., 

2012a, 2012b). Both chemicals are volatile, yielding vapors that can be inhaled. Other 

volatile components in flavoring mixtures, alone or in combination with diacetyl, may exert 

pulmonary toxicity. In particular, acetoin and acetic acid are present in vapor mixtures 

associated with popcorn workers’ lung (Boylstein et al., 2006; Kreiss et al., 2002; van Rooy 

et al., 2007, 2009).

Histological investigation in animal models demonstrated that a 6-h exposure inhalation 

exposure to diacetyl and 2,3-pentanedione causes some epithelial damage 0 h postexposure, 

which progresses in intensity by 18 to 20 h postexposure (Hubbs et al., 2002, 2008, 2010, 

2012; Morris and Hubbs, 2009; Morgan et al., 2008, 2012a, 2012b; Palmer et al., 2011). In 

addition, inhaled 2,3-pentanedione was found to result in olfactory neuroepithelial injury in 

rats (Hubbs et al., 2012), and, interestingly, diacetyl may induce long-lasting neurotoxicity 

by binding to β-amyloid and interfering with pleated sheet structures (More et al., 2012a). 

Thus, the toxicity of these volatile α-diketones extends beyond the lung.

Functionally, acute diacetyl inhalation produces pulmonary irritation in mice but, 

surprisingly, high-concentration diacetyl exposures result in desensitization of the sensory 

response to subsequent diacetyl inhalations (Larsen et al., 2009). The rat has been used to 

model the bronchiolitis-like changes in the lung following exposures to diacetyl or 2,3-

pentanedione (Morgan et al., 2012a; Palmer et al., 2011). Understanding the pulmonary 

function changes after acute diacetyl exposure in the rat is important because it is an 

established model of flavorings-related lung disease and the spectrum of flavorings-related 

lung disease recently expanded to include functionally important pulmonary conditions in 

addition to bronchiolitis obliterans and pulmonary function (Kreiss et al., 2002; Sahakian et 

al., 2008).
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While intratracheal instillation of diacetyl is known to alter pulmonary function in rats at 7 d 

postexposure when aberrant epithelial repair and intraluminal airway fibrosis have 

developed (Palmer et al., 2011), little is known regarding changes in rat pulmonary function 

and airway reactivity after acute inhalation exposures to diacetyl, 2,3-pentanedione, or 

diacetyl-containing mixtures of flavorings. This information is critical to understanding the 

full spectrum of toxicities associated with these flavorings.

Many studies demonstrated increased responsiveness of airway smooth muscle in vitro to 

contractile agonists such as acetylcholine (ACh) and 5-hydroxytryptamine (5-HT), as well 

as sensory neuropeptides, including substance P and neurokinin A, following removal of the 

epithelium (Aarhus et al., 1984; Hay et al., 1986; Spina, 1998). Therefore, damage to the 

epithelium by flavorings would be expected to increase reactivity to contractile agonists in 

vivo and in vitro, especially after contractile agonists are applied to the mucosal surface. For 

example, ozone (O3) inhalation results in injury to airway epithelial cells and in 

hyperreactivity to MCh in vitro and in vivo (Fedan et al., 2000; Savov et al., 2004). The 

increase in reactivity to inhaled MCh after O3 exposure was thought to be a consequence of 

greater accessibility of the drug through the airway wall to the smooth muscle and to loss of 

epithelial-derived relaxant factor (EpDRF) (Fedan et al., 2000).

The overall hypothesis of this study is popcorn flavorings that produce damage to the airway 

epithelium result in airway hyperreactivity to MCh in vivo and in vitro. A major purpose of 

the investigation was to compare and contrast the effects of diacetyl and 2,3-pentanedione in 

airways in vivo and in vitro. In the first series of experiments, alterations were determined in 

respiratory mechanics, that is, lung resistance and dynamic compliance (RL and Cdyn, 

respectively), as well as reactivity to inhaled MCh, following diacetyl or 2,3-pentanedione 

inhalation (Poole et al., 2009; Yao et al., 2010). It was of interest to identify the 

concentration range over which diacetyl and 2,3-pentanedione may produce such effects. In 

the second series of experiments, the isolated, perfused trachea (IPT) method was employed 

using tracheas from exposed rats to investigate and compare the effects of diacetyl or 2,3-

pentanedione inhalation on airway reactivity to MCh in vitro, again with the goal of 

examining concentration dependence of effects. It was postulated that reactivity to MCh 

applied to the mucosal surface bath of the perfused trachea would be increased following 

these exposures. In the third series of experiments, the IPT preparation was employed to 

investigate the direct effects of diacetyl and 2,3-pentanedione in rat airways in vitro. Earlier 

findings that diacetyl elicits contraction and relaxation of guinea pig airways were extended 

(Fedan et al., 2006). The potential role of the epithelium in the development of these 

responses was investigated. Finally, other flavorings, such as acetic acid and acetoin, are 

often present in abundant amounts in the vapors of butter flavorings and also were reported 

in a flavoring manufacturing workplace with affected workers (Boylstein et al., 2006; van 

Rooy et al., 2007, 2009). They are not currently regarded as being key compounds in the 

development of toxicity in humans. However, being inhaled along with diacetyl they could 

worsen or mitigate its toxic effects in the lung. Thus, studies also investigated the effects of 

acetic acid and acetoin, alone and in combination with inhaled diacetyl as a mixed exposure.
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MATERIALS AND METHODS

Animals

These studies were conducted in facilities accredited by the Association for the Assessment 

and Accreditation of Laboratory Animal Care International and were approved by the 

institutional Animal Care and Use Committee. Male Sprague-Dawley rats (Hilltop Lab 

Animals; Scottdale, PA; 300–450 g) were housed in pairs in ventilated micro-isolator units 

supplied with HEPA-filtered laminar flow air (Thoren Caging Systems; Hazleton, PA), with 

autoclaved Alpha-DriTM virgin cellulose chips (Shepherd Specialty Papers, Watertown, 

TN) and hardwood Beta-chips (NEPCO; Warrensburg, NY) for bedding, and provided tap 

water and autoclaved HaCXan Teklad Global 18% protein rodent diet (Harlan Teklad; 

Madison, WI) ad libitum. Rats were housed under controlled light cycle (12-h light) and 

temperature (22–25°C) conditions.

Exposure of Rats to Diacetyl, 2,3-Pentanedione, Acetoin and Acetic Acid Vapors

Two inhalation systems were designed to expose rats to butter flavoring constituents. In the 

first system, the whole-body inhalation exposure system (Hubbs et al., 2008) was modified 

and automated to expose rats for 6 h to diacetyl (100, 200, 300, or 360 ppm) or 2,3-

pentanedione (120, 240, 320, or 360 ppm) (Figure 1). The concentrations of diacetyl and 

2,3-pentanedione were selected based upon previously described airway epithelial toxicity 

(Hubbs et al., 2008, 2012). Filtered-air-breathing control animals were placed for 6 h in 

chambers that were similar to ones used for exposure to flavorings, with matched 

environmental conditions. A photo-ionization detector (PID, PGM-7600; RAE Systems, San 

Jose, CA) measured the real-time concentration levels of diacetyl and 2,3-pentanedione 

during the exposures, in which the measured concentrations of components were closely 

related to target concentrations (Table 1). Water-sealed, compressed air was dried, HEPA-

filtered, and charcoal-filtered and then passed through a mass flow controller (GFC37, 

Aalborg; Orangeburg, NY) and into a custom humidifier, which maintained the relative 

humidity. Airflow was regulated at 20 L/min, which corresponded to more than 15 air 

changes/h. Chamber CO2, ammonia, temperature, and relative humidity for both exposed 

and control rats were regulated within acceptable limits for animal comfort (Institute for 

Laboratory Animal Research, 2011). The air then entered a stainless-steel mixer where it 

was heated. Liquid diacetyl or 2,3-pentanedione was injected with a syringe pump (210, KD 

Scientific Inc.; Holliston, MA) into the airstream, where it vaporized in the heated air 

(70°C). The diacetyl or 2,3-pentanedione vapor was passed into a custom stainless-steel and 

glass exposure chamber (McKinney and Frazer, 2008) that could house up to six animals. 

Proportional–integral–derivative (PID) measurements from the chamber were used in a 

feedback loop that adjusted the flow of the syringe pump to maintain the concentration at a 

constant, user-defined value (Table 1). Custom data acquisition and control software was 

developed that permitted the user to set parameters such as flavoring concentration and 

relative humidity. Data were acquired at a rate of 1 sample/s and recorded for subsequent 

analysis.

The second inhalation system was similar to the first with additional alterations. This system 

was used to expose rats (Figure 1) to diacetyl (167 or 250 ppm), acetic acid (18 or 27 ppm), 
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or acetoin (100 or 150 ppm) individually, or as three vapor mixtures containing low (“three 

low”: 167 ppm diacetyl + 100 ppm acetoin + 18 ppm acetic acid) or high (“three high”: 250 

ppm diacetyl + 150 ppm acetoin + 27 ppm acetic acid) concentrations of the vapors (Table 

2). To facilitate investigation of potentially enhanced toxicity to intrapulmonary airways 

resulting from combined exposures, the highest diacetyl concentration selected (250 ppm) 

was just below the lowest dose (294.6 ppm) reported previously to produce cytotoxicity in 

intrapulmonary airways following acute single-agent exposure (Hubbs et al., 2008). Features 

of this inhalation system included (1) three heated injection ports that were fed with separate 

syringe pumps (one for each vapor), (2) a different custom exposure chamber that could 

hold up to 12 animals (Goldsmith et al., 2011), (3) wet sponges that provided humidity, 

instead of the custom humidifier, and (4) a Fourier-transform infrared (FTIR) spectrometer 

gas analyzer (DX-4010, Gasmet Technologies, Inc., La Praire, Quebec), which monitored 

the concentration of each individual flavoring in the exposure chamber in real time. 

Feedback loops were used to regulate the syringe-pump flow for each of the three 

flavorings.

The PID was calibrated weekly to the flavoring of interest with a custom apparatus that 

delivered user-defined air temperature, relative humidity, and flavoring concentrations. 

Measurements were taken with gravimetric filters, a scanning mobility particle sizer (SMPS, 

TSI, Inc., St. Paul, MN), and an aerodynamic particle sizer (APS, TSI) to determine whether 

any of the vapor was in an aerosol form. All results indicated that negligible aerosol was 

present during the exposures. Figure 1 demonstrates that vapor levels during a 6-h exposure 

were constant.

There was no mortality in the animals following flavoring exposures.

Effects of Flavoring Exposure on Respiratory Mechanics and Reactivity to MCh In Vivo

Eighteen hours postexposure, rats were anesthetized with 100 mg/kg ketamine and 10 mg/kg 

xylazine given ip. A midline incision was made in the neck and a cannula was placed into 

the trachea. Animals received supplemental ketamine (50 mg/kg) by administration of the 

drug topically to the exposed muscle in the neck. Animals were placed on a warming bed in 

a plethysmograph for the assessment of lung RL and Cdyn (FinePointe RC; Buxco 

Electronics, Inc., Wilmington, NC) and were ventilated using a digital rodent ventilator 

(Élan Series RC; Buxco Electronics, Inc.). Ventilation settings were: maximum mouth 

pressure, 40 cm H2O; maximum tidal volume, 3 ml; and respiratory rate, 90 bpm. After 

recording baseline values of RL and Cdyn and after delivery of saline vehicle as a control, 

MCh aerosols were delivered from 20 μl of solutions of the following concentrations: 0.3, 1, 

1.73, 3, 5.75, or 10 mg/ml. Three 5-ml (45 cm H2O mouth pressure) deep inspirations were 

applied just before each MCh dose was delivered. Maximum RL (RLmax) values and 

minimum Cdyn values (Cdynmin) were logged at 5-s intervals to quantify responses to MCh. 

Following completion of the experiment, rats were euthanized by exsanguination.
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Effects of Diacetyl and 2,3-Pentanedione Inhalation on Reactivity to MCh in the IPT 
Preparations

This preparation has been described previously (Fedan et al., 2006; Fedan and Frazer, 1992). 

Eighteen hours after the end of air or flavoring exposure, rats were anesthetized using 

sodium pentobarbital (65 mg/kg, ip) and euthanized by exsanguination. A 25-mm segment 

of trachea was removed and cleaned. The segment was mounted on a perfusion holder at its 

in situ length. The holder contained indwelling, side-hole catheters in the lumen that were 

connected to the positive (inlet) and negative (outlet) sides of a differential pressure 

transducer. The holder with mounted trachea was placed into an extraluminal (EL) bath 

containing modified Krebs–Henseleit solution (MKHS). The trachea was perfused at a 

constant rate (25 ml/min) with MKHS from a separate bath, the intraluminal (IL) bath, while 

measuring inlet minus outlet pressure difference (△P, cm H2O) as an index of tracheal 

diameter. Transmural pressure was set to zero. The MHKS in the IL and EL baths was 

replaced at 15-min intervals with fresh solution, followed by a 30-min equilibration period 

in which the MHKS was not changed and the baseline was allowed to become stable. 

MHKS temperature was 37°C and was aerated with 95% O2/5% CO2 to give pH 7.4. After 

the equilibration period, MCh was added in stepwise-increasing, cumulative concentrations 

(10−5 to 3 × 10−2 M) to the IL bath to induce contractile responses for the generation of 

concentration-response curves.

Reactivity to Diacetyl and 2,3-Pentanedione in the IPT; Influence of the Epithelium

Tracheas were prepared as described earlier. After the equilibration period, diacetyl or 2,3-

pentanedione (1–30 mM) was added in stepwise-increasing, cumulative concentrations to 

the IL or EL bath to initiate contractile responses. In order to examine the relaxant effects of 

the flavorings, preparations were pre-contracted with EL MCh (3 × 10−5 M; EC50) to induce 

contraction before administering the flavoring. The potential involvement of the epithelium 

in responses to the flavorings was investigated using perfused tracheas, the epithelium of 

which was removed by inserting a tamper pin into the lumen and gently turning the pin three 

to four times.

Solutions and Reagents

The composition of MKHS was: NaCl, 113 mM; KCl, 4.8 mM; CaCl2, 2.5 mM; MgCl2, 1.2 

mM; KH2PO4, 1.2 mM; NaHCO3, 25 mM; and glucose, 5.5 mM. All drugs and chemicals 

were obtained from Sigma-Aldrich (St. Louis, MO) and dissolved and diluted in saline. The 

purity of diacetyl (lot 03798LJ) and that of 2,3-pentanedione (lot 00130DJ) were 99.3% and 

97%, respectively.

Statistical Analysis

The results are expressed as means ± SEM. In vivo results were analyzed for differences 

using analysis of variance (ANOVA) for repeated measures. For the in vitro experiments the 

results were analyzed for differences using ANOVA. MCh concentration-response curves 

were normalized with respect to each preparation’s maximum response. Geometric mean 

EC50 values for MCh were derived from least-squares analysis of four-parameter logit 

curve fits and are expressed along with 95% confidence intervals. Statistical comparisons of 
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EC50 values were conducted using normally distributed –logEC50 values. Responses to in 

vitro application of diacetyl or 2,3-pentanedione were normalized by calculating the percent 

relaxation of the contraction induced by MCh; n is the number of separate experiments and p 

< .05 was considered significant.

RESULTS

Effect of Diacetyl and 2,3-Pentanedione Inhalation on Basal Pulmonary Function and 
Reactivity to Inhaled MCh

Eighteen hours following a 6-h diacetyl exposure, other than a numerical increase in basal 

Cdyn at 360 ppm, diacetyl did not markedly affect RL and Cdyn compared to air-exposed 

controls (Figure 2); this change is probably without biological significance.

Diacetyl inhalation significantly reduced the RL response to 10 mg/ml MCh at one 

concentration, 360 ppm. There were no marked effects of diacetyl on Cdyn responses to 

MCh at any concentration of diacetyl (Figure 3). Thus, diacetyl inhalation in doses that 

produce substantial epithelial damage (Hubbs et al., 2008) did not change reactivity to MCh.

Eighteen hours following a 6-h 2,3-pentanedione inhalation, basal RL and Cdyn were largely 

unaffected (data not shown). 2,3-Pentanedione (120, 240, and 320 ppm) reduced RL 

responses at the highest doses of MCh (Figure 4); a comparable change at 360 ppm was not 

significant. Other than at 10 mg/ml MCh at 240 ppm 2,3-pentanedione, the flavoring exerted 

no marked effect on Cdyn.

Effects of Diacetyl and 2,3-Pentanedione Inhalation on Reactivity In Vitro of Rat Trachea to 
MCh

In the surprising absence of increases in vivo in reactivity to MCh after flavoring inhalation, 

evidence was sought for any alterations in reactivity to MCh in vitro using the IPT 

preparation. Before examining the effects of inhaled flavorings, reactivity to MCh was first 

compared in epithelium-containing and epithelium-denuded tracheas to establish what the 

consequences of severe epithelium damage might be. In the presence of the epithelium, the 

concentration-response curve obtained after adding MCh mucosally was shifted rightward of 

the EL curve and was characterized by a smaller maximum response (Figure 5 and Table 2). 

The lesser reactivity to MCh after IL addition in intact trachea is a reflection of the epithelial 

diffusion barrier as well as the release of epithelial-derived modulatory factors (Farmer et 

al., 1986, 1987; Fedan et al., 2006; Fedan and Frazer, 1992; Smith et al., 1993).

In denuded tracheas, reactivities for the intraluminal and extraluminal administration of 

MCh were not different (Figure 5 and Table 2); that is, the IL curve was shifted leftward and 

upward to the location of the EL curve, as expected (Fedan and Frazer, 1992). The IL MCh 

concentration-response curve in the absence of the epithelium demonstrated the maximum 

effect on reactivity that flavorings could produce as a result of epithelial damage. It was 

postulated that the effects of epithelial damage produced by flavoring inhalation should 

resemble qualitatively and in varying degrees the increase in reactivity to IL-applied MCh 

after mechanical epithelial removal.
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Eighteen hours after diacetyl inhalation, responses to MCh of tracheas from animals exposed 

to 300 and 360 ppm were potentiated (Figure 6). However, diacetyl exerted no marked 

effect on the EC50 values for MCh at these and the remaining diacetyl exposure levels 

(Table 3). Diacetyl-exposed tracheas demonstrated significant hyporeactivity compared to 

air controls at 100 ppm at one MCh concentration. These results indicate that epithelial 

damage after diacetyl exposure is accompanied by modest changes in reactivity to IL MCh 

in vitro.

The two highest concentrations of 2,3-pentanedione increased significantly reactivity to IL 

MCh (Figure 7 and Table 3), evidenced as decreases in the EC50 values. The results indicate 

that the damage to the epithelium of rats following 2,3-pentanedione exposure is 

accompanied by an increase in reactivity to MCh in vitro.

Effects of Diacetyl and 2,3-Pentanedione in the IPT

In these experiments the flavorings were administered in vitro to investigate their direct 

pharmacological effects on the trachea and determine whether responses to flavorings might 

indirectly involve the epithelium. An earlier investigation (Fedan et al., 2006) in guinea pig 

IPT indicated that, over its effective concentration range, the initial responses to the lowest 

effective concentrations of IL diacetyl consisted of contractions. At concentrations greater 

than 3 mM (10 mM and 30 mM), diacetyl applied to the IL bath resulted in contraction 

followed by net relaxation. Studies were thus extended as a consequence of these 

observations in the rat and findings were compared to those obtained with 2,3-pentanedione. 

As demonstrated in Figure 8A, IL-applied 2,3-pentanedione (1 mM) elicited small 

contractions. Relaxation responses were elicited subsequently during the response to 3 mM 

and higher 2,3-pentanedione concentrations. Similar relaxation responses were evoked when 

diacetyl and 2,3-pentanedione were added to the IL or EL baths in the intact trachea (Figure 

8B,C). The relaxant responses to EL diacetyl and 2,3-pentanedione were not significantly 

different (Figure 8D), although 2,3-pentanedione appeared to more fully relax the tracheas.

In the absence of the epithelium, both flavorings applied to the IL bath also resulted in 

relaxation responses that were nearly identical to those elicited after they were applied to the 

mucosal side of intact trachea (Figures 9A and 9B). A difference between the relaxant 

effects of the two flavorings added intraluminally to denuded tracheas was not evident 

(Figure 9C). Overall, these results suggest that responses to diacetyl and 2,3-pentanedione 

involve a direct effect on the airway smooth muscle and are independent of and are not 

mediated by epithelium.

Effects of Mixed Inhalation Exposure to Diacetyl, Acetic Acid and Acetoin on Reactivity to 
MCh In Vivo

While diacetyl has been implicated as a critical etiologic agent in the development of 

workplace butter flavoring-induced lung toxicity, workers are exposed to a multitude of 

inhaled volatile chemicals in addition to diacetyl. In particular, acetic acid and acetoin are 

abundant in butter flavoring vapor mixtures and also were found along with diacetyl in the 

less complex exposure in a flavoring manufacturing workplace with affected workers (van 

Rooy et al., 2007, 2009). It is critical to understand whether acetic acid and acetoin, as 
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frequent adjunct agents, might mitigate or exacerbate the effects of diacetyl inhaled 

concomitantly. Therefore, the effects of a 6-h mixed inhalation exposure to these three 

agents were investigated. First, the effects of the agents by themselves were evaluated; 

second, the effects of the mixtures were examined using the flavorings in “low” (“three 

low”: 167 ppm diacetyl + 100 ppm acetoin + 18 ppm acetic acid) and “high” (“three high”: 

250 ppm diacetyl + 150 ppm acetoin + 27 ppm acetic acid) concentrations. The absolute and 

relative concentrations of the three flavorings are relevant to their relative concentrations in 

butter flavoring vapors and were measured in the workplace (Hubbs et al., 2002). Because 

the 250-ppm diacetyl exposure was just below the lowest acute exposure reported to damage 

intrapulmonary airway epithelium (294.6 ppm) and above the lowest acute exposure 

reported to damage tracheal epithelium (224 ppm), while the 167 ppm level was below the 

lowest acute diacetyl exposure reported to damage tracheal epithelium, the concentration of 

diacetyl chosen for this experiment was one that would permit potentiating and inhibiting 

effects of acetoin and acetic acid to be realized were they to occur. Figure 10 illustrates that 

in this series of experiments, inhalation of only diacetyl resulted in a decrease in RL; the 

other flavorings were without marked effect. Neither the low- nor the high-concentration 

flavoring mixtures altered RL. The flavorings present in high concentration in the mixture 

increased Cdyn.

In this series of experiments, diacetyl (250 ppm) decreased the RL response to 10 mg/ml 

MCh (Figure 11); in the series of experiments described earlier, this effect had not been 

observed except at a higher concentration, that is, 360 ppm. While the reason for the 

reduction at 250 ppm here but not at 300 ppm earlier is not understood, these findings 

buttress the observation that acute diacetyl inhalation reduces, rather than increases, airway 

reactivity. Inhalation of acetoin (150 ppm) exerted no marked effect on reactivity to MCh 

(Figure 11). This is a novel observation, as no prior study of acetoin’s effects in the airways 

under similar experimental conditions was available.

Inhalation of 27 ppm acetic acid produced airway hyperreactivity to MCh (Figure 11). 

Acetic acid effects in the airways were reported only in the context of the use of the agent as 

a cough-inducing stimulus (Shimizu et al., 1997) or to examine its acute effects (Ernstgard 

et al., 2006; Stanek et al., 2001). The development of airway hyperreactivity to MCh after 

extended acetic acid inhalation appears to be a new finding.

Having characterized the effects of each flavoring, the effects of mixed exposures were 

investigated. Figure 12 illustrates that the low-concentration mixture exerted no marked 

effect on RL responses to MCh, but that Cdyn responses were increased. The high-

concentration mixture resulted in hyporeactivity to MCh (RL), as observed with diacetyl 

inhalation alone (see earlier description), and an increase in Cdyn. Thus, the hyperreactivity 

observed after acetic acid exposure alone was nullified when diacetyl was included in the 

mixed exposure.

DISCUSSION

In this study, the effects of acute diacetyl and 2,3-pentanedione inhalation were investigated 

and compared for effects on pulmonary function and airway reactivity in vivo and in vitro, 
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the pharmacological effects of both flavorings on airways in vitro, and the consequences in 

vivo of inhaling a mixture of diacetyl, acetoin, and acetic acid—three common and abundant 

components of butter flavorings.

Despite demonstration of substantial epithelial damage in upper airways of the rat observed 

in previous investigations (Hubbs et al., 2008, 2012), basal RL and Cdyn were unaffected by 

inhalation of diacetyl or 2,3-pentanedione. This contrasts with intratracheally instilled 

diacetyl, which resulted in significantly increased airway RL and decreased Cdyn in rats 7 d 

after exposure (Palmer et al., 2011). Even more surprisingly, acute inhalation of the 

flavorings did not lead to airway hyperreactivity. Inhaled diacetyl reduced reactivity (RL) to 

MCh at one exposure concentration, and 2,3-pentanedione decreased responsiveness at three 

exposure concentrations. No marked effects on Cdyn responses to MCh were produced by 

either flavoring, with the exception that 240 ppm 2,3-pentanedione significantly increased 

Cdyn responses to MCh. A clear, graded dose dependency in the effects of inhaled diacetyl 

or 2,3-pentanedione on RL was not apparent at the inhalation doses used in this 

investigation. However, it can be estimated that the threshold for diacetyl, in terms of 

reactivity to inhaled MCh, is greater than 300 ppm and less than 360 ppm (Figure 3). On the 

other hand, the threshold for 2,3-pentanedione would appear to be less than 120 ppm (Figure 

4). Thus, 2,3-pentanedione evoked alterations in reactivity to inhaled MCh at lower 

inhalation exposure doses than in the case of diacetyl. The fact that the agents decreased 

reactivity to MCh suggests the compounds exerted adverse effects in lower airways.

The reduced reactivity to MCh 1 d after inhaling diacetyl or 2,3-pentanedione is reminiscent 

of the reduced sensory irritant response to a second diacetyl exposure that was noted in mice 

that had inhaled 790 ppm or 1154 ppm diacetyl for 2 h the previous day (Larsen et al., 

2009). Since MCh directly affects airway smooth muscle, our data suggest that smooth 

muscle reactivity of rat airways is reduced after a high-level acute exposure to either 

diacetyl or 2,3-pentanedione. Together with the previous study of the acute airway effects of 

diacetyl inhalation in mice (Larsen et al., 2009), these findings suggest that airway 

functional changes are not limited to the epithelium of α-diketone-exposed airways and that 

exposure also leads to reduced smooth muscle reactivity.

A reductionist approach was used to investigate whether flavoring inhalation and resultant 

epithelial damage would affect reactivity to MCh in vitro to a degree that mimics partly or 

fully the effects of epithelium removal. In tracheas that were removed from flavoring-

exposed animals and perfused in vitro, treatment with diacetyl resulted in increases in 

reactivity that were quite modest compared to the change observed after epithelium removal 

(Fedan and Frazer, 1992). The inhalation dose at which diacetyl’s effect on reactivity to 

MCh in the IPT occurred is judged to be greater than 200 ppm and less than 300 ppm. This 

is in rough concordance with the doses that altered reactivity to inhaled MCh. In contrast, 

inhalation of 2,3-pentanedione led to larger increases in the in vitro reactivity to IL MCh at 

concentrations of 2,3-pentanedione greater than 240 ppm and less than 320 ppm. 2,3-

Pentanedione, therefore, was more potent at decreasing reactivity to inhaled MCh than at 

increasing reactivity to MCh in vitro.
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Diacetyl or 2,3-pentanedione inhalation by rats (>150 ppm; 6 h/d, 5 d/wk for 12 exposures 

over 2 wk) resulted in increases in lung resistance and decreases in compliance (diacetyl) 

(Morgan et al., 2012a). These findings are comparable to functional changes reported 1 wk 

after diacetyl aspiration in the rat (Palmer et al., 2011). These changes corresponded with the 

development of airway fibrosis and epithelial remodeling. Early measurements, such as 

those made here, as well as reactivity to MCh, were not reported in those studies. On the 

other hand, in the present investigation, 18 h after acute exposure, none of the agents 

examined affected RL and Cdyn. This is consistent with a role for airway fibrosis and/or 

epithelial remodeling in the development of clinical bronchiolitis obliterans and increased 

RL and decreased Cdyn after subchronic exposures, which are not present after acute 

exposure to diacetyl or 2,3-pentanedione.

It was postulated that the totality of flavorings’ effects on the airways would include more 

than epithelial damage and involve pharmacological effects in the airway wall. Diacetyl is 

believed to diffuse rapidly across the epithelium (Morris and Hubbs, 2009; Morris, 2012). 

An earlier investigation (Fedan et al., 2006) demonstrated that diacetyl applied to the 

mucosal surface of guinea pig IPT preparations elicited contractions in lower concentrations, 

relaxation in higher concentrations, increased reactivity to mucosally applied MCh, and 

reduced transepithelial potential difference and resistance. In the rat IPT preparation both 

diacetyl and 2,3-pentanedione elicited transient contraction and relaxation in the absence 

and presence of the epithelium, irrespective of the route of application, that is, IL or EL. 

Thus, the pharmacologic profile of diacetyl is similar in the two species (2,3-pentanedione 

was not investigated in the guinea pig). During inhalation the flavorings may have crossed 

the epithelium and induced bronchodilation that ameliorated bronchoconstriction in response 

to MCh. It is likely that epithelial integrity began to be compromised from the onset of 

exposure, worsening during the 6-h period and facilitating progressive and greater access of 

the flavoring to the smooth muscle. These two factors may have led to a reduction in 

reactivity to MCh. This notion is concordant with the lack of effect of flavorings on basal 

pulmonary function in our experiments.

Preparations were relaxed by flavoring concentrations that have been calculated to exist in 

the airway wall of exposed humans (Morris and Hubbs, 2009; Morris, 2012). It is unknown 

whether the relaxation reflects a nonspecific toxic action or a specific pharmacological 

effect, and whether or not it is reversible. The latter possibility is under investigation in our 

lab, but if it is determined to be irreversible, one can posit that a long-lasting effect on 

airway smooth muscle abrogates the ability of the smooth muscle to contract in response to 

inhaled MCh, regardless of the degree of epithelium integrity. Such an effect would have to 

be powerful enough to offset the gain in reactivity that would otherwise occur due to 

epithelial damage alone.

Current evidence implicates diacetyl as being a critical chemical in toxicity following butter 

flavoring inhalation, and the pulmonary toxicity of diacetyl has by now been clearly 

demonstrated (Hubbs et al., 2002, 2008, 2010; Morris and Hubbs, 2009; Morgan et al., 

2008, 2012b; Palmer et al., 2011). One or more of the other flavorings in the mixture, 

however, may contribute to the overall toxicity of butter flavoring. An examination of the 

pulmonary toxicity of all the chemicals in flavoring mixtures, alone and in combination with 
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diacetyl, has not thus far been accomplished. Many flavorings are less abundant than 

diacetyl (Boylstein et al., 2006), but they may be more potent. However, because they 

frequently accompany diacetyl exposures in the workplace and are plentiful, acetoin and 

acetic acid were given initial attention using workplace-relevant inhalation exposures. It was 

first observed that 150 ppm acetoin was without significant effect on pulmonary function 

and airway reactivity to MCh (RL). On the other hand, acetic acid, although without marked 

effect on RL and Cdyn, increased reactivity to inhaled MCh (RL). It was a surprising finding 

that the “diacetyl effect” dominated the reactivity change of the high-dose mixed exposure. 

The explanation for this flavoring interaction is not known at present.

The flavoring effects described in this study reflect cytotoxicity in the airway wall, probably 

to both epithelium and smooth muscle, at the least. Diacetyl and similar α-diketones are 

highly selective for the modification of arginyl residues in proteins (Borders and Riordan, 

1975; Epperly and Dekker, 1989; Mueller et al., 1995) and enzymes responsible for 

protecting cells from oxidative damage (Borders et al., 1985). Injury to the epithelium may 

involve covalent bonding of α-diketones with arginine-containing proteins, altering protein 

ternary structure and function (Mathews et al., 2010). Apoptosis may result from DNA 

modification resulting from diacetyl covalently binding to guanyl nucleotides (More et al., 

2012b). α-Diketones may disrupt normal electron transfer processes and generate reactive 

oxygen species (Kovacic and Cooksy, 2010), which are well known to result in cell injury. 

Caspase 3 in main-stem bronchus epithelium (Gardiner et al., 2009) and in olfactory nerve 

bundles (Hubbs et al., 2012) is activated by α-diketones.

Dicarbonyl/xylulose reductase (DCXR), which metabolizes diacetyl and 2,3-pentanedione in 

rat nasal and tracheal tissues (Gardiner et al., 2009; Hubbs et al., 2012), may also augment 

cytotoxicity and death in cells that have DCXR activity (Hubbs et al., 2012; Matsunaga et 

al., 2008). Thus, a multitude of changes in the airways may coalesce and contribute to the 

development of airway hyporeactivity to MCh after α-diketone inhalation.

CONCLUSIONS

Collectively, our findings indicate that a 6-h inhalation of diacetyl or 2,3-pentanedione leads 

to airway hyporeactivity in vivo and airway hyperreactivity in vitro. The results suggest that 

2,3-pentanedione elicits greater effects than diacetyl in the airways in vivo and in vitro. The 

α-diketones possess complex pharmacological characteristics, being able to produce mild 

contraction and profound relaxation at concentrations that have been calculated to exist in 

the airway wall of humans during inhalation exposures. In mixed inhalation exposures 

neither acetoin nor acetic acid appreciably influenced the effects of diacetyl itself.
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FIGURE 1. 
Top, typical recordings illustrating stable diacetyl and 2,3-pentanedione levels during a 6-h 

inhalation exposure. Bottom, typical recordings illustrating stable diacetyl and acetoin and 

acetic acid levels during a 6-h inhalation exposure. Numbers above the tracings are time-

weighted values.

Zaccone et al. Page 16

J Toxicol Environ Health A. Author manuscript; available in PMC 2015 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Basal values of RL (left panel) and Cdyn (right panel) after inhalation exposure of rats to air 

or diacetyl. Left panel: 18 h following 6-h exposure. Air, n = 24; diacetyl, n = 6–9 for each 

concentration. Right panel: Cdyn. Air: n = 26; diacetyl, n = 6–10 for each concentration. 

Asterisk indicates significantly different from air-exposed (p < .05).
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FIGURE 3. 
Effect of diacetyl inhalation 18 h following 6-h exposure of rats on reactivity to inhaled 

MCh. Left panels: diacetyl on effect on RL responses. Right panels: diacetyl exposure on 

Cdyn. Asterisk indicates significantly different from air-exposed (p < .05).
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FIGURE 4. 
Effect of 2,3-pentanedione inhalation 18 h following 6-h exposure of rats on reactivity to 

inhaled. Left panel: RL responses to MCh after exposure to 120, 240, and 320 ppm 2,3-

pentanedione. Right panels: effect on Cdyn. Air: n = 24; 2,3-pentanedione: n = 4–10. 

Asterisk indicates significantly different from air-exposed (p < .05).
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FIGURE 5. 
Effect of epithelium removal on reactivity to IL-applied MCh in IPT. Left panel: 

comparison of EL and IL MCh concentration-response curves obtained from epithelium-

containing tracheas. EL, n = 6; IL, n = 6. Right panel: responses to MCh in tracheas from 

which the epithelium was removed. EL, n = 5; IL, n = 5. Asterisk indicates significant 

difference between EL and IL responses (p < .05).
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FIGURE 6. 
Effect of diacetyl inhalation on reactivity of IPT to IL MCh. MCh EC50 values and 

maximum responses are summarized in Table 3. Control, n = 50; 100 ppm, n = 10; 200 ppm, 

n = 9; 300 ppm, n = 14; 360 ppm, n = 8. Asterisk indicates significantly different from air-

exposed (p < .05).
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FIGURE 7. 
Effect of 2,3-pentanedione inhalation on reactivity IPT to IL MCh. MCh EC50 values and 

maximum responses are summarized in Table 3. Control, n = 29; 120 ppm, n = 7; 240 ppm, 

n = 6; 320 ppm, n = 5; 360 ppm, n = 8. Asterisk indicates EC50s were significantly different 

from air-exposed (p < .05).
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FIGURE 8. 
Effects of flavorings in MCh-contracted IPT. (A) Representative responses to 1, 3, 10, and 

30 mM 2,3-pentanedione added intraluminally (at dots). Note that relaxation followed 

contraction at 3 mM 2,3-pentanedione. The rat perfused trachea develops spontaneous tone; 

therefore, the relaxations to both flavorings reduced the level of △P below baseline before 

MCh addition. Contraction and relaxation responses were also elicited after diacetyl 

administration and resembled those depicted in (A). (B) The results following IL and EL 

diacetyl additions are summarized. Diacetyl administered to either EL or IL bath resulted in 

similar relaxation. IL, n = 8; EL, n = 8. (C) The results following IL and EL 2,3-

pentanedione additions are summarized. (D) Comparison of relaxant responses to EL 

diacetyl and 2,3-pentanedione.
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FIGURE 9. 
Responses of epithelium-denuded IPT to flavorings. (A) Diacetyl applied to the IL bath 

elicited responses that were similar to what had been observed in intact trachea. (B) 

Responses to IL 2,3-pentanedione in the absence of the epithelium were not different from 

responses to IL 2,3-pentanedione in intact trachea; see (A). (C) Comparison of responses to 

IL diacetyl and 2,3-pentanedione. Diacetyl, n = 5; 2,3-pentanedione, n = 6.
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FIGURE 10. 
Basal values of RL (left panel) and Cdyn (right panel) after inhalation exposure of rats to air, 

diacetyl (250 ppm), acetoin (150 ppm), and acetic acid (27 ppm) alone and in combinations 

involving the three flavorings present in low (“three low”) or high (“hree high”) 

concentrations. The “three low” concentrations were: 167 ppm diacetyl + 100 ppm acetoin + 

18 ppm acetic acid. The “three high” concentrations were: 250 ppm diacetyl + 150 ppm 

acetoin + 27 ppm acetic acid. Air control animals from the same shipment were run in 

parallel with the flavoring-exposed animals. The n values for the exposed animals and air 

controls, respectively, were: diacetyl (250 ppm) alone, 6 and 6; acetoin (150 ppm) alone, 7 

and 7; acetic acid (27 ppm) alone, 3 and 7; “three low,” 7 and 7; and “three high,” 6 and 6. 

Diacetyl (250 ppm) decreased RL; “three high” increased Cdyn. Asterisk indicates 

significantly different from air-exposed (p < .05).
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FIGURE 11. 
Effect of inhalation of diacetyl (250 ppm), acetoin (150 ppm) and acetic acid (27 ppm) 18 h 

following 6-h exposure of rats on reactivity to inhaled MCh. Left panels: diacetyl decreased 

RL responses; acetic acid increased RL responses. Asterisk indicates significantly different 

from air-exposed (p < .05).
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FIGURE 12. 
Effect of “three low” (top two panels) and “three high” (bottom two panels) mixed 

exposures 18 h following a 6-h exposure of rats on reactivity to inhaled MCh. The “three 

high” exposure reduced RL responses to MCh; both the “three low” and the “three high” 

exposures increased Cdyn. The n values for the exposed animals and air controls, 

respectively, were: “three low,” 6 and 6; “three high,” 7 and 7. Asterisk indicates 

significantly different from air-exposed (p < .05).
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TABLE 1

Target Concentrations Compared to Measured Concentrations During Diacetyl and 2,3-Pentanedione 

Inhalation

Target (ppm) Measured (ppm)

Diacetyl

 100 100±0

 200 200±0

 300 295±1

 360 354±2

2,3-Pentanedione

 120 118±0.5

 240 242±2

 320 315±4

 360 356±1

Note. Animals were exposed to flavoring levels close to target concentrations at stable temperature and relative humidity.
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TABLE 2

Target Concentrations Compared to Measured Concentrations During Diacetyl and Acetoin and Acetic Acid 

Single and Mixed Inhalation Exposures

Vapor Target (ppm) Measured (ppm)

Single vapor

 Diacetyl 250 251.4±0.3

 Acetoin 150 149.5±0.1

 Acetic acid 27 25.9±3.4

Mixed exposure: “three low”

 Diacetyl 167 164.9±1.7

 Acetoin 100 99.5±1.0

 Acetic acid 18 18.6±0.1

Mixed exposure: “three high”

 Diacetyl 250 251.6±0.2

 Acetoin 150 143.6±7.7

 Acetic acid 27 28.2±0.3
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TABLE 3

Reactivity of Rat IPT to MCh After Inhalation Exposure to Diacetyl and 2,3-Pentanedione

Diacetyl
a EC50 (95% CI) (M)

EC50 air/
EC50
exposed

Maximum

response
b

2,3-

Pentanedione
a EC50 (95% CI) (M)

EC50 air/
EC50
exposed

Maximum

response
b

0 (Air)
c 1.00 (0.2–0.5) × 10−3 — 1.02±0.18

0 (Air)
c 1.3 (0.7–2.2) × 10−3 — 0.94±0.31

100 2.1 (0.4–11.5) × 10−4 5.0 0.82±0.16 120 2.7 (0.7–10.3) × 10−3 0.48 0.94±0.33

200 1.3 (0.2–10.6) × 10−3 0.08 0.57±0.14 240 4.0 (2.0–8.0) × 10−4 3.25 0.21±0.07

300 3.3 (1.6–7.0) × 10−3 0.32 0.77±0.16 320 1.9 (1.1–3.2) × 10−4* 6.84 0.46±0.12

360 0.2 (0.0–13.6) × 10−4 52.5 0.54±0.13 360 0.2 (0.3–1.8) × 10−4* 65.0 0.62±0.20

Note. Asterisk indicates significantly different from air-exposed. CI, confidence interval.

a
ppm during a 6-h exposure.

b
cm H2O.

c
Control.
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