Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Potential sensitivity of bias analysis results to incorrect assumptions of nondifferential or differential binary exposures misclassification

Filetype[PDF-286.83 KB]


  • English

  • Details:

    • Alternative Title:
      Epidemiology
    • Description:
      Background

      Results of bias analyses for exposure misclassification are dependent on assumptions made during analysis. We describe how adjustment for misclassification is affected by incorrect assumptions about whether sensitivity and specificity are the same (nondifferential) or different (differential) for cases and non-cases.

      Methods

      We adjusted for exposure misclassification using probabilistic bias analysis, under correct and incorrect assumptions about whether exposure misclassification was differential or not. First, we used simulated datasets in which nondifferential and differential misclassification were introduced. Then, we used data on obesity and diabetes from the National Health and Nutrition Examination Survey (NHANES) in which both self-reported (misclassified) and measured (true) obesity were available, using literature estimates of sensitivity and specificity to adjust for bias. The ratio of odds ratio (ROR; observed odds ratio divided by true odds ratio) was used to quantify magnitude of bias, with ROR=1 signifying no bias.

      Results

      In the simulated datasets, under incorrect assumptions (e.g., assuming nondifferential misclassification when it was truly differential), results were biased, with RORs ranging from 0.18 to 2.46. In NHANES, results adjusted based on incorrect assumptions also produced biased results, with RORs ranging from 1.26 to 1.55; results were more biased when making these adjustments than when using the misclassified exposure values (ROR=0.91).

      Conclusions

      Making an incorrect assumption about nondifferential or differential exposure misclassification in bias analyses can lead to more biased results than if no adjustment is performed. In our analyses, incorporating uncertainty using probabilistic bias analysis was not sufficient to overcome this problem.

    • Pubmed ID:
      25120106
    • Pubmed Central ID:
      PMC4477528
    • Document Type:
    • Place as Subject:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov