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Abstract

Epigenetic changes such as DNA methylation may be a molecular mechanism through which 

environmental exposures affect health. Methylation of Alu and long interspersed nucleotide 

elements (LINE-1) is a well-established measure of DNA methylation often used in epidemiologic 

studies. Yet, few studies have examined the effects of host factors on LINE-1 and Alu methylation 

in children.

We characterized the relationship of age, sex, and prenatal exposure to persistent organic 

pollutants (POPs), dichlorodiphenyl trichloroethane (DDT), dichlorodiphenyldichloroethylene 

(DDE), and polybrominated diphenyl ethers (PBDEs), with DNA methylation in a birth cohort of 

Mexican-American children participating in the CHAMACOS study.

We measured Alu and LINE-1 methylation by pyrosequencing bisulfite-treated DNA isolated 

from whole blood samples collected from newborns and 9-year old children (n=358). POPs were 

measured in maternal serum during late pregnancy.

Levels of DNA methylation were lower in 9-year olds compared to newborns and were higher in 

boys compared to girls. Higher prenatal DDT/E exposure was associated with lower Alu 

methylation at birth, particularly after adjusting for cell type composition (p=0.02 for o,p′ -DDT). 

Associations of POPs with LINE-1 methylation were only identified after examining the co-

exposure of DDT/E with PBDEs simultaneously.

Our data suggest that repeat element methylation can be an informative marker of epigenetic 

differences by age and sex and that prenatal exposure to POPs may be linked to hypomethylation 

in fetal blood. Accounting for co-exposure to different types of chemicals and adjusting for blood 

cell types may increase sensitivity of epigenetic analyses for epidemiological studies.
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Introduction

Epigenetic mechanisms are heritable changes that regulate gene expression without DNA 

sequence modifications and include DNA methylation, histone modifications, and 

noncoding RNAs. Their alterations represent likely molecular mechanisms linking 

environmental exposures with adverse health effects. Determining DNA methylation levels 

of retrotransposons, Alu and long interspersed nucleotide elements (LINE-1), has become a 

popular approach for assessment of epigenetic modifications in epidemiologic studies 

because this method is informative, has relatively high throughput, and is cost effective.

There are approximately 1.4 million Alu repetitive elements and a half million LINE-1 

elements interspersed throughout the human genome and their methylation represents up to 

50% of global genomic methylation [Kazazian and Goodier 2002; Yang et al. 2004]. 

Measurement of Alu and LINE-1 repeat methylation has previously been referred to as a 

marker of global DNA methylation [Bollati et al. 2007; Rusiecki et al. 2008]. However, 

recent studies do not show a correlation between LINE-1 or Alu methylation with global 

genomic methylation content in non-cancer cells [Wang et al. 2010; Price et al. 2012]. 

Furthermore, LINE-1 and Alu are not correlated with each other [Hou et al. 2010; Gao et al. 

2012] and have differential susceptibility to environmental exposures, meaning that the 

methylation states in response to an exposure may vary between Alu and LINE-1 elements 

[Baccarelli et al. 2009; Pavanello et al. 2009; Tarantini et al. 2009; Wright et al. 2010]. 

These recent findings suggest that LINE-1 and Alu methylation each represent distinct 

measures of methylation in different parts of the methylome [Price et al. 2012; Alexeeff et 

al. 2013].

Differences in DNA methylation, the most extensively studied type of epigenetic 

modification, have been associated in adults with health outcomes ranging from asthma to 

cancer and to a variety of environmental exposures such as benzene, traffic pollution, and 

persistent organic pollutants (POPs), such as dichlorodiphenyl trichloroethane (DDT) and 

polychlorinated biphenyls (PCBs) [Bollati et al. 2007; Hsiung et al. 2007; Rusiecki et al. 

2008; Baccarelli and Bollati 2009; Perera et al. 2009; Kim et al. 2010]. Recent evidence also 

suggests that DNA methylation may be a key mechanism mediating fetal origins of adult 

disease. Dolinoy et al. [2007] demonstrated that prenatal exposure to Bisphenol A in agouti 

mice resulted in hypomethylation of a retrotransposon upstream of the agouti gene that 

shifted coat color of the offspring, providing compelling evidence that in utero exposure can 

affect phenotype through epigenetic mechanisms including methylation of retrotransposable 

elements. Additionally, prenatal exposures to tobacco smoke, famine, and lead have been 

associated with differences in site specific and/or repetitive element methylation in humans 

[Breton et al. 2009; Wright et al. 2010; Tobi et al. 2012]. Although two small studies in 

adults found a relationship between concurrent exposure to POPs, DDT and PCBs, with 
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hypomethylation of Alu repeats [Rusiecki et al. 2008; Kim et al. 2010], no previous study 

has examined the relationship of prenatal exposure to POPs and DNA methylation.

DDT is lipophilic, bioaccumulates in tissues, and has a long half-life in the human body. 

Although DDT use was banned in 1972 in the US, DDT use continued in Mexico for 

malaria control through 2000 and is currently used for malaria control in a number of 

countries particularly in Africa. Early life exposure to DDT and its breakdown product 

dichlorodiphenyldichloroethylene (DDE) have been associated with lowered birthweight 

and shortened gestation in some studies, [Al-Saleh et al. 2012; Kezios et al. 2013], poorer 

neurodevelopment in children [Eskenazi et al. 2009] and breast cancer in adults [Cohn et al. 

2007].

Another class of POPs includes the polybrominated diphenyl ethers (PBDEs). These flame 

retardants have been used in the manufacture of common household items including 

furniture, infant products, and electronics. Originally issued in the 1970's, California's 

Technical Bulletin (TB 117) required that furniture, baby products, and other items resist 

open flames. The penta-BDEs (comprised of congeners BDEs -47 -99 -100 and -153), the 

compounds most commonly used to comply with TB-117 in products containing foam, were 

phased out in 2004 but continue to leach into the environment from older household items. 

Children living in California have higher serum PBDE levels compared to children living in 

other areas of the United States [Windham et al. 2010; Bradman et al. 2012], as well as 

children from Mexico and Europe [Rose et al. 2010; Eskenazi et al. 2011]. Exposure to 

penta-PBDE, has been related to lowered fertility [Harley et al. 2010], effects on thyroid 

hormone [Chevrier et al. 2010], and poorer neurodevelopment [Chao et al. 2011; Gascon et 

al. 2012; Eskenazi et al. 2013].

Although studies of environmental exposure often focus on one chemical or one class of 

compounds, exposures to toxicants do not generally occur in isolation. For instance, 

pregnant women participating in the National Health and Nutrition Examination Survey 

(NHANES) had measureable levels of multiple chemicals, many of which were present in 

almost all women (e.g. phenols, phthalates, organochlorines, and PBDEs) in their blood and 

urine [Woodruff et al. 2011]. Furthermore, exposure to one chemical may influence how 

another chemical can produce health effects [Carpenter et al. 2002]. The relationship of co-

exposure to DDT/E and PBDEs on repeat element methylation has not yet been examined. 

However, one in vivo study of steroid secretion found that the effect of PBDEs was 

dependent on DDT concentration [Gregoraszczuk et al. 2008] suggesting that considering 

co-exposure to both chemicals may be important.

The purpose of the present study is to examine the relationship of prenatal exposure to DDT, 

DDE, and penta-BDEs and DNA methylation of Alu and LINE-1 repetitive elements in fetal 

and child blood from participants of the Center for Health Assessment of Mothers and 

Children of Salinas (CHAMACOS), a longitudinal birth cohort study. Although differences 

in levels of DNA methylation with age and sex have not been previously examined in 

children, a study in adults suggested that methylation of Alu and LINE-1 repeats decreases 

with age and that males have lower Alu but higher LINE-1 methylation compared to females 

[Zhu et al. 2012]. Another study of adults also reported higher LINE-1 methylation in males 
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but found no association of repeat element methylation with age [Zhang et al. 2011]. Thus, 

for this study, we examine the effects of prenatal POP exposure, including co-exposure to 

both classes of compounds, as well as age and sex on Alu and LINE-1 DNA methylation in 

CHAMACOS children.

Materials and Methods

Study subjects

The CHAMACOS study aims to examine the effects of pesticides and other environmental 

exposures in a population of pregnant women and children living in the agricultural Salinas 

Valley, California. Women were eligible for enrollment if they were at least 18 years of age, 

at less than 20 weeks gestation, Spanish or English speaking, eligible for low-income health 

insurance, receiving prenatal care at one of the local community clinics, and planning to 

deliver at the public hospital. Six hundred and one pregnant women were enrolled in 

1999-2000 and 527 delivered liveborn singleton newborns [Eskenazi et al. 2003]. 

CHAMACOS women were interviewed by bilingual, bicultural interviewers near the end of 

the 1st (∼ 13 weeks gestation) and 2nd (∼26 weeks gestation) trimesters of pregnancy. 

Information was obtained on sociodemographic characteristics, mother's reproductive and 

medical history, prenatal lifestyle exposures, diet, occupational and residential history, 

exposures to pesticides and other environmental chemicals, and housing quality.

Prenatal POP concentrations were measured in blood specimens collected from mothers 

during pregnancy (approximately ∼27 weeks gestation) or at delivery (if insufficient blood 

quantity was collected during pregnancy; n=14 and 40 for DDT/E and PBDEs, respectively) 

[Harley et al. 2008]. Alu and LINE-1 DNA methylation was measured in blood samples 

collected from children at delivery (umbilical cord blood representing fetal blood) and when 

they were 9 years old (mean=9.3 years, SD=0.3). Our study sample included a total of 358 

children who had DNA samples available for methylation analysis at birth and/or age 9. Of 

these children, 134 had samples available at both time points, 112 had samples only at birth, 

and 112 has sample only at age 9 (Figure 1). Furthermore among those children with DNA 

samples available, prenatal exposure measurements for DDT/E and PBDEs were available 

for 219 and 218 children at birth and 219 and 201 children at age 9, respectively. Children 

who were born full term were more likely to have samples and measurements of methylation 

available at birth. Children who were born full term and whose mothers were older during 

pregnancy were more likely to have samples and measurements of methylation available at 

age 9 compared to other children in the CHAMACOS cohort. For both time points (birth 

and 9 years) children included in the study did not differ from all children in the cohort by 

other demographic and exposure variables (e.g. poverty level, marriage status, maternal 

BMI, type of work during pregnancy, alcohol and smoking intake during pregnancy, 

prenatal exposure to DDT/DDE and PBDEs). Study protocols were approved by the 

University of California, Berkeley Committee for Protection of Human Subjects. Written 

informed consent was obtained from all mothers and assent was provided by the children at 

the 9-year assessment.
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Blood collection and processing

Whole blood was collected in BD vacutainers® (Becton, Dickinson and Company, Franklin 

Lakes, NJ) containing no anticoagulant, centrifuged, divided into serum and clot, and stored 

at −80°C.

PBDE and DDT/E Measurements

PBDE congeners were measured in serum samples using gas chromatography isotope 

dilution high resolution mass spectrometry (GC-IDHRMS) [Sjodin et al. 2004] and included 

BDE-17, -28, -47, -66, -85, -99, -100, -153, -154, and -183. We focus on the four congeners 

comprising penta-BDEs – BDE-47, -99, -100, and -153 since these were the only congeners 

to be detected in almost all mothers (>97% detection frequency). As previously reported, 

BDE - 47 had the highest mean concentration of the congeners measured (Table I). 

[Castorina et al. 2011; Bradman et al. 2012; Eskenazi et al. 2013]. PBDE concentrations are 

expressed on a serum lipid basis (nanograms per gram lipids). Total serum lipid 

concentrations were determined based on the measurement of triglycerides and total 

cholesterol using standard enzymatic methods (Roche Chemicals, Indianapolis, IN) [Phillips 

et al. 1989]. We observed a range of LODs rather than one single value based on differences 

in total serum lipid concentrations per individual. LODs ranged from 0.2 to 0.7 ng/g lipids 

for all four congeners with the exception of BDE-47, which ranged from 0.3 to 2.6 ng/g 

lipids. Levels below the LOD with a detectable signal were coded with the instrument 

concentration obtained. Data below the LOD with no detectable signal were imputed from a 

log-normal probability distribution [Lubin et al. 2004]. Serum levels of PBDE congeners in 

women with measurements at both delivery and 26 weeks gestation (n=21) were strongly 

correlated (r ≥ 0.98, p<0.001) [Eskenazi et al. 2013]. QA/QC procedures included the use of 

blanks and spiked quality control samples in each set of unknowns.

Eleven organochlorine compounds including p,p′-DDT, o,p′-DDT, and p,p′- DDE (DDT/E) 

were measured in serum samples using gas chromatography mass spectrometry [Barr et al. 

2003]. As described for PBDEs, serum DDT/E concentrations were also lipidadjusted 

(nanograms per gram) by dividing o,p′-DDT, p,p′-DDT, and p,p′-DDE on a wholeweight 

basis by total serum lipid content [Phillips et al. 1989]. The lipid adjusted limits of detection 

ranges in ng/g lipid were as follows: 0.06-0.76 for o,p′-DDT, 0.06-1.36 for p,p′-DDT, and 

0.06-1.36 for p,p′-DDE. Detection frequency for o,p′-DDT was 95.8% and p,p′-DDT and 

p,p′-DDE were measureable in all samples. Levels below the limit of detections (LODs) 

were assigned the value of LOD/2. We did not impute values as we did for PBDEs because 

so few readings were below the limit of detection. As previously reported, median maternal 

serum levels of p,p′-DDE, p,p′-DDT, and o,p′-DDT were 1013.2, 12.1, and 1.2 ng/g lipid, 

respectively (Table I) [Eskenazi et al. 2006; Fenster et al. 2006; Harley et al. 2008; Weldon 

et al. 2010; Warner et al. 2013]. Among women with DDT/E measurements at both 26 

weeks gestation and at delivery (n=20), concentrations were highly correlated (r ≥ 0.98) 

[Eskenazi et al. 2006]. Serum concentrations of DDT and DDE isomers were strongly 

correlated with each other (ρ 0.8-0.9, p <0 .0005).
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DNA methylation analyses

DNA was isolated from clots as described previously [Holland et al. 2006] using a Qiamp 

Blood DNA Maxi kit (Qiagen, Inc., Santa Clarita, CA). Bisulfite conversion of DNA 

(500ng) was performed using EpiTect Bisulfite Conversion Kits (Qiagen, Germantown, 

MD) and eluted into 20 μL Elution buffer. Bisulfite DNA conversion efficiency (99%) was 

confirmed by using a non-CpG cytosine residue as an internal control. Alu and LINE-1 

methylation status was analyzed by pyrosequencing of PCR-amplified and bisulfite-treated 

DNA samples using the Pyromark Q96MD System (Qiagen) as previously described [Yang 

et al. 2004; Royo et al. 2007]. Each of the Alu and LINE-1 assays reports 4 CpG sites for all 

Alu and LINE-1 repeats across the genome. The previously published method for Alu as 

described by Yang et al. [2004] reported only 3 CpG sites, however since pyrosequencing 

read lengths have improved since that time, we were able to report methylation levels at the 

same 3 sites and also include one additional site. Repetitive element methylation (%5-mC) 

was calculated using Pyro Q-CpG Software (Qiagen). All samples were run in triplicate for 

each time-point/subject.

Stringent quality control criteria were applied for handling of all samples and DNA 

methylation data. The quality assurance procedures included use of repeats, internal 

standards, and positive and negative controls to minimize technical variability. To minimize 

batch variability, all sample plates were run on the same day. Additionally, all plates 

contained randomized encoded samples from different age groups in order to minimize 

experimental bias. The coefficient of variation (CV) for Alu and LINE-1 triplicate measures 

were 5 and 3 %, respectively and CV's for intraplate replicates were essentially the same.

Differential Cell Count

To examine the relationship of blood cell composition with repeat element methylation, we 

performed differential cell counts in a subset of 103 umbilical cord blood samples. 

Heparinized whole blood smears were prepared with the “gold standard” Wright-Push blood 

smearing technique [Houwen 2001] and stained utilizing a DiffQuik® staining kit. Slides 

were fixed for 15 minutes at 23°C, stained in both the basophilic dye and eosinophilic dye 

for five seconds each and washed after each staining period. Slides were scored under light 

microscopy (Zeiss Axioplan) with a magnification lens of 1000× and oil immersion. At least 

100 cells were scored for each slide and a percentage of each cell type was used for data 

analysis. To ensure consistency and reproducibility of scoring, 100 cells were scored in sets 

of 3 (3*100=300) for a subset of samples (N= 35). The CV for the repeat scoring in this 

subset was less than 10%.

Statistical analyses

We calculated Pearson's correlation coefficient to examine the correlation between 

methylation measurements at each of the four positions used for Alu and LINE-1 

methylation assays. To determine the correlations between different measures of DDT/E and 

PBDEs measurements, we also calculated Pearson's correlation coefficients. Exposure 

measurements were log10 transformed to approximate a normal distribution.
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We performed mixed effect regression models to determine the relationship of age, sex, and 

exposure with LINE-1 and Alu repeat methylation. Mixed effects modeling allows us to 

account for the correlated measures of methylation among the 4 adjacent CpG positions and 

for the triplicate measures at each position per individual yielding a global estimate for the 

association of variables of interest (age, sex, and exposure) with DNA methylation. Mixed 

models have been used previously to model the associations of exposures of interest with 

repeat element methylation [Byun et al. 2013]. The following model was used:

where Yijk is the methylation level (Alu or LINE-1) for the i-th subject (i=1,…,358) at the j-

th CpG position (j=1,…,4), and the k-th replicate (k=1,…,3). X2,…,Xn and b2,…, bn, 

represent the covariates and their corresponding slopes and for various models including 

variables like sex and cell count. The sum of b0 and z0i represents the random intercept for 

the subject i and the sum of b1 and zij are the random slope for the i-th subject and the j-th 

CpG position. eijk is the residual error term.

To assess the differences in DNA methylation by age, we used mixed modeling to compare 

methylation levels in fetal and 9 year old DNA among children with methylation measures 

at both time points (n=134). We also modeled the difference by age in all children, including 

those that did not have matched data at both time points (n=358 children). To examine the 

relationship of sex with DNA methylation, we also performed mixed modeling for Alu and 

LINE-1 methylation (dependent variables) while including sex as a covariate in the model. 

Each age group (birth and 9 yr) was modeled separately. We repeated these models in a 

subset of newborns that also had differential cell counts available to adjust for cell type 

distribution. In these models, we included percent lymphocytes, monocytes, basophils, and 

eosinophils in the models and used the percent neutrophils as the baseline.

Mixed modeling was also used to determine the association of DDT/E and PBDE exposure 

measurements with repeat element DNA methylation (Alu and LINE-1). Separate models 

were performed for each of the three organochlorine compounds (p,p′-DDT, o,p′-DDT, and 

p,p′- DDE), the 4 penta-BDE congeners (BDE -47, -99, -100, and -153), and the sum of the 

4 penta-BDE congeners at each time point separately (birth and 9 years). Extreme outliers 

(>3 S.D. from mean) for p,p′-DDT, o,p′-DDT, and p,p′-DDE, PBDE congeners were not 

included in the models. Sex was included as a covariate in the model. We also used 

univariate models to identify other potential covariates associated with Alu or LINE-1 

methylation (i.e. maternal age, maternal smoking during pregnancy etc.) however none were 

statistically significant. In additional models, we included interaction terms for sex and 

exposure (DDT/E or PBDEs). To consider the potential interaction between DDT/E and 

PBDEs, we also constructed models including one of the three DDT/E compounds with the 

sum of the PBDEs and an interaction term (DDT/E compound X sum of PBDEs). 

Interaction terms remained in the model if the f-test comparing the full model with 

interaction terms to the nested model with no interaction terms was statistically significant 

(p<0.20). To examine the significant interaction between p,p′-DDE and the sum of PBDEs, 

we created dichotomous variables for each exposure. Concentrations above the median were 
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considered high and those below the median were considered low. Then separate models 

were performed examining the association of PBDE exposure (high versus low) with 

LINE-1 methylation in newborns with high and low prenatal p,p′-DDE. Similarly, we also 

ran models looking at the association of p,p′-DDE exposure (high versus low) with LINE-1 

methylation in newborns with high and low prenatal PBDEs (sum). As was described for the 

age analysis, models examining associations of methylation with exposure (including 

looking at the interaction of DDT/E with PBDEs) were also run in the subset of newborns 

with differential cell count data adjusting for percent lymphocytes, monocytes, basophils, 

and eosinophils.

All statistical analyses were carried out using STATA software, version 12.0 (College 

Station, TX). P-values less than 0.05 were considered significant and p-values less than 0.10 

were reported as marginally significant.

Results

Maternal and child characteristics are presented in Table I. Mothers were primarily low-

income, and Mexican-born. The majority of them did not smoke or drink alcohol during 

pregnancy but either worked in agriculture (41%) or lived with someone who worked in 

agriculture (82%). There was a relatively even distribution of CHAMACOS boys (50 and 

47% at birth and age 9) and girls included in this analysis.

DNA Methylation

Table II shows the means and standard deviations for Alu and LINE-1 methylation in fetal 

cord blood and blood from 9-year-old children. For Alu, methylation at each of the four 

positions was positively correlated at birth and age 9 (Supplemental Table I) (r∼0.30-0.67 

and 0.38-0.67 at birth and 9 year, respectively). Similarly, LINE-1 methylation at all four 

positions was also positively correlated (Supplemental Table II) (r∼0.16-0.69 and 0.22-0.74 

in fetal and 9-year old's blood, respectively); however, methylation at position 3 was 

consistently lower compared to the other positions. LINE-1 and Alu methylation levels were 

not correlated with each other at either time point. Furthermore, methylation levels at birth 

were not correlated with those measured at age 9 for either LINE-1 or Alu repeats.

Supplemental Table III shows the relationship between differential cell count and Alu and 

LINE-1 methylation. The majority of the white blood cell population was composed of 

neutrophils (mean %: 60.5) followed by lymphocytes (29.3%), monocytes (7.0%), 

eosinophils (2.9%) and basophils (0.3%). For Alu, there were suggestive trends of higher 

methylation in samples with more lymphocytes and monocytes compared to neutrophils 

however this was not statistically significant for lymphocytes (p=0.21) and only marginally 

significant for monocytes (p=0.08). For LINE-1, we observed a suggestive trend of higher 

methylation in samples with more eosinophils and basophils compared to neutrophils, 

however neither trend was statistically significant and these two cell types represented only 

a small portion of the white blood cell population.
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Effects of age

Among the children who had measures in both fetal and 9-year-old blood (n=134), 

methylation of both Alu and LINE-1 repeats was lower at 9 years than in fetal blood 

(0.02%5mC, p=0.004 and 0.05 %5mC, p<0.005 respectively). We found similar trends 

when including all children (n=358, not all matched at both time points) in the model (0.01 

%5mC, p=0.05 and 0.05 %5mC, p<0.005 for Alu and LINE-1, respectively).

Effects of sex

At birth, mean DNA methylation was lower in girls compared to boys (Figure 2) for both 

assays (0.42 and 0.15 %5mC for LINE-1 and Alu, respectively). This difference was 

statistically significant for LINE-1 methylation (p=0.017) and only marginally significant 

for Alu (p=0.07). In 9-year-old children, we found a similar trend for LINE-1 with mean 

methylation 0.71%mC lower in girls than boys (p<0.005), but no significant differences 

between girls and boys for mean Alu methylation.

Since it has been demonstrated that sex can affect immune profiles in children [Uekert et al. 

2006; Casimir et al. 2010], we also looked at the effect of sex after adjusting for cell 

composition in a subset of 103 newborns. The effect of sex on Alu methylation was similar 

before and after adjusting for cell composition in this subset of children (b(95%CI): 

-0.18(-0.46,.010) and -0.19(-0.47,0.09), respectively). The effect of sex on LINE-1 

methylation was no longer statistically significant in this smaller subset of newborns 

(b(95%CI): -0.04(-0.55, 0.46)) and did not change appreciably after adjusting for cell type 

composition.

Prenatal DDT/E and PBDE serum levels and DNA methylation

We found weak yet consistent inverse relationships between prenatal DDT/E exposure and 

Alu and LINE-1 methylation in cord blood DNA, however these associations did not reach 

statistical significance (Table III). For instance, for each 10-fold increase in prenatal o,p′-

DDT, we observed a 0.13 % 5mC lower levels of Alu methylation (p=0.11) after adjusting 

for sex. Similar trends were observed with repeat element methylation in nine year old 

children (Supplemental Table IV).

We saw very little evidence of an association of prenatal PBDE exposure and Alu 

methylation in fetal cord blood DNA. Although there was a trend of lower levels of LINE-1 

methylation with prenatal PBDE exposures for all 4 congeners and the sum of all congeners, 

these relationships were also not statistically significant. Among 9 year olds, there was a 

slight suggestion of lower Alu and higher LINE-1 methylation with prenatal PBDE exposure 

but again they were not statistically significant. We did not observe significant interaction 

between sex and prenatal exposure to DDT/E or PBDEs in any of the models at either age.

Since some previous data indicate that cell composition may be associated with 

environmental exposure [Peltier et al. 2012] and DNA methylation, we also examined the 

relationship of prenatal DDT/E and PBDE exposures with cell composition in a subset of 

103 newborns with differential cell count data (89 had DDT/E data and 94 had PBDE data). 

When we first examined the relationship between exposure and cell composition, we found 
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suggestive trends of lower basophils (p=0.11) and higher neutrophils (p=0.24) with 

increased DDT/E exposure that did not reach statistical significance. We also found a 

statistically significant association between increased PBDE exposures and higher percent 

eosinophils and basophils (p<0.05 for both). When we adjusted for cell type composition in 

our models of DDT/E exposure with DNA methylation, we found similar trends in the 

subset of newborns as we did in the larger dataset. Lower levels of Alu methylation were 

observed with higher levels of prenatal DDT/E in this subset of newborns. Furthermore, 

after adjusting for cell type composition, the magnitudes of the beta coefficients increased 

(12-14%) and the 95% confidence intervals were narrower. In fact the association became 

significant for o,p′-DDT(p=0.02, b(95%CI): -0.37(-0.69,-0.05) Figure 3) and p,p′-

DDE(p=0.04, b(95%CI): -0.33(-0.64,-0.01)) and marginally significant for p,p′-

DDT(p=0.08, b(95%CI): -0.24(-0.50,0.02)). Adjustment for cell type did not appreciably 

change results for the relationship of prenatal DDT/E with LINE-1 methylation or for 

prenatal PBDEs with both Alu and LINE-1 methylation.

Co-exposures to DDT/E and PBDE serum level and DNA methylation

Since mothers were exposed to both PBDEs and DDT/E during pregnancy, we also 

examined the potential association of co-exposure to these chemicals with levels of Alu and 

LINE-1 methylation. When we included both classes of chemicals in the same model (Table 

IV), we found a significant interaction between sum of PBDEs and o,p′-DDT and p,p′-DDE 

(p=0.12 and 0.06, respectively) on LINE-1 but not Alu methylation in fetal cord blood. 

Similar but non-significant interaction was seen for the sum of PBDE congeners with p,p′-

DDT. To better understand this interaction, we classified children as having high or low 

exposure to p,p′-DDE and PBDEs (sum) and ran models for one compound stratified by the 

other. When we stratified by p,p′-DDE (Figure 4), high PBDE exposure compared to low 

PBDE exposure was associated with hypomethylation of LINE-1 among children with low 

prenatal DDE(b(95%CI): -0.47(-0.96,0.19); p=0.059) and hypermethylation of LINE-1 

among children with high prenatal DDE (b(95%CI):0.73(0.16,1.31), p=0.01). We found 

similar results when we stratified by the sum of PBDEs. Lower LINE-1 methylation was 

associated with high prenatal DDE (compared to low DDE) among children with low 

prenatal PBDE exposure (b(95%CI): -0.77(-1.24,-0.31), p=0.001). Furthermore, high 

prenatal DDE was associated with higher levels of LINE-1 methylation among children with 

high prenatal PBDE (b(95%CI):0.43(-0.15,1.02), p=0.15) but this relationship did not reach 

statistical significance. These data suggest that the relationship of prenatal exposure on 

LINE-1 methylation in cord blood was only observed after considering exposure to both 

classes of compounds (PBDEs and DDT/E) in the same model. Additionally when we 

examined the interaction in the subset of children with differential cell counts and both 

prenatal exposures (n=83), the magnitude of the effect for the interaction term increased and 

remained statistically significant for p,p′-DDE and the sum of PBDEs (b(95%CI):

1.26(0.13,2.40), p=0.03). The trends were similar for o,p′-DDT and p,p′-DDT however these 

interaction terms were no longer statistically significant.

Among 9-year olds, we found no evidence of an association between prenatal DDT/E or 

PBDE exposures and DNA methylation (data not shown).
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Discussion

In this study, we examined the relationship of age, sex, and exposure to two classes of POPs, 

DDT/E and PBDEs, with methylation of Alu and LINE-1 repetitive elements in Mexican-

American children living in California. These children had relatively high DDT/E exposure 

in utero [Bradman et al. 2007] and high childhood exposure to PBDEs [Eskenazi et al. 

2013]. Specifically, DNA methylation of Alu and LINE-1 repeats was lower in 9-year-old 

blood compared to fetal cord blood. Furthermore, girls had lower levels of methylation than 

boys at both time points. We observed a consistent trend of lower Alu methylation in fetal 

blood with higher prenatal DDT/E exposure, particularly after adjusting for cell type 

composition. Furthermore, associations of prenatal exposure with levels of LINE-1 

methylation were only identified after examining the co-exposure of DDT/E with PBDEs 

simultaneously. These results suggest that host factors such as age, sex, and prenatal 

exposure are potential predictors of repetitive element DNA methylation in children.

Although the effect of age has been examined in adults in several studies, few studies have 

reported on the effects of age on DNA methylation in children. Among adults, several 

studies have reported an inverse relationship between age and Alu methylation with weak or 

no association with LINE-1 methylation [Bollati et al. 2009; Jintaridth and Mutirangura 

2010; Zhu et al. 2012]. A number of studies focusing solely on LINE-1 methylation also 

found no relationship between age and LINE-1 methylation [Jintaridth and Mutirangura 

2010; El-Maarri et al. 2011]. Similar to the findings in adults, we observed (non-

significantly) lower Alu methylation in 9-year-old CHAMACOS children compared to fetal 

blood. However, in contrast to the adults, older children in our study also had significantly 

lower LINE-1 methylation compared to fetal blood. One other study in children (n=51, ages 

6-17 years) found no relationship between age and methylation of Alu repeats and only a 

weak correlation (ρ=-0.19) between age and LINE-1 methylation that was not statistically 

significant (p=0.18) [Wu et al. 2011]. However, they used a different assay to characterize 

methylation of Alu repeats (MethyLight) and the weak relationship with LINE-1 may have 

been due to small sample size.

It should also be noted that the absolute differences in percent methylation in fetal blood and 

9-year-old blood were quite small (0.01-0.05 %5mC), however they are similar in range to 

other studies reporting differences in methylation by age in adults [Bollati et al. 2009; Zhu et 

al. 2012]. Furthermore several studies have demonstrated that even small differences in 

methylation can be biologically relevant [Michels et al. 2011; Lambrou et al. 2012].

We also found significantly lower levels of methylation in girls compared to boys at both 

ages, particularly for LINE-1 repeats. Our data corroborate with Perng et al. [2012] who 

reported the same trend for LINE-1 in school-aged children and Burris et al. [2012] who 

reported similar findings in cord blood. They are also consistent with several studies in 

adults, finding lower methylation in women than men [Wilhelm et al. 2010; El-Maarri et al. 

2011; Zhang et al. 2011; Burris et al. 2012]. This phenomenon is likely due to the 

relationship of LINE-1 with X chromosome inactivation. A recent study examined 

methylation at individual LINE-1 loci located on the X chromosome as well as some in 

autosomes and found that differential methylation in males and females was primarily 
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located in the X chromosome [Singer et al. 2012]. Although the study does not show 

causality, they provide preliminary evidence supporting the theory first introduced by Lyon 

that hypomethylation of LINE-1 could lead to increased retrotransposon activity of LINE-1 

towards X-linked loci that can be inactivated [Lyon 2003].

Only a few studies have examined the relationship between POP exposure and repetitive 

element methylation in humans. They were primarily cross sectional studies performed in 

adults and none have examined the potential interaction between different classes of 

compounds. Furthermore, to our knowledge, ours is the first study to examine the link 

between prenatal POP exposure and DNA methylation. Rusiecki et al. [2008] reported that 

exposure to p,p′-DDT, p,p′-DDE, the sum of PCBs, and other organochlorines, was 

associated with global DNA hypomethylation in a cross sectional study of Greenlandic 

Inuits ages 19-67 (N=70). They were highly exposed to POPs with DDT exposure ranging 

from 4-373 ng/g-lipid and DDE levels between 264 and 5969 ng/g-lipid; these ranges were 

somewhat higher than those found in pregnant CHAMACOS mothers. This association was 

significant for Alu methylation and a similar but non-significant trend was also seen for 

LINE-1. Comparable results were reported in a cross sectional study of healthy adult 

Koreans (N=86) with relatively low levels of environmental exposure to organochlorine 

pesticides and PBDEs [Kim et al. 2010]. Another study found lower levels of LINE-1 

methylation among PCB–exposed individuals who had a maternal 15q11-q13 duplication 

(Dup15q), but these levels may have been confounded by year of birth [Mitchell et al. 

2012]. Among CHAMACOS children, we observed trends similar to those reported by 

Rusiecki et al. [2008] and Kim et al. [2010]. In fact, the magnitude of the effect of 

organochlorine compounds on Alu methylation in the subset of newborns with cell count 

data was quite similar in range to those two studies.

We also identified a significant interaction between PBDE and DDE exposure in which the 

direction of the association of PBDE exposure on fetal cord LINE-1 methylation was 

dependent on DDE exposure and vice versa. It is important to note that we only observed 

significant associations of prenatal exposures with LINE-1 methylation when we considered 

both classes of compounds (DDT/E and PBDEs) in the same model. Only a few other 

studies have examined the potential interaction of different classes of compounds and to our 

knowledge none have been reported in relation to DNA methylation and POPs exposure. 

Two studies have shown that co-exposure to PBDEs (BDE-47 and -99) and PCBs (PCB 

-126 and -123) can have a synergistic effect in rats and human neuroblastoma cell lines [He 

et al. 2011; Pellacani et al. 2012]. Co-exposure to PBDEs (-47,-99, -100, and -209) and 

DDT/E was reported in one in vivo study of steroid secretion and also found that the effect 

of PBDEs was dependent on the concentration of DDT in the mixture [Gregoraszczuk et al. 

2008]. Humans are generally exposed to multiple chemicals present in the environment and 

our data suggest that taking into account multiple exposures may significantly impact 

findings in relation to DNA methylation.

Although some meaningful relationships of repetitive element DNA methylation with host 

factors such as age and sex in children were identified, this study has some limitations. First, 

we focused specifically on prenatal exposure to POPs, however it is possible that postnatal 

exposures may also affect DNA methylation. In fact post natal exposures to PBDEs tend to 
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be higher in CHAMACOS children compared to prenatal exposures [Eskenazi et al. 2013] 

and we plan to examine their relationship with DNA methylation in future studies. Second, 

although many different sub-families of Alu and LINE-1 repeats exist, we examined only 

the AluSx and LINE-1 H sub-families. A recent study demonstrated that the methylation 

response to exposure can vary among different sub-families of repetitive elements and may 

be dependent on the evolutionary age of the sub-family [Byun et al. 2013]. Future studies 

may benefit from exploring other LINE-1 and Alu sub-families, including the younger sub-

families that have higher mean methylation levels. Third, epigenetic modifications are tissue 

specific. In our study, we used whole blood as a surrogate matrix that we believe is 

appropriate for examining host factors, but may not be the most relevant target tissue for 

prenatal exposures to DDT/E and PBDEs. Finally, different types of blood cells may have 

varying levels of methylation [Adalsteinsson et al. 2012]. It is well established that immune 

profiles are quite different at birth than they are as a child grows older, which may bias our 

analyses [Delespesse et al. 1998]. Additionally, blood cell composition can be affected by 

sex and exposure [Uekert et al. 2006; Casimir et al. 2010; Peltier et al. 2012]. Thus it may be 

difficult to determine whether the methylation differences observed in our study were truly 

due to sex and exposure or if they were confounded by differences in cell type distribution. 

Interestingly, when we adjusted for cell type composition in a subset of newborns we found 

similar trends and in many cases observed stronger associations with repeat element 

methylation. We did not however have these data for 9-year old children and thus could not 

determine whether the differences in methylation by age were confounded by the differences 

in cell type distributions in newborns and 9 year olds. Recently, new statistical 

methodologies have been applied to epigenome wide DNA methylation data (Illumina 

Infinium 450K) to estimate cell type distribution in blood DNA [Houseman et al. 2012; 

Koestler et al. 2013]. In the future, as this data becomes available for our study, we will 

apply these methodologies to adjust for cell type composition.

In summary, we found a significant relationship of Alu and LINE-1 DNA methylation with 

host factors (age and sex) in children. Furthermore, we observed a significant association of 

prenatal exposure to DDT/E with hypomethylation of Alu repeats in newborns and 

identified a relationship between prenatal exposures and differences in LINE-1 methylation 

only after considering co-exposure to both DDE and PBDE. Our data underscore the 

importance of taking age, sex, and other host factors as well as multiple exposures into 

account in population studies examining relationships between DNA methylation, exposure, 

and health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of CHAMACOS children included in this study.
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Figure 2. 
LINE-1 (A) and Alu (B) methylation measured in blood in boys and girls at birth (cord 

blood) and 9 years of age.
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Figure 3. 
Scatter plot of Alu methylation and prenatal o,p′-DDT exposure in newborns (n=94) after 

adjusting for sex and cell type composition. Higher prenatal exposure to o,p′-DDT was 

associated with lower levels of methylation (p=0.02, b(95%CI): -0.37(-0.69,-0.05)).
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Figure 4. 
Scatter plot of LINE-1 methylation and the sum PBDEs among newborns (cord blood) with 

low (A) and high (B) p,p′-DDE, low(C) and high(D) p,p′-DDT, and low(E) and high(F) o,p′-

DDT prenatal exposure. Among newborns with low prenatal DDE exposure, we observed 

hypomethylation of LINE-1with increasing sum of PBDE exposure 

(b(95%CI):-0.47(-0.96,0.18); p=0.06). For those with higher prenatal DDE exposure, we 

found a positive association (b(95%CI):0.73(0.16,1.31);p=0.01) between LINE-1 

methylation and sum of PBDEs. Similarly, sum of PBDE exposure was negatively 

((b(95%CI):-0.52(-1.04,0.002);p=0.05) and positively(b(95%CI): 0.59(-0.12,1.28) 

associated with LINE-1 methylation, for low and high p,p′-DDT exposures groups, 

respectively. For those with low and high o,p′-DDT exposures, we also saw the same trend 

of negative associations of LINE-1 methylation with PBDE exposure in the low o,p′-DDT 

group ((b(95%CI):-0.51(-1.06,0.04);p=0.07) and positive associations of LINE-1 
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methylation and PBDE exposure in the high o,p′-DDT group ((b(95%CI):

0.31(-0.40,1.03);p=0.38).
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Table III

Differences in repeat element methylation in newborns (cord blood) associated with a 10-fold increase in 

prenatal DDT, DDE, and PBDE exposure.

Alu LINE-1

β(95%CI) p-value β(95%CI) p-value

DDT/E

log o,p′-DDT -0.13(-0.3,0.03) 0.11 -0.22(-0.56,0.13) 0.21

log p,p′-DDT -0.08(-0.21,0.05) 0.21 -0.13(-0.4,0.14) 0.36

log p,p′-DDE -0.13(-0.3,0.05) 0.15 -0.06(-0.42,0.3) 0.73

PBDEs

Log BDE SUM -0.00(-0.20,0.20)b 0.97 -0.11(-0.53,0.3) 0.59

Log BDE-153 0.04(-0.16,0.25) 0.67 -0.19(-0.62,0.23) 0.37

Log BDE-100 -0.02(-0.22,0.17) 0.83 -0.14(-0.54,0.27) 0.51

Log BDE-99 -0.00(-0.19,0.19)b 0.99 -0.12(-0.51,0.27) 0.55

Log BDE-47 -0.01(-0.2,0.18) 0.90 -0.07(-0.46,0.33) 0.73

DDT - dichlorodiphenyl trichloroethane

DDE – dichlorodiphenyldichloroethylene

PBDEs - polybrominated diphenyl ether

BDE - polybrominated diphenyl ether

a
Each row represents one mixed effects regression model examining the association of log10 OC or log10 PBDE exposure with Alu or LINE-1 

methylation controlling for sex.

b
The magnitude of the beta coefficients labeled as 0.00 were lower than 0.005.
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Table IV
Associations of prenatal co-exposure to DDT/E and PBDEs in newborns (cord blood)

Alu LINE-1

β(95%CI) p-value β(95%CI) p-value

Model 1

log o,p′-DDT -0.10(-0.73,0.53) 0.76 -1.26(-2.52,-0.01) 0.05

log BDE SUM -0.00(-0.22,0.22) 1.00 -0.24(-0.68,0.21) 0.29

o,p′-DDT*BDE SUM -0.03(-0.47,0.42) 0.91 0.70(-0.19,1.59) 0.12

Model 2

log p,p′-DDT -0.03(-0.51,0.45) 0.91 -0.74(-1.70,0.21) 0.13

log BDE SUM 0.01(-0.43,0.44) 0.97 -0.58(-1.46,0.29) 0.19

p,p′-DDT*BDE SUM -0.04(-0.38,0.29) 0.80 0.42(-0.25,1.09) 0.22

Model 3

log p,p′-DDE 0.03(-0.58,0.64) 0.93 -1.18(-2.40,0.03) 0.06

log BDE SUM 0.31(-0.97,1.6) 0.63 -2.51(-5.09,0.07) 0.06

p,p′-DDE*BDE SUM -0.12(-0.54,0.31) 0.59 0.82(-0.03,1.67) 0.06

DDT - dichlorodiphenyl trichloroethane

DDE – dichlorodiphenyldichloroethylene

BDE - polybrominated diphenyl ether

a
Each model represents one mixed effects regression model of Alu or LINE-1 methylation (outcome) with prenatal exposure to both DDT/E and 

PBDEs in the same models. Covariates included log10 DDT/E concentrations, the sum of log10 PBDE exposure, an interaction term (DDT/E X 

sum PBDE) and sex.

b
The magnitude of the beta coefficients labeled as 0.00 were lower than 0.005.
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