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Abstract

IMPORTANCE—Newborn screening for severe combined immunodeficiency (SCID) using
assays to detect T-cell receptor excision circles (TRECs) began in Wisconsin in 2008, and SCID
was added to the national recommended uniform panel for newborn screened disorders in 2010.
Currently 23 states, the District of Columbia, and the Navajo Nation conduct population-wide
newborn screening for SCID. The incidence of SCID is estimated at 1 in 100 000 births.

OBJECTIVES—To present data from a spectrum of SCID newborn screening programs,
establish population-based incidence for SCID and other conditions with T-cell lymphopenia, and
document early institution of effective treatments.

DESIGN—Epidemiological and retrospective observational study.

SETTING—Representatives in states conducting SCID newborn screening were invited to submit
their SCID screening algorithms, test performance data, and deidentified clinical and laboratory
information regarding infants screened and cases with nonnormal results. Infants born from the
start of each participating program from January 2008 through the most recent evaluable date prior
to July 2013 were included. Representatives from 10 states plus the Navajo Area Indian Health
Service contributed data from 3 030 083 newborns screened with a TREC test.

MAIN OUTCOMES AND MEASURES—Infants with SCID and other diagnoses of T-cell
lymphopenia were classified. Incidence and, where possible, etiologies were determined.
Interventions and survival were tracked.

RESULTS—Screening detected 52 cases of typical SCID, leaky SCID, and Omenn syndrome,
affecting 1 in 58 000 infants (95%Cl, 1/46 000-1/80 000). Survival of SCID-affected infants
through their diagnosis and immune reconstitution was 87%(45/52), 92%(45/49) for infants who
received transplantation, enzyme replacement, and/or gene therapy. Additional interventions for
SCID and non-SCID T-cell lymphopenia included immunoglobulin infusions, preventive
antibiotics, and avoidance of live vaccines. Variations in definitions and follow-up practices
influenced the rates of detection of non-SCID T-cell lymphopenia.

CONCLUSIONS AND RELEVANCE—Newborn screening in 11 programs in the United States
identified SCID in 1 in 58 000 infants, with high survival. The usefulness of detection of non-
SCID T-cell lymphopenias by the same screening remains to be determined.

The purpose of newborn screening is early detection of inborn conditions for which prompt
treatments mitigate mortality or irreversible damage. The first heritable immune disorders to
which newborn screening has been applied are those that together comprise severe
combined immunodeficiency (SCID), caused by defects in any of a diverse group of gene
products essential for development of adaptive immunity provided by T and B
lymphocytes.12 A feature of all SCID is defective production of T cells. In most SCID, B
cells are also defective, but even normal B cells cannot produce antibodies without T-cell
help. Thus, infants with SCID are susceptible to life-threatening infections. Early detection
and treatment optimize survival 3 Provided that SCID is diagnosed before infections
become overwhelming, affected infants can be rescued with hematopoietic stem cell
transplantation; gene therapy; or, for adenosine deaminase deficiency, enzyme replacement
therapy.2>8
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Population-based screening is the only means to detect SCID prior to the onset of infections
in most cases, as more than 80% lack a positive family history.%10 T-cell receptor excision
circles (TRECs), a biomarker for T lymphopoiesis, 1! can be measured by polymerase chain
reaction (PCR) using DNA isolated from infant dried blood spots collected for newborn
screening.® Dried blood spots from apparently healthy newborns who were later diagnosed
with SCID lacked TRECs.? Confirmation of the utility of the TREC test,12 adaptation for
pilot newborn screening programs in Wisconsinl3 and Massachusetts, 14 and an evidence-
based review led to the recommendation by the US Department of Health and Human
Services Secretary in 2010 that SCID be added to the Uniform Screening Panel for all
newborns, with related T-cell deficiencies added to the list of secondary targets.1® Currently,
23 states, the District of Columbia, and the Navajo Nation screen approximately two-thirds
of all infants born in the United States for SCID. Individual states have confirmed detection
of SCID as well as additional disorders with low T-cell numbers, which also may benefit
from further assessment of immune dysfunction and from protective treatments.13:16-18 Here
we present the first combined analysis of more than 3 million infants screened for SCID in
10 states and the Navajo Nation, providing a population-based overview of SCID and non-
SCID T-cell lymphopenia.

All SCID newborn screening programs active as of July 31, 2013, were invited, and 11
provided data for this study with the following accrual dates: California (August 16, 2010, to
May 31, 2013), Colorado (February 1, 2012, to March 31, 2013), Connecticut (October 1,
2011, to May 1, 2013), Delaware (July 6, 2012, to June 30, 2013), Massachusetts (February
1, 2009, to January 31, 2013), Michigan (October 1, 2011, to March 31, 2013), Mississippi
(January 1, 2012, to December 31, 2012), New York (September 29, 2010, to September 28,
2012), Texas (December 1, 2012, to May 31, 2013), Wisconsin (January 1, 2008, to
December 31, 2012), and the Navajo Nation spanning parts of Arizona, New Mexico, and
Utah, where health care is provided through the Navajo Area Indian Health Service
(February 1, 2012, to June 30, 2013). Five states had insufficient data due to short SCID
screening program duration: lowa began June 3, 2013, and had fewer than 3000 births
screened by the close of our study, based on published summaries of national vital
statistics?; Pennsylvania, Utah, and Wyoming began July 1, 2013; and Ohio began July 29,
2013; thus, these states had no screened births prior to the close of our study. Florida started
screening October 1, 2012, and screened an estimated 160 000 infants for SCID during the
study period while Minnesota started January 7, 2013, accruing data for around 33 000
infants during the study period. In both states an administrative decision not to participate
was made based on programmatic constraints. An estimated maximum of 196 000 screened
births could have been included in the study if all programs had participated (a 6.5%
increase above the total included in the 11 participating programs).1® All programs, whether
participating in the study or not, conformed to the approved guidelines for implementation
of SCID screening developed by the Clinical and Laboratory Standards Institute.20

Institutional review board approvals for research with human subjects or waivers for
submitting data for this study were obtained in accord with requirements of each
participating program. Deidentified SCID screening information was captured either via the
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R4S database, 2! a tool for quality improvement of newborn screening supported by the
Newborn Screening Translational Research Network, or via electronic spreadsheets. As
defined in Table 1, typical SCID, leaky SCID, and Omenn syndrome, which require immune
system restoration for survival, were the primary targets of SCID screening, while additional
diagnoses were detected as secondary targets.>20:22 |nfants with abnormal TREC results had
flow cytometry to enumerate lymphocyte subsets; HIV PCR or maternal serodiagnosis; and
further evaluation to establish a diagnosis. To ensure follow-up and ascertainment of SCID
cases, public health programs engaged as advisors the immunologists and transplant
clinicians who have diagnosed and cared for infants with SCID in each state. Regular
reviews were conducted between public health personnel and clinical experts in each
program to uncover any missed (false-negative) cases and monitor screening test
performance and follow-up.

Aggregate Population Data and Case Data

Programs provided accrual dates, numbers of newborns screened, and data about infants
with nonnormal TREC results (after 1 or multiple dried blood spot samples) in each
diagnosis category. State-designated immunologists provided deidentified data in
consultation with screening program officials to ensure compliance with privacy policies.
Gene and syndrome diagnoses were requested. Numbers of infants with T cells within
designated ranges and interventions and outcomes were reported by public health programs
and by participating immunologists who evaluated and followed up or referred infants for
treatment.

TREC Newborn Screening

See the eMethods and eTable in the Supplement for individual program details beyond those
published.13.14.17.18.20 AJ| programs conformed to the guidelines that included reporting any
nonnormal TREC test results within the first 3 weeks of life and performing flow cytometry,
where indicated, by 4 to 5 weeks of age. In addition, all programs participated in the TREC
Proficiency Quality Assurance Program, cosponsored by the Centers for Disease Control
and Prevention and the Association of Public Health Laboratories.23

Statistical Analyses

Results

Statistical analyses were conducted in SAS version 9.3 (SAS Institute). Confidence intervals
were derived from normal approximation of binomial data or from inversion of cumulative
binomial distribution, as appropriate, but not calculated where numbers were too small.
Confidence intervals were 2-sided, except that when the number of cases or noncases was 5
or fewer, 1-sided intervals were calculated. P values less than .05 were considered
statistically significant.

This study included data for 3 030 083 infants from 11 programs (Table 2). Nonparticipating
programs cited insufficient data, lack of personnel to assemble data, or privacy concerns.
California, with nearly 3 years of screening and 12.5% of all US births,23 contributed 46%,
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followed by New York with 16% from 2 years. Wisconsin and Massachusetts, with fewer
annual births but longer program durations, contributed 11% and 10%, respectively.

Detection of SCID

There were 52 SCID cases (42 with typical SCID, 9 with leaky SCID, and 1 with Omenn
Syndrome), an overall incidence of 1 in 58 000 births (95%CI, 1/46 000-1/80 000) (Table
2). The incidence was not significantly different in any state program but as expected was
higher in the Navajo Nation (1/3500; 95%CI, 1/630-1/4000), where a frequent founder
mutation in DCLRELC, encoding a DNA repair protein, causes SCID in an estimated 1 in
2000 births.24:25 No cases of SCID as defined in Table 1 were initially missed by TREC
screening but detected later, and overdiagnosis of SCID when not clinically present was
avoided by having flow cytometric determination of T-cell numbers, a definitive test,
mandated for all infants with very low or undetectable TRECs (eTable in the Supplement).

Genetic causes and outcomes of the 52 infants with conditions that were primary targets of
TREC newborn screening are shown in Table 3 and included 42 infants (81%) with typical
and 10 (19%) with leaky SCID. Mutations in the X chromosome—-linked IL2RG gene,
encoding the cytokine receptor common v chain, accounted for only 19% of cases.
Recombinase activating gene 1 (RAG1) defects, causing impairment of V(D) J lymphocyte
antigen receptor recombination, were detected in 4 typical and 4 leaky SCID cases, 1 of the
latter with Omenn syndrome, accounting for 15% of all 52 cases. Interleukin-7 defects and
adenosine deaminase deficiency contributed 12% and 11%, respectively. New SCID gene
defects included mutations of tetratricopeptide repeat domain 7A (TTC7A) that disrupted not
only T-cell development, but also intestinal epithelial polarity, leading to multiple bowel
atresias.26:27 In addition, typical SCID was diagnosed in a case of Pallister-Killian
syndrome, in which congenital diaphragmatic defects associated with tetrasomy 12p are
frequently incompatible with life, as in this case. Although not previously recognized as an
immune deficiency, Pallister-Killian syndrome has been known for poor lymphocyte
proliferation in the context of cytogenetic analysis.28

Of the 12 infants without a molecular diagnosis, no gene test results were available for 2,
and 2 males with T-B+NK-phenotype died prior to testing (Table 3). However, in 6 typical
and 2 leaky SCID cases (15% of all typical and leaky SCID cases found), no molecular
defects were identified in known SCID genes: the common vy chain or interleukin-7
receptors, adenosine deaminase or purine nucleoside phosphorylase enzymes, janus
kinase-3, recombinase activating genes, the DNA repair enzyme Artemis, or components of
the CD3 receptor complex.

Definitions and Incidence of Abnormal TRECs and LowT Cells

Although all programs identified SCID cases with undetectable or very low TRECs,
differences in intermediate steps for arriving at a SCID diagnosis influenced rates of follow-
up testing and capture of non-SCID conditions (Table 1 and Table 4).20 After an abnormal
TREC screen, flow cytometry to enumerate T, B, and NK cells, as well as naive and
memory phenotype T cells, was standard for all programs. However, different TREC cutoffs
resulted in different referral rates for flow cytometry; therefore, neither aggregate analysis
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nor interprogram comparison of incidences of infants with particular TREC cutoff values
was possible. Rates of referral for flow cytometry were less than 15 per 100 000 in
California, Colorado, and Mississippi but 7- to 9-fold higher in New York and Texas (Table
4).

Furthermore, definitions of T-cell lymphopenia varied. Healthy newborns have abundant T
cells (mean, 3100/pL; range, 2500-5500).2% While 6 screening programs defined significant
T-cell lymphopenia as T-cell count less than 1500/pL and opted not to recall infants with
higher T-cell numbers as long as the proportion of naive cells was adequate, 4 programs
used T-cell cutoffs of 2500/uL or more, and New York left it to individual immunologists to
define T-cell lymphopenia.39 Different TREC and T-cell lymphopenia cutoffs thus resulted
in variable false-positive rates, defined here as nonnormal TREC results that require a
follow-up flow cytometry test, which when performed shows T cells above the program
cutoff for T-cell lymphopenia (Table 4). These false-positive rates ranged from 0 in
Mississippi and the Navajo Nation, where all infants referred to flow cytometry had T-cell
lymphopenia by program definitions (<2500/uL and <1500/uL, respectively), to 82% in
New York, where 478 infants were referred for flow cytometry, but only 84 (18%) had T-
cell lymphopenia as determined by treating physicians (Table 4). A subgroup analysis for
the 6 programs defining T-cell lymphopenia as a T-cell count less than 1500/uL showed a
positive predictive value of 36% (95% ClI, 32%-41%) for a nonnormal TREC test to indicate
this degree of T-cell lymphopenia.

Regardless of selected T-cell lymphopenia cutoff, all programs identified predominantly
male infants; the 6-program subgroup had 66% of males with T-cell lymphopenia (95%Cl,
59%-73%). Programs did not report preterm infants with low T cells in a uniform manner,
partly due to automatically repeated TREC testing of preterm infants in neonatal intensive
care units in some screening programs (eMethods in the Supplement). However, 13%
(95%Cl, 8.4%-18%) of infants with T-cell lymphopenia in the 6-state subgroup had
prematurity or low birth weight as the only identified cause. As previously reported, T-cell
lymphopenia of prematurity resolved to normal over time.13.18 After excluding infants with
SCID and prematurity, the rate of non-SCID T-cell lymphopenia in the subgroup was 1 in
14 000 infants (95%Cl, 1/11 600-1/16 400), whereas more inclusive definitions led to 1 in
2100 in Michigan, 1 in 6500 in Massachusetts and New York, and 1 in 8100 in Wisconsin
(Table 4).

Causes of Non-SCID T-Cell Lymphopenia

Of 411 infants with non-SCID T-cell lymphopenia (Table 1 and Table 5), 136 (33%) were
reported to have a recognized congenital syndrome associated with T-cell impairment. Of
these syndromic infants, 78 (57%) had DiGeorge syndrome/chromosome 22q11.2 deletion,
followed by 21 (15%) with trisomy 21. The remaining specified syndrome diagnoses
included repeated instances of ataxia telangiectasia3! and trisomy 18 (each 3%), CHARGE
(coloboma, heart defect, atresia choanae, retarded growth and development, genital and ear
abnormalities) syndrome (2%), and other rare entities as listed (Table 5).32

There were 117 cases of T-cell lymphopenia attributed to other medical conditions (28% of
all non-SCID T-cell lymphopenia cases) (Table 5), the most predominant being congenital

JAMA. Author manuscript; available in PMC 2015 August 20.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kwan et al.

Page 7

heart disease in 30 cases (26%), followed by other congenital anomalies, vascular leakage
and hydrops (grouped as loss into third space), gastrointestinal anomalies including
gastroschisis, and 4 neonatal leukemias. No cases of HIV infection were detected.

Idiopathic T-cell lymphopenia, also termed variant SCID, was found in only 3% of non-
SCID T-cell lymphopenia cases (12/411, or 1/250 000 births); these infants did not meet the
diagnostic criteria for leaky SCID but had persistent T-cell lymphopenia and immune
dysfunction without defects in known SCID genes (Table 1).18:30 One of these 12 infants
eventually required hematopoietic cell transplantation. The screening program in New York
identified 30 further cases as having idiopathic T-cell lymphopenia,3° included in Table 5
among the unspecified T-cell lymphopenia cases because their T-cell counts were not
available.

Interventions for Infants With Deficient T Cells Identified Through SCID Newborn

Screening

Of the 52 infants detected with SCID in the first weeks of life, 49 received immunity
restoring therapies. Forty-four had hematopoietic cell transplants, 4 had gene correction of
IL2RG and ADA defects by ex vivo transduction of a normal gene sequence into autologous
hematopoietic stem cells (1 of whom required subsequent hematopoietic cell transplant due
to inadequate correction), and 2 had adenosine deaminase enzyme injection therapy. In
addition, non-SCID cases requiring immune restorative treatment included 1 infant with
Rac2 deficiency (a syndrome of defective neutrophil adhesion) and 1 with variant SCID who
received hematopoietic cell transplantation, and 2 infants with complete DiGeorge syndrome
who received thymus transplantation (Table 3 and Table 5). Of 7 deaths among the 52
infants with typical SCID and leaky SCID, 3 were due to perinatal complications, including
1 with Pallister-Killian syndrome, 1 with intestinal malrotation and severe respiratory
distress,30 and 1 with undescribed medical problems that precluded transport to a center
where hematopoietic cell transplant could be done. Four infants with SCID died after
transplant. Thus, overall SCID survival was 45 of 52 (87%), while 45 of 49 treated infants
(92%) survived, comparable with experience from transplant centers for uninfected SCID
patients treated early in life.*7 Posttreatment deaths were due to cytomegalovirus infection
acquired early postnatally in 1, pretransplant respiratory compromise in 1, and hepatic
sinusoidal obstructive disease secondary to pretransplant busulfan chemotherapy in 2 (Table
3).

All infants with T-cell lymphopenia were directed to avoid infectious exposures,
transfusions (except with cytomegalovirus-negative, irradiated blood products), and live
rotavirus vaccines until such time as immune compromise was no longer present.
Prophylactic antimicrobials and immunoglobulin infusions were given as indicated by
immunology specialists.

Discussion

To our knowledge, this is the first multistate report of results of newborn screening for
SCID, a core condition in the US Recommended Uniform Screening Panel. Our experience
has demonstrated the feasibility of assaying for TRECs, a biomarker for naive T-cell
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lymphopoiesis, followed by confirmatory flow cytometry, as a means to identify SCID.
Newborn screening has provided a new, population-based incidence of SCID of 1 in 58 000
births, higher than the incidence of 1 in 100 000 suggested from retrospective clinical
diagnoses.33-35 Furthermore, the proportion of IL2RG deficient X-linked SCID in our study
(19%) is in contrast to nearly half of cases in published cohorts from referral centers that
treat SCID.5-8 Because X-linked disorders with severe phenotype maintain constant
frequency due to replenishment in the gene pool by new mutations,36 our lower proportion
of IL2RG-deficient SCID is likely to reflect increased ascertainment of autosomal recessive
SCID cases by population-based screening. Moreover, compared with series from large
transplant centers, in which less than 10% of cases lacked a molecular diagnosis,8 our
newborn screened cases had a higher proportion of leaky SCID and more than 15% of
typical and leaky SCID without a proven molecular diagnosis despite extensive gene
sequencing (Table 3). These findings support the view that SCID has previously been under
diagnosed in infants with fatal infections. Furthermore, proportions of typical SCID, leaky
SCID, and Omenn syndrome in our cohort appear distinct from those previously reported for
older infants; features of Omenn syndrome develop over months after birth, and the clinical
diagnosis of leaky SCID can be delayed for years.3’

Additional data collection may reveal new demographic patterns, such as the known high
Navajo incidence of SCID due to a DCLRE1C founder mutation and Amish and Mennonite
founder mutations in ADA, IL7R, and RAG1.38:39 Inclusion of data from more SCID
screening programs in additional states would be required to know if the results from the 11
participating programs included here are fully generalizable. Whether the excess of males
with abnormal SCID newborn screens is explained by the known higher rate of male
preterm births as well as the common X-linked SCID gene IL2RG also needs to be explored.
The unanticipated high proportion of SCID without a defined genotype and new discovery
of non-SCID T-cell lymphopenias illustrate how unbiased population screening reveals a
wide phenotypic spectrum and affords opportunities to discover previously unknown genes
essential to human T-cell development.

Now that infants with SCID are being detected at a very young age in diverse medical
settings, it is imperative to tailor protocols for their treatment, including choice and
pharmacokinetic monitoring of drugs administered to facilitate hematopoietic cell
engraftment. Busulfan chemotherapy led to fatal hepatic sinusoidal obstruction, also known
as veno-occlusive disease, in 2 infants diagnosed with SCID by newborn screening.
Prospective studies conducted by the Primary Immune Deficiency Treatment Consortium
will address whether dose adjustments based on age or alternate regimens will provide
enhanced safety while still affording long-lasting immune reconstitution.>-8:21.40

A major limitation of this study was the lack of uniformity of assay methodology and rules
for retesting among the individual newborn screening programs, despite general adherence
to the Clinical and Laboratory Standards Institute guidelines.20 Use of different TREC
assays and test algorithms resulted in a variety of rates both for recall for additional testing
and for having T cells by flow cytometry in a range defined as normal. Specific information
about the ages at which samples for TREC screening and for flow cytometry were obtained
were not available. No program identified a false negative test for SCID, the primary target
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condition. Furthermore, although the definitive flow cytometry test was universally used as
follow-up for infants whose TRECs were not normal, different cutoffs were used to define
non-SCID secondary targets of screening. Therefore, the incidence of T cell lymphopenia
cases referred for follow-up varied from 3 to 47 cases per 100 000 infants (Table 4).

While unsuspected non-SCID immunodeficiency syndromes were identified and 4 infants
had immune defects sufficiently serious to require hematopoietic cell or thymus
transplantation, these benefits must be weighed against the burdens of heightened parental
anxiety and costs of further testing in infants with less profound T-cell lymphopenias. As
with development of each newborn screening test since the original one for
phenylketonuria,*! different initial approaches for SCID screening are anticipated to evolve
and become standardized over time, as evident in adjustments to TREC screening algorithms
that have already occurred.1730 Specific data regarding persistence of non-SCID T-cell
lymphopenia over time and functional T-cell abnormalities were not available for our
analysis but should in the future be collected to clarify which infants require interventions,
such as avoidance of live rotavirus vaccination, which can cause serious diarrheal disease in
infants with immunodeficiency.42:43

Differences in cutoffs between the SCID screening programs in this study may prove helpful
for public health programs in other states and countries considering instituting SCID
newborn screening. In addition, the R4S SCID database will permit future analytical and
clinical correlations to optimize cutoffs for key markers, such as T-cell numbers, to inform
best practices.19:44

The TREC assay has proven excellent for detecting disorders with poor T-cell production or
inadequate numbers of circulating T cells, but finding additional immune defects prior to
onset of recurrent or life-threatening infections will require further methods. A few more
entities may be captured by screening for the circular by-products of B-cell immunoglobulin
gene rearrangement,*® and mild as well as severe cases of adenosine deaminase deficiency
may be identified by a modification of the current mass spectrometry already widely used
for newborn screening.*® However, infants with defects affecting T cells beyond the
developmental stage of recombination of T-cell receptors (eg, major histocompatibility
complex class |1 deficiency4’) have normal TRECs but impaired T cell function. Genomic
sequencing may be required to detect deleterious mutations in primary immune defects, of
which nearly 200 are known.!

Conclusions

Newborn screening in 11 programs in the United States identified SCID in 1 in 58 000
infants, with high survival. The usefulness of detection of non-SCID T-cell lymphopenias by
the same screening remains to be determined.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Classification of Conditions With Low T-Cell Receptor Excision Circles and Low T-Cell Numbers Found by
Newborn Screening

Definition of Condition

CD3 T Cells/uL Proliferation to PHA Other Supporting Features

Primary Targets of Newborn Screening

Typical SCID& <300 (autologous) <10% of normal Detectable maternal T cells in
peripheral blood; proven deleterious
defect(s) in a known SCID gene

Leaky SCID@ 300-1500, few naive T Reduced (10%-50% of No maternal T cells detectable;
cells normal) incomplete defect(s) in a known SCID
gene
Omenn syndrome Oligoclonal T cells Reduced (10%-50% of Erythroderma, hepatosplenomegaly,
normal) eosinophilia, and elevated levels of

serum IgE antibody

Secondary Targets of Newborn Screening

Syndrome with low T-cell Recognized genetic syndrome that includes low T-cell numbers within its spectrum of clinical

numbers findings

Secondary T-cell lymphopenia Congenital malformation or disease process without an intrinsic defect in production of circulating T
cells

Preterm birth alone Preterm birth and low birth weight, with low T-cell numbers early in life that normalize over time

Idiopathic T-cell lymphopenia, Low T-cell numbers without recognized cause; 6 programs used 300-1500 autologous T cells/uL plus

also called variant SCID evidence of functional immune cell impairment, while other programs included infants with higher T-cell

numbers (see Table 4).b

Abbreviations: PHA, phytohemagglutinin; SCID, severe combined immunodeficiency.

aAs adopted by the Primary Immune Deficiency Treatment Consortium and R4S Laboratory Performance Database, SCID and leaky SCID were
defined by laboratory criteria rather than infectious complications.

On discovery of an etiology for low T cells, the affected individual was moved to the appropriate alternative category.
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Diagnoses of 411 Infants With Non-SCID T-Cell Lymphopenia Identified by Newborn Screening

Condition No. of Infants
Syndromes with T-cell impairment& 136
DiGeorge 7gb
Trisomy 21 21
Ataxia telangiectasia 4
Trisomy 18 4
CHARGE 3
Jacobsen 2
CLOVES 1
ECC 1
Fryns 1
Nijmegen breakage 1
Noonan 1
Rac2 defect 1€
Renpenning 1
TAR 1
Not specified 10
Cytogenetic abnormalitiesd 6
Secondary T-cell impairment 117
Cardiac anomalies 30
Multiple congenital anomalies 23
Loss into third space 15
Gastrointestinal anomalies 15
Neonatal leukemia 4
Not specified 30
Preterm birth alone 29
Variant SCID 10€
f 117

Unspecified T-cell lymphopenia

Table 5

Page 21

Abbreviations: CHARGE, coloboma, heart defect, atresia choanae, retarded growth and development, genital and ear abnormality; CLOVES,

congenital lipomatous overgrowth, vascular malformations, epidermal nevi, and spinal/skeletal anomalies; ECC, ectodermal dysplasia,
ectrodactyly, and clefting; SCID, severe combined immunodeficiency; TAR, thrombocytopenia and absent radius.

a . . . . . .
Eponymous syndromes: DiGeorge, cardiac defects, hypocalcemia, thymus dysplasia, and other anomalies, most often with chromosome 22q11.2

interstitial deletion; Jacobsen, growth and psychomotor retardation and congenital anomalies with chromosome 11qter deletion; Fryns,
diaphragmatic hernia and other congenital anomalies; Noonan, multiple congenital anomalies; Renpenning, X chromosome-linked mental

retardation with distinctive facies.

bIncluded 3 infants with complete DiGeorge syndrome and absent T cells, 2 of whom received a thymus transplant.

c -
Eventual hematopoietic cell transplant performed.17
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dIncluded chromosome 6p deletion, ring chromosome 14, ring chromosome 17, chromosome 17q duplication, and 2 siblings with unspecified
chromosome abnormalities.
e -

Eventual hematopoietic cell transplant performed for 1 case.

Includes infants from Michigan (46), New York (30), Massachusetts (25), Wisconsin (13), Connecticut (2), and Delaware (1); further information
was not available for these infants, although those from New York were reported to require ongoing monitoring or treatment for a deficiency of T

cells.30
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