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Abstract

Lung disease in people with cystic fibrosis (CF) is initiated by defective host defense that 

predisposes airways to bacterial infection. People with advanced CF exhibit deficits in mucociliary 

transport (MCT), a process that traps and propels bacteria out of lungs, but whether this occurs 

first or is secondary to airway remodeling has been unclear. To assess MCT, we tracked 

movement of radiodense microdisks in airways of newborn CF piglets. Cholinergic stimulation, 

which elicits mucus secretion, caused microdisks to become stuck. Impaired MCT was not due to 

periciliary liquid depletion; rather, CF submucosal glands secreted mucus strands that remained 

tethered to gland ducts and hindered MCT. Inhibiting anion secretion in non-CF airways 

replicated CF abnormalities. These findings identify impaired MCT as a primary defect, link 

CFTR loss in submucosal glands to failure of mucus detachment from glands, and suggest that 

submucosal glands and tethered mucus may be targets for early CF treatment.

Mutations in the CFTR gene cause CF (1). Lung disease, the source of most mortality, arises 

from defective host defense that predisposes airways to bacterial infection. MCT defends 
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airways by trapping pathogens in mucus and cilia propel them out of the lung (2–4). Finding 

abnormal MCT in advanced CF (3) and some studies in culture (5) have led to the 

assumption that impaired MCT causes CF lung disease. Yet, in vivo data suggest that CF 

MCT defects may be secondary to inflammation and airway remodeling. For example, in 

some studies CF adults showed no MCT abnormality, and CF children exhibited no MCT 

defects (3, 6, 7). Moreover, as severity of CF lung disease increased, MCT deficits 

increased, and in other pulmonary diseases airway inflammation is also linked to MCT 

defects (8). Until now, lack of an animal model that replicates human CF and lack of 

sensitive MCT assays prevented ascertainment of whether MCT is impaired from the outset 

and thus contributes to pathogenesis or is a secondary defect.

A porcine CF model provides an opportunity to test MCT in vivo at the disease’s origin (9). 

At birth, CF pig airways lack infection and inflammation, but spontaneously develop 

hallmark CF features including infection, inflammation, mucus accumulation and 

obstruction. To assay MCT in vivo with good spatial and temporal resolution, we developed 

an X-ray computed tomography-based assay to track movement of 350 μm diameter 

tantalum microdisks (10).

Most current MCT assays measure disappearance of radioactivity (clearance) after 

inhalation of radiolabeled particles (3, 6, 7). After insufflation into newborn piglet airways, a 

similar % of microdisks cleared CF and non-CF lungs in 10 min (Fig. 1A,1B,S1) (10). As 

microdisks were swept toward the larynx, they migrated to the ventral tracheal surface in 

both genotypes (Fig. 1C), consistent with our finding that ciliary orientation drives 

microdisks ventrally (10). Both genotypes propelled microdisks with similar maximal and 

mean speeds and microdisks spent a similar % of time moving (Fig. 1D–1F). Thus, under 

basal conditions, CF MCT appeared intact.

Airway insults can elicit a cholinergic reflex, a protective response that increases cilia 

beating and generates copious submucosal gland mucus secretion (4, 11, 12). The 

cholinergic agonist methacholine raised cilia beat frequency in CF and non-CF (Fig. S2A). 

However, it tended to reduce the % of microdisks that cleared CF lungs (Fig. 1A,1B, Video 

1). Measuring individual microdisk behavior revealed that methacholine accelerated 

maximal and mean microdisk speeds in non-CF, but not CF piglets (Fig. 1D,1E, S1C–S1E). 

The most striking difference between genotypes was that in CF piglets, methacholine 

reduced the % of time individual microdisks were in motion by ~40% (Fig. 1F). Thus, rather 

than enhancing MCT and airway defense, a cholinergic agonist impeded MCT in CF piglets. 

A limitation of this in vivo study is that piglets were supine, anesthetized and did not cough; 

cholinergic stimulation might have produced a different response in awake animals.

Some studies of cultured airway epithelia reported that loss of CFTR increased Na+ channel 

activity, causing excess liquid absorption from airway surfaces, decreased periciliary liquid, 

impaired cilia function, and thereby slowed MCT (5). However, culture models do not 

recapitulate the complexity of MCT because mucus cannot enter or escape cultures, and the 

model lacks submucosal glands, which are estimated to produce ~95% of mucus in large 

airways (4). After infusing methacholine, periciliary liquid depth did not differ by genotype 

(Fig. S2B), consistent with studies in CF pigs and humans (13, 14). However, mucus 
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overlying cilia was often dislodged during processing, and we could not assess potential 

effects of reduced volume secretion by CF submucosal glands (15, 16). Together, the results 

suggested that MCT might be disrupted by a CF abnormality in glands rather than surface 

epithelia. To test this, we flooded tracheas from methacholine-treated piglets with saline in a 

volume >1000-fold periciliary liquid volume (Fig. 2A, Video 2). This intervention prevents 

airway surface epithelia from altering the volume or composition of liquid covering airways.

Microdisks added to submerged non-CF airways rarely stopped as they progressed to the 

cranial and ventral edges (Fig. 2B, Video 2A,2B). In CF tracheas, some microdisks traveled 

like those on non-CF trachea. However, CF decreased the time that microdisks were in 

motion by ~50% (Fig. 2C), in good agreement with in vivo data (Fig. 1F). These results 

further excluded periciliary liquid depletion as the cause of impaired MCT. Moreover, on 

some occasions, we could see and remove CF mucus strands with attached microdisks 

(Video 2C).

To probe further for CF mucus abnormalities, we examined the response to methacholine 

because it elicited CF MCT defects in vivo and ex vivo (Fig. 1,2), and it stimulates 

submucosal gland secretion, consisting of liquid and proteins, including mucins, which 

confer key structural properties to mucus (11, 12). Cholinergic stimulation can also can 

activate CFTR, increase the driving force for anion secretion through CFTR, and thereby 

enhance liquid secretion (17, 18). To visualize mucus in real time, we covered excised 

tracheas with saline that contained a dilute suspension of fluorescent nanospheres (40 nm 

diameter) (Fig. 3A, Video 3).

When nanospheres attached to mucus, their increased local density highlighted strands and 

globules of mucus flowing over or linked to airways (Video 3A). Methacholine stimulated 

production of mucus strands that emanated from submucosal gland ducts and sometimes 

extended hundreds of μm from their anchor point (Fig. 3B, Video 3B). Strands grew in 

length from gland ducts (Fig. 3C). As mucus strands grew, they broke free and were carried 

up the airway (Fig. 3D, Video 3C). Mucus strands flowing over the surface sometimes 

attached to and stretched anchored strands. Then after the two strands separated, the attached 

strand often snapped back like a rubber band (Fig. 3E, Video 3D), indicating elasticity and 

tenacity, important mucus properties. Reflected light studies also revealed mucus strands 

emerging from submucosal gland ducts (Video 3E). Scanning electron microscopy and 

immunocytochemistry also identified mucus emerging from submucosal gland ducts (Fig. 

S3A,S3B).

Because our preliminary observations suggested more mucus attached to CF airways, we 

developed a time-averaging procedure to preferentially visualize stationary mucus and 

provide panoramic views of entire tracheal segments (Fig. 4A, S4, Video 4). During a 15 

min basal period, stationary mucus was rarely detected on non-CF airways (Fig. 4B, Video 

4A). After adding methacholine, nanosphere-labeled mucus was mobile and therefore not 

visualized; it only became apparent after accumulation on ventral and cranial edges of 

airway segments. Under basal conditions, the surface of CF trachea revealed only small 

amounts of stationary mucus. However, methacholine stimulation generated a strikingly 

different appearance, with many immobile mucus strands and globules failing to detach 
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from submucosal gland ducts (or attaching to anchored strands) and not flowing across the 

airway (Fig. 4C,4E,S5, Video 4B).

Failure of mucus to detach, despite being bathed in saline of controlled composition, 

indicated that CF mucus was abnormal before it emerged onto the airway surface. That 

result pointed to a defect in submucosal glands; they express abundant CFTR (19, 20) and 

conduct Cl− and HCO3
− (21) that contribute to liquid secretion (11, 17, 22, 23). To test if 

loss of anion transport might be responsible for altered mucus behavior in CF, we bathed 

non-CF trachea in HCO3
−-free saline or saline containing bumetanide, which inhibits 

basolateral Cl− entry into epithelia (23). Neither alone caused a failure of mucus detachment 

(Fig. S6). However when combined, they reproduced the CF phenotype of tethered mucus 

strands and globules (Fig. 4D,4F, Video 4C). Tracing mucus strands to their source revealed 

submucosal gland ducts as their origin (Video 4D). Because ion transport by epithelia lining 

airways would not alter the composition of liquid covering the surface, these changes can be 

attributed to reduced anion secretion into submucosal gland lumens. The results are also 

consistent with previous findings that inhibiting both Cl− and HCO3
− secretion altered 

viscoelastic properties of submucosal gland secretions (4, 24).

To explore whether mucus impeded movement of the microdisks we used in vivo (Fig. 1), 

we applied them to non-CF epithelia in HCO3
−-free saline plus bumetanide and found that 

they failed to move across the surface. Then, adding fluorescent nanospheres revealed 

microdisks attached to mucus (Fig. 4G, Video 4E). Similar results occurred in CF airways 

(Fig. 4H, Video 4F).

Our findings identify impaired mucus detachment from CF submucosal glands as a primary 

defect that disrupts MCT. Na+ hyperabsorption by airway surface epithelia and periciliary 

liquid depletion (5) do not explain the data. These in vivo and ex vivo results link loss of 

CFTR and reduced anion secretion to altered mucus that has a reduced ability to break free 

after emerging from glands. Reduced Cl− and HCO3
−-dependent liquid secretion (23, 24) 

and reduced HCO3
− secretion (or acidic pH) (25–27) have both been proposed to alter CF 

mucus properties. Our data suggest that neither alone may be sufficient to generate abnormal 

CF mucus.

These plus our earlier results (28) reveal that loss of CFTR disrupts two lung defense 

processes, MCT and secreted antimicrobial activity. Vertebrates and invertebrates employ 

these two defenses at point of contact with environmental pathogens. CF does not eliminate 

either defense, but reduces their effectiveness. A vicious cycle caused by partial disruption 

of two processes may, in part, explain greater severity of lung disease in CF compared to 

primary ciliary dyskinesia, which obliterates MCT (29), because compromising one defense 

may accentuate the other defect. For example, mucus that fails to detach would impair MCT 

and provide a nidus for bacteria to grow under conditions that promote resistance to host 

defenses already weakened by CF (28, 30). Conversely, reduced antibacterial activity could 

precipitate infection that triggers submucosal gland secretion, and defective mucus 

detachment would impair MCT. Inflammation resulting from both defects would evoke 

submucosal gland hypertrophy, further increasing the amount of static mucus. Now that 

newborn CF screening is universal in many countries, there is an opportunity to intervene 
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early. These data suggest that submucosal glands and mucus tethered to them may be targets 

for early treatment and that MCT assays could report therapeutic efficacy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Loss of CFTR impairs MCT in vivo in newborn piglets treated with methacholine
(A) Images are reconstructed ventral-dorsal views of non-CF and CF airways under basal 

conditions and after 1.28 ×10−7 mol/kg, IV methacholine. Images are at beginning and end 

of a 10 min tracking period (Videos 1A,1B). Positions of microdisks are shown as spheres 

(enlarged ~40 times actual area). (B to F). Symbols indicate data from 8 non-CF and 8 CF 

piglets studied before and after 1.28 ×10−7 mol/kg, IV methacholine. Each data point is 

average behavior of individual microdisks in a piglet during a 10 min tracking run. Lines 

and whiskers beside individual data are mean±SEM. * indicates P<0.05, paired Student’s t-

test. (B) Percentage of microdisks that cleared tracking field during 10 min tracking period. 

(C) Radial position of microdisks at start and end of 10 min tracking period. Data are 
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absolute values of angles relative to ventral (0 degrees). (D,E) Maximum and mean speed of 

microdisks. (F) Percentage of time microdisks were moving during a tracking run. † 

indicates P<0.05 unpaired Student’s t-test. Analysis using linear mixed effects model with 

random effect for pigs yielded a similar conclusion (P=0.024). Analysis in panel F was not 

adjusted for multiple comparisons.
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Fig. 2. Loss of CFTR increases the percentage of non-mobile microdisks on ex vivo trachea 
submerged in saline
(A) Schematic showing trachea removed from piglets treated with methacholine (1.28 ×10−5 

mol/kg, IV), opening along the ventral surface, covering with saline, application of tantalum 

microdisks to the surface, and tracking of movement. Images in panel B are examples and 

data in panel C are averages. (B) Track of microdisks. Red circle indicates microdisk start 

position. Arrowhead indicates position of tracking field exit. Black circle indicates end 

position of microdisk that failed to clear tracking field. Red/black circle indicates disk that 
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never moved. Dashed line indicates tracking field. Bar = 2 mm. Images are compiled from a 

10 min tracking period (Videos 2A,2B). (C) Percentage of time microdisks were moving. N 

= 4 non-CF and 4 CF tracheas. * P<0.05 unpaired Student’s t-test.
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Fig. 3. Strands of mucus emerge from submucosal gland ducts in methacholine-treated non-CF 
airways studied ex vivo
Submucosal gland duct openings are indicated by arrowheads. (A) Schematic of imaging 

procedure. All experiments were repeated at least 3 times. Non-CF trachea was removed 

from piglets, opened along ventral surface, pinned flat, submerged in a HCO3
−/CO2 

buffered Ringers, and treated with 1.28 ×10−5 mol/L methacholine. Trachea was opened 

along ventral surface so that cilia would propel mucus and nanospheres to lateral edges of 

the tracheal preparation (10). Solution bathing the trachea contained a dilute suspension of 

fluorescent 40 nm nanospheres. Images were obtained with a high-speed confocal 

microscope at the tracheal surface. Green indicates fluorescence from nanospheres (Video 

3A). (B) Reconstruction of mucus (labeled with green nanospheres) emerging from 

submucosal gland duct onto airway surface (grey) (Video 3B). Bar = 50 μm. (C) Mucus 

strands grow in length from submucosal glands. In top panels, saline contained dilute 

suspension of green and red nanospheres, and both labeled a mucus strand. Green 

nanospheres were then removed from saline and mucus strand continued to elongate from 

gland duct as indicated by labeling with red nanospheres in bottom panels 25 min later. Bar 
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= 50 μm. (D) Mucus strand grew from opening of submucosal gland duct and then broke 

free and rapidly flowed out of microscopic field (Video 3C). Time is at bottom. Grey 

background in first panel is reflected light image. Bar = 50 μm. (E) Mucus strand “α”, 

anchored at arrowhead, temporarily captures another mucus strand “β” flowing past, α 

stretches, and then the connection between α and β breaks at 140 sec. Immediately after the 

break, β leaves the field, and α snaps back to its original length (Video 3D). Grey 

background in first panel is reflected light image. Bar = 50 μm.
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Fig. 4. Mucus strands fail to detach from submucosal glands when ex vivo CF airways are 
treated with methacholine or when liquid secretion is inhibited in non-CF airways
(A) Schematic of imaging procedure. Images are panoramic views of tracheal sections 

obtained with a time-averaging technique that visualizes static mucus labeled with 

fluorescent nanospheres. See Fig. S4, Video 4. Black lines on sides of images are pins 

holding trachea. Fluorescently-labeled mucus is shown in grey-scale. Panels B to D 

represent images from individual tracheas and average data and numbers of experiments are 

in panels E and F. (B to D) Airways were removed from methacholine-treated (1.28 ×10−5 
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mol/kg, IV) piglets and images were captured at end of a 15 min basal period and then 45 

min after adding 1.28 ×10−5 mol/L methacholine. Bar = 1 mm. See videos 4A to 4C. (B) 

Non-CF trachea. Note accumulation of mucus (white) along cranial and ventral edges of 

tissue. Some static mucus on lower left of non-CF trachea was attached to pin at tissue edge. 

(C) CF trachea. (D). Non-CF airways stimulated with methacholine in HCO3
−-free HEPES-

buffered (pH 7.4 or 6.8) saline containing 10 μM bumetanide. (E) Mucus tethered to 

submucosal glands on non-CF and CF airways 45 min after adding methacholine. See 

Methods for description of tethered mucus score. N=7 non-CF and 7 CF trachea, * P<0.05 

unpaired Student’s t-test. (F) Mucus tethered to submucosal glands on non-CF trachea 45 

min after adding methacholine. Trachea were bathed in HCO3
−/CO2-buffered saline (N=12), 

HCO3
−/CO2-buffered saline containing 10 μM bumetanide (N=8), HCO3

−-free HEPES-

buffered (pH 7.4 or 6.8) saline (N=9), or HCO3
−-free saline containing bumetanide (N=11). 

* P<0.05 by one-way ANOVA and Bonferroni post-test. (G,H) Combined reflected light 

and fluorescence images show position of tantalum microdisks (yellow circles) and mucus; 

mucus often wrapped around microdisks and partly obscured them. Microdisks were applied 

to non-CF trachea in HCO3
−-free saline containing bumetanide (G) and to CF trachea (H). 

Subsequent addition of fluorescent nanospheres to saline revealed that all stationary 

microdisks were attached to mucus. These data also indicate that mucus strands formed 

independently of nanospheres. Arrowheads indicate submucosal gland ducts. Experiments 

were repeated at least 3 times. Bar = 1 mm. Video 4E,4F.
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