of unexplained acute hypoglycemic encephalopathy in young children in Muzaffarpur, Bihar, coinciding with local lychee harvests (6).

References

Address for correspondence: Peter S. Spencer, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, L356, Portland, OR 97239-3098, USA; email: spencer@ohsu.edu

Pin-Site Myiasis Caused by Screwworm Fly, Colombia

Francisco J. Africano, Álvaro A. Faccini-Martínez, Carlos E. Pérez, Alejandro Espinal, Juan S. Bravo, Carlos Morales

Author affiliations: Universidad Militar Nueva Granada, Bogota, Colombia (F.J. Africano); Servicios y Asesorías en Infectología, Bogota (A.A. Faccini-Martínez); Hospital Militar Central, Bogota (C.E. Pérez, A. Espinal, J.S. Bravo, C. Morales)

DOI: http://dx.doi.org/10.3201/eid2105.141680

To the Editor: Myiasis is the infestation of humans or animals with dipterous insect larvae (1). The term pin-site myiasis was recently adopted for a rare and emerging parasitic infection after treatment of open fractures with external metal fixators (pins). Myiasis can also occur as a result of invasion of larvae deposited by flies in wounds adjacent to these fixators (1,2). We describe a patient with pin-site myiasis caused by the Cochliomyia hominivorax screwworm fly associated with external fixators used for treatment of an open fracture of the femur.

In September 2014, a 26-year-old male soldier from the Department of Meta in central Colombia was admitted to a primary medical unit for treatment of an open fracture of the right femur after a traffic accident. The patient had no relevant medical history. After multiple surgical interventions and external fixation of the fracture, he was discharged. Two weeks later, he returned to the medical unit with edema, redness, and warmth in the area surrounding the metallic fixators. At this time, 50 larvae were observed in the surgical wound (Figure, panel A).

The patient was referred to Hospital Militar Central in Bogota, Colombia, where surgical cleansing of the wound was performed and 30 additional larvae were obtained (Figure, panel B). Extracted larvae were sent to the Parasitology Laboratory of the Universidad Nacional de Colombia in Bogota, Colombia for identification. The larvae were taxonomically classified as those of the C. hominivorax screwworm fly.

Treatment with oral ivermectin and intravenous ampicillin/sulbactam was initiated. The next day, surgical cleansing showed signs of osteomyelitis. A culture of bone tissue was positive for multidrug-susceptible Pseudomonas aeruginosa and Stenotrophomonas maltophilia susceptible to trimethoprim/sulfamethoxazole (TMP/SMX). At this time, antimicrobial drug therapy was changed to intravenous ciprofloxacin (400 mg every 12 h) and oral TMP/SMX (160/800 mg every 12 h). The patient completed 2 weeks of treatment in the hospital and showed no signs or symptoms of infection or infestation by larvae. He was discharged, prescribed oral TMP/SMX, and followed up by the Orthopedics and Infectious Diseases Service of Hospital Militar Central.

Bacterial infection in insertion sites of metallic pins is usually the most frequent complication when external fixators are used in treatment open fractures and represents

Figure. Pin-site myiasis in a 26-year-old male soldier, Colombia. A) Larvae of Cochliomyia hominivorax screwworm fly around an external metallic fixator (arrow). B) Larvae isolated from the insertion wound of the external metallic fixator. A color version of this figure is available online (http://wwwnc.cdc.gov/EID/article/21/05/14-1680-F1.htm).
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus (family Togaviridae) comprising 3 genotypes: West African, East/Central/South African, and Asian (1). This zoonotic pathogen originated in Africa and since 2004 has caused outbreaks in several countries on different continents (2). In 2013, CHIKV reached the Americas and caused an explosive epidemic that has already caused 1,231,077 cases in 43 countries (3).


Address for correspondence: Álvaro A. Faccini-Martínez, Servicios y Asesorías en Infectología, Calle 50 # 13-62, Bogotá, DC, Colombia; email: afaccini@gmail.com

East/Central/South African Genotype Chikungunya Virus, Brazil, 2014


Author affiliations: Instituto de Saúde Coletiva da Universidade Federal da Bahia, Salvador, Brazil (M.G. Teixeira, M.C.N. Costa); Secretaria da Saúde do Estado da Bahia, Salvador (A.M.S. Andrade, J.S.M. Castro); Secretaria da Saúde de Feira de Santana, Feira de Santana, Brazil (F.L.S. Oliveira, C.S.B. Goes, M. Maia, E.B. Santana); Instituto Evandro Chagas, Ananindeua, Brazil (B.T.D. Nunes, P.F.C. Vasconcelos); Universidade do Estado do Pará, Belém, Brazil (P.F.C. Vasconcelos)

DOI: http://dx.doi.org/10.3201/eid2105.141727

To the Editor: Chikungunya virus (CHIKV) is an arthropod-borne alphavirus (family Togaviridae) comprising 3 genotypes: West African, East/Central/South African, and Asian (1). This zoonotic pathogen originated in Africa and since 2004 has caused outbreaks in several countries on different continents (2). In 2013, CHIKV reached the Americas and caused an explosive epidemic that has already caused 1,231,077 cases in 43 countries (3).