Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole

  • Apr 1989

  • Source: J Cell Biol. 108(4):1363-1373.
Filetype[PDF-2.06 MB]


  • English

  • Details:

    • Alternative Title:
      J Cell Biol
    • Description:
      We have characterized the structure, biogenesis, and localization of dipeptidyl aminopeptidase B (DPAP B), a membrane protein of the yeast vacuole. An antibody specific for DPAP B recognizes a 120-kD glycoprotein in yeast that behaves like an integral membrane protein in that it is not removed from membranes by high pH Na2CO3 treatment. Inspection of the deduced amino acid sequence of DPAP B reveals a hydrophobic domain near the NH2 terminus that could potentially span a lipid bilayer. The in vitro enzymatic activity and apparent molecular weight of DPAP B are unaffected by the allelic state of PEP4, a gene essential for the proteolytic activation of a number of soluble vacuolar hydrolases. DPAP B is synthesized as a glycosylated precursor that is converted to the mature 120-kD species by carbohydrate addition. The precursor form of DPAP B accumulates in sec mutants (Novick, P., C. Field, and R. Schekman. 1980. Cell. 21:205-215) that are blocked at the ER (sec18) or Golgi apparatus (sec7), but not at secretory vesicles (sec1). Immunolocalization of DPAP B in wild-type or sec1 mutant cells shows that the protein resides in the vacuolar membrane. However, it is present in non-vacuolar compartments in sec18 and sec7 cells, confirming that the delivery of DPAP B is blocked in these mutants. Interestingly, DPAP B appears to stain the nuclear envelope in a sec18 mutant, which is consistent with the accumulation of DPAP B in the ER membrane at the restrictive temperature. These results suggest that soluble and membrane-bound vacuolar proteins use the same stages of the secretory pathway for their transport.
    • Pubmed ID:
      2647766
    • Pubmed Central ID:
      PMC2115513
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    Supporting Files

    More +

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov