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Abstract

Introduction—Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical 

syndrome in need of improved phenotypic classification. We sought to evaluate whether unbiased 

clustering analysis using dense phenotypic data (“phenomapping”) could identify phenotypically 

distinct HFpEF categories.

Methods and Results—We prospectively studied 397 HFpEF patients and performed detailed 

clinical, laboratory, electrocardiographic, and echocardiographic phenotyping of the study 

participants. We used several statistical learning algorithms, including unbiased hierarchical 

cluster analysis of phenotypic data (67 continuous variables) and penalized model-based clustering 

to define and characterize mutually exclusive groups comprising a novel classification of HFpEF. 

All phenomapping analyses were performed blinded to clinical outcomes, and Cox regression was 

used to demonstrate the clinical validity of phenomapping. The mean age was 65±12 years, 62% 

were female, 39% were African-American, and comorbidities were common. Although all patients 

met published criteria for the diagnosis of HFpEF, phenomapping analysis classified study 

participants into 3 distinct groups that differed markedly in clinical characteristics, cardiac 

structure/function, invasive hemodynamics, and outcomes (e.g., pheno-group #3 had an increased 
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risk of HF hospitalization [hazard ratio 4.2, 95% CI 2.0–9.1] even after adjustment for traditional 

risk factors [P<0.001]). The HFpEF pheno-group classification, including its ability to stratify 

risk, was successfully replicated in a prospective validation cohort (n=107).

Conclusions—Phenomapping results in novel classification of HFpEF. Statistical learning 

algorithms, applied to dense phenotypic data, may allow for improved classification of 

heterogeneous clinical syndromes, with the ultimate goal of defining therapeutically homogeneous 

patient subclasses.
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INTRODUCTION

Heart failure (HF), regardless of underlying ejection fraction (EF), is a heterogeneous 

syndrome, the end result of one or more risk factors that ultimately lead to abnormal cardiac 

structure and function, which in turn causes reduced cardiac output and/or elevated cardiac 

filling pressures at rest or with exertion.1 Despite its underlying heterogeneity, HF with 

reduced ejection fraction (HFrEF), particularly outpatient HFrEF, has proven to respond to a 

“one size fits all” approach, with several drugs and devices shown to improve outcomes in 

randomized clinical trials. Unlike in HFrEF, clinical trials of pharmacologic agents in HF 

with preserved ejection fraction (HFpEF) have been universally disappointing, and no 

treatments have improved outcomes in this group of patients.2 In HFpEF, the underlying 

phenotypic heterogeneity is likely far greater than in HFrEF,3, 4 and may be a key reason for 

the poor track record of HFpEF clinical trials. Therefore, understanding the phenotypic 

heterogeneity of HFpEF, which includes the etiologic and pathophysiologic heterogeneity of 

the syndrome, may allow for more targeted (and more successful) HFpEF clinical trials. An 

ideal HFpEF classification system would group together pathophysiologically similar 

individuals who may respond in a more homogeneous, predictable way to treatment.

The problem of unresolved heterogeneity is not unique to medicine—and in fact appears 

routinely in such fields as document classification and image processing.5 Machine learning

—the process of using data to learn relationships between objects—is ideally suited for this 

task.6 Machine learning approaches are typically subdivided into 2 categories: supervised 

and unsupervised. Supervised learning seeks to predict specified outputs or outcomes. The 

goal of unsupervised learning, on the other hand, is to try to learn the intrinsic structure 

within data—such as the analysis of genomic data to derive new subclasses of tumors. 

Although seemingly distinct, there is considerable overlap between these two categories of 

learning; unsupervised learning is increasingly seen as an invaluable initial strategy to derive 

robust set of features for novel classification of a disease or clinical syndrome, which can 

subsequently be used for supervised learning in a variety of settings.5, 7, 8

With the advent of sophisticated phenotyping tools ranging from a multitude of biomarkers 

to comprehensive cardiovascular imaging modalities, the era of “deep phenotyping” is now 

available to improve characterization of heterogeneous syndromes like HFpEF. Prior studies 
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in disease areas such as cancer and autoimmune disease have successfully coupled genomic 

characterization or protein expression with machine learning approaches,7–9 although such 

strategies have typically relied on molecular profiling of the tissue of interest. Within the 

field of cardiovascular medicine, prior studies have utilized supervised learning algorithms 

such as neural networks and decision tree analysis as methods for assisting with diagnosis 

and clinical decision-making, respectively;10, 11 however, no prior study has used these 

techniques to better classify heterogeneous cardiovascular syndromes such as HFpEF. We 

hypothesized that applying statistical/machine learning algorithms to dense phenotyping 

alone would allow for the detection of novel patterns in dense, multi-dimensional data 

obtained from HFpEF patients. We further hypothesized that the identified “pheno-groups” 

of HFpEF patients would have unique pathophysiologic profiles and differential outcomes. 

We therefore prospectively investigated the utility of unbiased phenotype mapping (i.e., 

“phenomapping”) algorithms in a well-characterized HFpEF cohort.

METHODS

Study population

Between March 2008 and May 2011, 420 consecutive patients were prospectively enrolled 

from the outpatient clinic of the Northwestern University HFpEF Program as part of a 

systematic observational study of HFpEF (ClinicalTrials.gov identifier #NCT01030991). All 

patients were recruited after hospitalization for HF. Patients were initially identified by an 

automated daily query of the inpatient electronic medical record at Northwestern Memorial 

Hospital using the search criteria: (1) diagnosis of HF or the words “heart failure” in the 

hospital notes; or (2) B-type natriuretic peptide (BNP) >100 pg/ml; or (3) administration of 

2 or more doses of intravenous diuretics. The list of patients generated was screened daily, 

and only those patients with an LV ejection fraction (LVEF) > 50% and who met 

Framingham criteria for HF12 were offered post-discharge follow-up in a specialized HFpEF 

outpatient program. The HF diagnosis was confirmed in the post-hospitalization outpatient 

HFpEF clinic. Based on previously published criteria,13 besides the presence of 

symptomatic HF and LVEF > 50%, we required evidence of either significant diastolic 

dysfunction (grade 2 or 3) on echocardiography or evidence of elevated LV filling pressures 

on invasive hemodynamic testing or BNP > 100 pg/ml. Patients with greater than moderate 

valvular disease, prior cardiac transplantation, prior history of reduced LVEF < 40% (i.e., 

“recovered” EF), or diagnosis of constrictive pericarditis were excluded. All study 

participants gave written, informed consent, and the institutional review board at 

Northwestern University approved the study. Descriptions of the clinical characteristics 

collected on the study participants, definitions of comorbidities, and echocardiography, non-

invasive pressure-volume analysis, and invasive hemodynamics methods are provided in the 

Supplementary Data section.

Phenotypic domains

Table 1 demonstrates the phenotype domains and individual continuous variables that served 

as phenotypic features for the phenomapping analysis. The phenotypic domains included 

clinical variables, physical characteristics, laboratory data, electrocardiographic parameters, 

and echocardiographic parameters.
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Outcomes assessment

After enrollment, all study participants were evaluated in the Northwestern HFpEF Program 

as clinically indicated but at least every 6 months. At each visit, inter-current 

hospitalizations were documented, reviewed, and categorized as due to cardiovascular or 

non-cardiovascular causes. For cardiovascular hospitalizations, specific causes (e.g., HF, 

acute coronary syndrome, arrhythmia) were identified. Every 6 months, participants (or their 

proxy) were contacted to determine vital status with verification of deaths through query of 

the Social Security Death Index. Enrollment date was defined as the first visit to the 

outpatient HFpEF clinic. Date of last follow-up was defined as date of death or last HFpEF 

clinic visit. Follow-up was complete in all patients.

Exploration of the relationship between phenotypic variables

Prior to analysis, missing data (see Supplementary Figure S1) was imputed using the 

SVDimpute function within the impute package in R. Briefly, missing values were imputed 

using regression with eigenvectors as predictors. An iterative process was taken where all 

missing values are set to the row mean, eigenvectors are computed for the data matrix (using 

SVD) and a given number (5) of eigenvectors were used to impute missing values. The 

percentage of missing values for features ranged from 0% to 24% (for estimated pulmonary 

arterial systolic pressure). Hierarchical clustering was used to visualize redundancy among a 

total of 67 continuous phenotypic variables (Table 1). First, a correlation matrix of 

phenotypic variables was generated based on the absolute value of the Pearson correlation 

coefficient. Correlation profiles were used to eliminate redundant features. Variables that 

were correlated at a correlation coefficient of > 0.6 were filtered (keeping the variable that 

was most informative and had the least missingness), leaving 46 continuous variables for the 

final phenomapping analyses.

Biclustering of HFpEF subjects and phenotypic variables

Agglomerative hierarchical clustering, a commonly used unsupervised learning tool, was 

adapted for the purpose of grouping patients and phenotypic variables.6 The 46 continuous 

phenotypic variables identified after filtering were standardized to mean=0 and standard 

deviation=1. Hierarchical clustering was performed using the hclust function in R (3.0.1), 

with the dissimilarity matrix given by Euclidean distance and the average linkage score used 

to join similar clusters. Subsequent optimal leaf reordering was performed using the 

seriation package in R14 so that within a given branch, more similar rows/columns were 

grouped together. A visual representation of the resulting heatmap was generated using the 

hmap function. All clustering was performed blinded to clinical outcome data.

Penalized model-based clustering of participants

Although hierarchical clustering is effective as a means of visualization, it is problematic to 

use as a method for grouping patients into discrete clusters given the heuristic nature of the 

algorithm and the arbitrariness of defining height thresholds on the resulting dendrogram. To 

determine the optimal number of pheno-groups within the HFpEF cohort, we therefore used 

model-based clustering, which assumes a Gaussian distribution for values of phenotypic 

variables within a cluster, and achieves parameter fitting and patient assignment by 
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minimizing a penalized likelihood.15 Specifically we used the mclust package in R and 

explored a full range of covariance structures, some of which relax the requirement for 

independence of features (i.e. non-diagonal covariance matrices). The Bayesian information 

criterion (BIC) was used to penalize increases in model complexity, such as a greater 

number of clusters or variability in standard deviation across variables and across clusters. 

As a result a parsimonious solution is reached. Such penalty functions serve as a means of 

“regularization” in machine learning, and improve generalizability to other data sets.6 In our 

implementation, we tried between 1 and 8 clusters.

Comparison of clinical characteristics and survival among pheno-groups

Once phenotype groups were defined, we compared differences in demographic, clinical, 

electrocardiographic, echocardiographic, and invasive hemodynamic characteristics among 

groups using Chi-squared tests (or Fisher exact tests when appropriate) for categorical 

variables and analysis of variance (or Kruskal-Wallis test, when appropriate) for continuous 

variables. For outcomes analyses, we used unadjusted and multivariable adjusted Cox 

proportional hazards models to determine the independent association between phenotype 

groups and outcomes. The proportionality assumption was tested and verified for all Cox 

regression models. We defined the primary outcome as cardiovascular hospitalization or 

death, and the secondary outcome as heart failure hospitalization. Covariates included in the 

multivariable model included variables known to be predictive of outcomes in HFpEF. We 

used the likelihood ratio test to determine whether the phenotype group variable was 

predictive of outcomes beyond BNP and the MAGGIC risk score16 (a recently developed 

mortality risk score for patients with HF, including HFpEF). Finally, we used receiver-

operating characteristic (ROC), net reclassification improvement (NRI), and integrated 

discrimination improvement (IDI) analyses to determine the prognostic and discriminative 

utility of the pheno-group variable.

Statistical analyses for comparison of clinical data among groups, and for the association of 

phenotype groups with outcomes, were performed using Stata v.12 (StataCorp, College 

Station, TX).

Validation cohort

We performed an independent validation analysis in 107 additional HFpEF patients who 

were prospectively enrolled and followed for outcomes in the Northwestern HFpEF Program 

between January 2012 and February 2014. These additional study participants were 

identified in the same manner, and met the same inclusion and exclusion criteria, as the first 

420 HFpEF study participants. Phenotypic data from the validation cohort was normalized 

entirely independently (thus avoiding any contamination from the training data [i.e., original 

cohort]), and patients were assigned to the original phenogroups using the predict function 

within mclust. We then looked to see whether there was again a difference in outcomes 

among the 3 groups, using the same outcomes analyses (Cox regression) as those used in the 

original cohort.
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Supervised learning analyses for the prediction of disease outcomes

The unsupervised statistical learning analyses outlined above assume that there are naturally 

occurring subclasses within HFpEF that behave differently yet reproducibly across a number 

of populations and across varying scenarios (e.g. varying treatments, environments, etc.). 

Thus, the first part of our study emphasizes finding intrinsic structure within HFpEF patient 

phenotypic data, which can then be evaluated retrospectively and prospectively for 

predicting treatment outcomes and guiding clinical trial design.

One can also use the same set of phenotypic features simply to predict clinical outcome, 

without emphasizing any natural structure in the data (i.e., supervised learning analyses). 

We explored the use of support vector machines (SVM), a machine algorithm that identifies 

a separation boundary between classes of interest in a much higher dimensional feature 

space. SVM is a robust non-linear algorithm that can be used for classification or 

regression.17 We coded each of the cardiovascular outcomes (HF hospitalization, 

cardiovascular hospitalization, death, and the combined outcome of cardiovascular 

hospitalization or death) as binary outcomes (i.e., ignoring right-censoring), and used SVM 

with the 46 phenotypic predictors to predict outcome. We evaluated radial and sigmoid basis 

functions, tuning the values of the gamma and cost parameters using the derivation cohort, 

and evaluating performance on the validation cohort. Performance was evaluated using area 

under the receiver operating characteristic curve (AUROC), as well as mean sensitivity, 

mean specificity, and mean precision.

RESULTS

Characteristics of the HFpEF cohort

We prospectively enrolled 420 patients with HFpEF for our initial phenomapping analysis. 

Of the 420 patients, 23 had incomplete phenotypic data, including incomplete 

echocardiographic data. Thus, the final cohort consisted of 397 HFpEF patients. All enrolled 

patients were previously hospitalized for HF (though all patients were enrolled and studied 

in the outpatient HFpEF clinic). Similar to previous studies of HFpEF, patients were 

symptomatic based on NYHA functional class and had multiple comorbidities (Tables 2 and 

3).18, 19 Several features corroborated the diagnosis of HFpEF in the study cohort: preserved 

LVEF, normal LV end-diastolic volume index, increased LA volume index, increased LV 

filling pressures (E/e′ ratio), a high frequency of moderate or greater diastolic dysfunction, 

and elevated BNP (Table 2).13 In the 216 patients who underwent invasive hemodynamic 

testing, mean pulmonary capillary wedge pressure was 23±9 mmHg at rest, confirming the 

presence of elevated LV filling pressures.

Exploration of the continuous phenotypic variables

We first examined the phenotypes to determine the correlation among them and found that 

although some variables were correlated with each other, there were not tight correlations 

across large numbers of phenotypes. Nevertheless, as stated above, phenotypes that were 

correlated at r > 0.6 were filtered, leaving 46 minimally redundant phenotypes. These 

features were used for subsequent unsupervised and supervised learning analyses.
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Heterogeneity of HFpEF

All study participants met common diagnostic criteria for HFpEF. Nonetheless, the 

phenotype heatmap created for HFpEF by hierarchical clustering (Figure 1) demonstrated 

substantial heterogeneity among study subjects. Within the heatmap, clusters of individuals 

with shared characteristics (“hotspots”) can be highlighted, corresponding in part to elevated 

activity of various pathophysiologic features such as increased right heart pressures and RV 

wall thickness, cardiac chamber enlargement, and elevated body size. However, these traits 

seemed to co-occur in varying patterns. For example, RV dilation seemed to occur in some 

individuals with poor renal function, in another subset with elevated right heart pressures, 

and in a third group with neither of the above. Unanticipated correlations between traits 

were also seen, such as between red cell distribution width and left atrial volume.

A parsimonious classification of HFpEF

After examining the relationship between phenotypic features, our next goal was to group 

patients into a minimal group of clusters that accurately reflected the phenotypic variability. 

A variety of unsupervised learning methods can be used for this task. We elected to use 

model-based clustering, a method that attempts to define clusters of individuals by 

multivariate normal distributions of phenotypic variables.15 An important feature of this 

implementation of model-based clustering is the use of a penalty function to control the 

amount of complexity in the model – thus allowing a parsimonious description of the 

patients in the data set. Our analysis arrived at 3 as the optimal number of clusters (Figure 

2), and allowed for some flexibility in the “shapes” of the multivariate normal distribution 

across clusters.

Comparison of clinical characteristics and laboratory, electrocardiographic, 
echocardiographic, and invasive hemodynamic data among pheno-groups

The 3 pheno-groups were significantly different from each other. As shown in Table 3, 

pheno-group #1 was younger and had lower BNP than participants in the other groups. 

Pheno-group #2 had the highest prevalence of obesity, diabetes, and obstructive sleep apnea 

and had the highest fasting glucose. Pheno-group #3 was the oldest, more likely to have 

chronic kidney disease (with the highest serum creatinine and lowest GFR), and had the 

highest BNP and MAGGIC risk score values. Table 4 displays the large variation in 

electrocardiographic characteristics, cardiac structure and function, and invasive 

hemodynamic data across the pheno-groups. Pheno-group #1 had the least electrical and 

myocardial remodeling and dysfunction, and the least hemodynamic derangement, although 

it should be noted that even within this group, 65% had at least grade 2 (moderate) diastolic 

dysfunction, mean PCWP was 20 mmHg, and the average invasive pulmonary artery 

systolic pressure was 42 mmHg. Pheno-group #2 had the worst LV relaxation (i.e., lowest e′ 

velocity), highest pulmonary capillary wedge pressure, and highest pulmonary vascular 

resistance. Finally, pheno-group #3 had the most severe electrical and myocardial 

remodeling with the longest QRS duration, largest QRS-T angle, highest relative wall 

thickness and LV mass index, highest E/e′ ratio, and worst RV function. Despite these 

differences between pheno-groups, HF duration was similar among the 3 groups (Table 3). 

On LV pressure-volume analysis, all 3 pheno-groups had similar end-systolic and end-
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diastolic elastances (Supplementary Table S1). However, in terms of stroke work and related 

phenotypes, pheno-groups #1 and #2 were similar, while pheno-group #3 was worst. 

Ventricular-arterial coupling was also most abnormal, and pulse pressure/stroke volume 

ratio highest, in pheno-group #3. In addition, despite similar end-systolic and end-diastolic 

elastance values among the 3 groups, RV remodeling and dysfunction were more prominent 

in pheno-group #3 (as shown in Table 4).

Association of pheno-groups with adverse outcomes

In order to provide external clinical validity of our phenomapping techniques, we studied the 

relationship between the pheno-groups and adverse outcomes. As shown in Table 5 and 

Figures 3 and 4, outcomes varied significantly by pheno-group, with a step-wise increase in 

risk profile going from lowest risk (pheno-group #1) to highest risk (pheno-group #3). 

Pheno-group #3 in particular represented a high-risk subset, independent of BNP (known to 

be one of the most potent risk markers in HF) and the MAGGIC HF risk score, which 

comprises 13 traditional clinical parameters. Table 6 shows that the phenomapping 

technique created pheno-groups with differential risk profiles that provided better 

discrimination compared to clinical parameters (i.e., the MAGGIC risk score) and BNP. 

Based on the IDI, NRI, and likelihood ratio tests, the pheno-group assignment provided 

prognostic information above and beyond traditional clinical variables. In addition, the 

association between pheno-group membership and outcomes persisted after adjustment for 

HF duration.

Validation of the phenomapping analyses

In order to validate our phenomapping results, we prospectively enrolled an additional 107 

patients in the HFpEF program. For the most part, these 107 new HFpEF participants had 

clinical, laboratory, and echocardiographic characteristics that were similar to the original 

HFpEF cohort (Supplementary Tables S2 and S3). There were less African Americans, less 

chronic obstructive pulmonary disease, less thiazide diuretic use, and worse RV fractional 

area change in the validation cohort; however, there were no differences in age, sex, NYHA 

functional class, LVEF, LV mass index, diastolic function grade, or E/e′ ratio between the 

original and validation cohorts. Using model-based clustering, each of the HFpEF validation 

cohort participants was successfully matched to 1 of the 3 previously defined pheno-groups 

(37/107 [34.6%] in pheno-group #1; 29/107 [27.1%] in pheno-group #2; and 41/107 [38.3%] 

in pheno-group #3).

Pheno-group membership in the validation cohort was independently associated with 

adverse outcomes, with a step-wise increase in risk profile going from lowest risk pheno-

group (#1) to highest risk pheno-group (#3) (Supplementary Table S4). Pheno-group #3 in 

the validation cohort, as in the original cohort, was associated with adverse outcomes 

independent of BNP and the MAGGIC HF risk score with hazard ratios comparable to the 

training cohort (for the combined end-point of cardiovascular hospitalization, HF 

hospitalization, or death: unadjusted HR 3.6, 95% CI 1.6–8.4, P=0.003); adjusted HR 3.3, 

95% CI 1.1–9.5, P=0.026).
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Supervised learning analysis

After tuning SVM analyses to build optimal models for predicting a combined outcome of 

death and cardiovascular hospitalization (which includes HF hospitalization), and also for 

individual outcomes, we found that model performance was typically good, with AUROC 

values ranging from 0.70–0.76 in the validation cohort (Supplementary Table S5).

DISCUSSION

In a cohort of 397 patients with documented HFpEF, along with a validation cohort of 107 

independent HFpEF patients, we have shown the feasibility and clinical validity of a novel 

classification technique for HFpEF, a heterogeneous clinical syndrome. Taking techniques 

commonly used for the analysis of gene expression data,20 and applying these to dense 

phenotypic data, we were able to show the following: (1) HFpEF truly is a heterogeneous 

disorder; (2) despite the heterogeneity of HFpEF, phenomapping analysis of HFpEF patients 

produces mutually exclusive groups of individuals with related comorbidities and 

pathophysiologies; and (3) the identified pheno-groups have differential outcomes indicating 

differing risk profiles and clinical trajectories. To our knowledge, our study provides the 

first description of phenomapping for the novel classification of a cardiovascular disorder, 

and it is the first study that applies machine learning techniques to resolve heterogeneity in a 

cardiovascular syndrome using dense phenotypic data.

Using a variety of algorithms, we were able to take advantage of the deep phenotyping in 

our HFpEF cohort and find unique patterns of association among phenotypic variables, 

which allowed for a novel, unique grouping of study participants. Although all patients met 

established criteria for HFpEF, the PhenoMap (Figure 1) clearly demonstrates that HFpEF is 

a heterogeneous syndrome. Modern visualization methods provide a complete and striking 

depiction of the high variability of HFpEF that is clinically apparent when caring for these 

patients.

The robust assignment of group membership (i.e., clustering of HFpEF patients into 

categories) was possible due to our use of penalized machine learning techniques such as 

model-based clustering, which in turn are based on the solid foundation of parametric 

estimates of clustering individuals and regularization via the Bayesian information criterion 

(as shown in Figure 2). Thus, it appears that given this diverse collection of phenotypic 

variables, 3 mutually exclusive pheno-groups represents an optimal number for HFpEF.

Once the 3 pheno-groups were identified, the differences among them (as shown in Tables 3 

and 4) were striking. Study participants within the 3 pheno-groups, despite having shared 

diagnostic features of HFpEF, differed markedly on almost every characteristic. From these 

analyses it became clear that the 3 pheno-groups represent 3 archetypes of HFpEF: (1) 

younger patients with moderate diastolic dysfunction who have relatively normal BNP; (2) 

obese, diabetic patients with a high prevalence of obstructive sleep apnea who have the 

worst LV relaxation; and (3) older patients with significant chronic kidney disease, electrical 

and myocardial remodeling, pulmonary hypertension, and RV dysfunction.
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As an independent measure of the distinctness of our classification, we undertook clinical 

validation through the association of pheno-groups with adverse outcomes, which showed 

the robust ability of pheno-group membership (derived from unsupervised statistical 

learning analyses) as a method for risk stratification in HFpEF participants. In addition, we 

show that supervised learning analyses such as SVM can be applied to a rich dataset of 

quantitative phenotypic data for risk stratification in HFpEF. However, it is essential to note 

that while we were able to show that pheno-group membership was an important, 

independent predictor of differential outcomes, the aim of our study was not to create a new 

method for risk stratification. HFpEF risk prediction techniques, such as the MAGGIC risk 

score,16 are already available. Instead, the primary goal of our study was to show that using 

an unbiased approach allows for the clustering of patients into distinct, mutually exclusive 

groups that could be used to target specific therapies in the clinic and in clinical trials. It is 

for these same reasons that we chose to employ unsupervised machine learning algorithms 

(instead of supervised learning algorithms). Although methods such as neural networks and 

support vector machines,6 can be tremendously powerful for risk stratification, our emphasis 

was on highlighting distinct prototypes of HFpEF, which may be driven by fundamentally 

different underlying pathophysiologic mechanisms and thus have distinct responses in 

clinical trials. Moreover, the growing success of “deep learning” algorithms21 has 

demonstrated that pre-training with unsupervised learning approaches, as we have done, can 

be an effective means of higher order feature extraction and can markedly improve the 

performance of subsequent supervised approaches.5

Our study has several important ramifications for the study of HFpEF and the design of 

future HFpEF clinical trials. While epidemiologic studies and observational registries of 

HFpEF have enrolled a wide variety of patients with varying etiology and pathophysiology, 

detailed mechanistic studies of HFpEF often only enroll very specific subsets of patients 

with a “pure phenotype”, therefore limiting their generalizability to the larger population of 

HFpEF patients. For example, in a pathophysiologic study of HFpEF,22 Prasad and 

colleagues began with 1119 patients hospitalized for HF with EF > 50%. After applying 

their exclusion criteria, which included common HFpEF comorbidities such as atrial 

fibrillation, chronic kidney disease, myocardial infarction, and cognitive impairment, only 

23 (2%) of patients remained eligible for their study.22 Thus, the pathophysiologic studies 

that have concluded that HFpEF is mainly a disease of diastolic dysfunction have been 

challenged,23 and several studies have now shown that HFpEF is quite heterogeneous from 

both an etiologic and pathophysiologic standpoint.4, 24–26 Our study confirms the 

heterogeneity of HFpEF in an unselected group of high-risk, previously hospitalized HFpEF 

patients.

With the advent of sophisticated phenotyping tools ranging from a multitude of biomarkers 

to comprehensive cardiovascular imaging modalities to environmental characterization and 

activity monitoring, the era of “deep phenotyping” is now available to improve 

characterization of heterogeneous syndromes like HFpEF. Here we have shown that 

combined with machine learning algorithms to find patterns in dense, multi-dimensional 

data, novel phenotypic characterization of HFpEF is possible. Future clinical trials can 

harness these advances in phenotypic categorization by deep phenotyping of study 

participants using banked blood and cardiac imaging (such as comprehensive 

Shah et al. Page 10

Circulation. Author manuscript; available in PMC 2016 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



echocardiography), along with other tools (e.g., quality of life measures, exercise tests, etc.) 

as needed, which will allow for the development of phenotype heatmaps. These analyses can 

then be used in the clinical trial setting to determine whether certain groups of patients are 

more responsive to the investigational drug or device compared to other types of patients, 

thereby leading to improved future clinical trials and/or “theranostics”, a combined 

diagnostic and therapeutic treatment strategy.

Strengths and Limitations

Our study has several strengths, including the inclusion of a large, well-phenotyped HFpEF 

cohort; unselected, high-risk patients recruited and studied in the outpatient setting after 

hospitalization for HF; novel analytic techniques that utilized robust machine learning 

analyses with regularization; and validation of our findings in an independent HFpEF 

sample. Our study is also the first study to demonstrate the feasibility and utility of 

“phenomapping” for the unbiased categorization of a cardiovascular disorder. The 

prospective nature of our study, and the ascertainment of outcome data, allowed us to 

determine the clinical utility of the phenomapping technique in predicting differential risk of 

the study participants. Finally, although we enrolled a primarily urban population of patients 

who were previously hospitalized for HF, we enrolled a larger proportion of African 

Americans compared to other HFpEF studies, and the inclusion of patients previously 

hospitalized for HFpEF allowed us to study the highest risk patients and those most likely to 

be enrolled in clinical trials.

Although we were able to provide validation of the phenomapping technique via (1) 

demonstration of the prognostic utility of the pheno-grouping; and (2) successful validation 

of our findings in a separate, independent sample of HFpEF patients at Northwestern 

University, a potential limitation of our study is the lack of validation in a truly external 

cohort. Future studies that replicate our techniques in external HFpEF cohorts (i.e., in other 

institutions, hospitals, or multi-center studies) will be important to further demonstrate 

generalizability.

Conclusions

This is the first study to conduct high-density phenotypic classification (i.e., phenomapping) 

of a clinical cardiovascular syndrome. We have shown that unbiased cluster analysis of 

dense phenotypic data from multiple domains is feasible and can result in meaningful, 

clinically relevant categories of HFpEF patients, with significant differences in underlying 

etiology/pathophysiology and differential risk of adverse outcomes. Given the 

heterogeneous nature of HFpEF, phenomapping could be helpful for improved classification 

and categorization of HFpEF patients, and may lead to development of novel targeted 

therapies. Furthermore, phenomapping could help inform the design and conduct of future 

clinical trials and may be used to identify responders to therapies, thereby improving the 

unacceptably poor track record of HFpEF clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Phenotype Heatmap (PhenoMap) of HFpEF. Columns represent individual study 

participants and rows represent individual phenotypes. Red = increased value of a 

phenotype; Blue = decreased value of a phenotype.
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Figure 2. 
Bayesian Information Criterion Analysis for the Identification of the Optimal Number of 

Pheno-Groups.
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Figure 3. 
Outcomes by HFpEF Pheno-Group. Stacked bar graph of outcomes shows the step-wise 

increase in adverse events from pheno-group #1 to pheno-group #3.
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Figure 4. 
Survival Free of Cardiovascular Hospitalization or Death, Stratified by Pheno-Group. 

Kaplan-Meier curves for the combined outcome of heart failure hospitalization, 

cardiovascular hospitalization, or death, stratified by pheno-group. CV = cardiovascular.
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Table 1

Phenotype Domains and Individual Phenotypes

Phenotypic Domain Phenotypes

Demographics Age

Physical characteristics Body-mass index, heart rate, systolic blood pressure, diastolic blood pressure, pulse pressure

Laboratory Sodium, potassium, bicarbonate, blood urea nitrogen, creatinine, estimated GFR, fasting glucose, white 
blood cell count, hemoglobin, red cell distribution width, platelet count, B- type natriuretic peptide

Electrocardiography PR interval, QRS duration, QTc interval, QRS axis, T wave axis, QRS-T angle

Echocardiography

• Left heart structure LV end-diastolic volume, LV end-systolic volume, LV end-diastolic dimension, LV end-systolic dimension, 
septal wall thickness, posterior wall thickness, LV mass, left atrial volume

• LV systolic function LV ejection fraction, tissue Doppler s’ velocity (septal and lateral), velocity of circumferential fiber shortening

• LV diastolic function Mitral inflow characteristics (E velocity, A velocity, E/A ratio, E deceleration time, IVRT), tissue Doppler 
characteristics (septal e′ and lateral e′ velocities; septal a′ and lateral a′ velocities; septal E/e′ and lateral E/e′ 
ratios).

• Right heart structure RV basal diameter, RV maximal diameter, RV length, RV wall thickness, RV end-diastolic area, RV end-
systolic area, RV/LV maximal diameter ratio, right atrial area

• RV function RV fractional area change, tricuspid annular plane systolic excursion

• Hemodynamics Stroke volume, cardiac output, PA systolic pressure, RA pressure

• Pressure-volume analysis Effective arterial elastance, end-systolic elastance, systolic blood pressure/end-systolic volume ratio, end-
diastolic elastance, ventricular-arterial coupling, preload recruitable stroke work, pulse pressure/stroke 
volume ratio

Bolded phenotypes are those that were used in the model-based clustering analyses after filtering to remove correlated variables (R>0.6).

GFR = glomerular filtration rate; LV = left ventriular; RV = right ventricular; IVRT = isovolumic relaxation time; PA = pulmonary artery; RA = 
right atrial
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Table 2

Objective Criteria for Heart Failure with Preserved Ejection Fraction Diagnosis in the Entire Study Cohort

Parameter (Total N=397)

Prior hospitalization for symptomatic heart failure, n (%) 397(100)

New York Heart Association class III or IV, n(%) 190(48)

Left ventricular ejection fraction, % 61±7

Left ventricular end diastolic volume index, ml/m2 41±12

Grade 2 or 3 diastolic dysfunction, n(%) 297(75)

Left atrial volume index, ml/m2 34±14

E/e′ ratio 17±9

B-type natriuretic peptide, pg/ml* 234(86–530)

Invasive pulmonary capillary wedge pressure, mmHg (N=216) 23±9

Values expressed as mean±standard deviation unless otherwise specified

*
Median (25th–75th percentile)
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Table 3

Clinical and Laboratory Characteristics Stratified by Pheno-Group

Clinical characteristic Group 1 (N=128) Group 2 (N=120) Group 3 (N=149) P-value

Age, years 60.7±13.6 65.7±11.3 67.3±13.1 <0.001

Female, n(%) 86 (67) 81 (68) 82 (55) 0.049

Race, n(%) 0.32

 White 72(56) 58(48) 77(52)

 Black 42(33) 54(45) 56(37)

 Other 14(11) 8(7) 16(11)

NYHA functional class, n(%) 0.17

 I 25(20) 11(9) 13(9)

 II 61(48) 40(33) 56(38)

 III 38(30) 64(53) 78(52)

 IV 3(2) 5(4) 2(1)

Comorbidities, n(%)

 Coronary artery disease 54 (42) 58 (48) 75 (50) 0.38

 Hypertension 84 (66) 108 (90) 112 (75) <0.001

 Hyperlipidemia 65 (51) 75 (62) 73 (49) 0.06

 Diabetes mellitus 12 (9) 63 (52) 50 (34) <0.001

 Obesity 65 (51) 84 (70) 55 (37) <0.001

 Chronic kidney disease 8 (6) 41 (34) 79 (53) <0.001

 Atrial fibrillation 17 (13) 26 (22) 64 (43) <0.001

 Chronic obstructive pulmonary disease 43 (34) 46 (38) 56 (38) 0.70

 Obstructive sleep apnea 35 (27) 60 (50) 46 (31) <0.001

Vital signs and laboratory data

 Heart rate, bpm 77.2±14.5 74.7±14.9 71.6±12.6 0.004

 Systolic blood pressure, mmHg 122.4±16.6 129.2±19.0 123.0±22.7 0.011

 Diastolic blood pressure, mmHg 73.3±10.2 70.1±10.2 67.3±13.6 <0.001

 Pulse pressure, mmHg 49.1±12.4 59.2±16.9 55.7±19.6 <0.001

 Body mass index, kg/m2 31.2±7.3 37.0±10.7 28.9±7.4 <0.001

 Serum sodium, mEq/L 139.0±3.0 138.4±2.6 137.9±2.9 0.01

 Blood urea nitrogen, mg/dl 13.7±4.5 24.4±11.8 33.6±19.9 <0.001

 Serum creatinine, mg/dl 0.9±0.2 1.3±0.4 2.3±2.2 <0.001

 Estimated GFR, ml/min/1.73m2 79.5±21.2 53.8±17.6 43.9±27.3 <0.001

 Fasting glucose, mg/dl 98.4±15.6 153.2±85.2 111.5±29.2 <0.001

 Hemoglobin, g/dl 12.5±1.7 11.8±1.8 11.4±1.9 <0.001

 B-type natriuretic peptide, pg/ml 72(26–161) 188(83–300) 607(329–1138) <0.001

Medications, n(%)

 ACE-inhibitor or ARB 61 (48) 84 (70) 72 (48) <0.001

 β-blocker 67 (52) 89 (74) 112 (75) <0.001

 Calcium channel blocker 31 (24) 45 (38) 44 (30) 0.073

 Nitrate 5 (4) 19 (16) 33 (22) <0.001
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Clinical characteristic Group 1 (N=128) Group 2 (N=120) Group 3 (N=149) P-value

 Loop diuretic 40 (31) 82 (68) 109 (73) <0.001

 Thiazide diuretic 31 (24) 35 (29) 26 (17) 0.073

 Statin 48 (38) 72 (60) 73 (49) 0.002

 Aspirin 48 (38) 62 (52) 75 (50) 0.042

Heart failure duration, months 0.8 (0.4–4.3) 0.9 (0.4–16.3) 0.9 (0.4–11.7) 0.21

MAGGIC risk score 15.6±6.7 19.8±5.8 22.8±7.5 <0.001

Categorical variables are presented as counts and percentages, continuous variables are presented as mean±SD, and right skewed variables are 

presented as median (25th–75th percentile)

NYHA = New York Heart Association; GFR = glomerular filtration rate; ACE = angiotensin converting enzyme; ARB = angiotensin receptor 
blocker
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Table 4

Electrocardiographic, Echocardiographic, and Invasive Hemodynamic Characteristics Stratified Pheno-Group

Parameter Group 1 (N=128) Group 2 (N=120) Group 3 (N=149) P-value

Electrocardiography

PR interval, ms 166.6±29.6 174.2±29.8 183.3±53.5 0.007

QRS duration, ms 93.8±21.0 91.3±13.6 112.7±33.3 <0.001

QTc interval, ms 450.6±35.2 449.8±34.0 464.6±48.9 0.005

QRS axis, degrees 10.7±39.0 20.4±38.4 −4.2±60.7 <0.001

QRS-T angle, degrees 42.6±41.7 53.4±44.0 86.6±54.0 <0.001

Echocardiography

LV end-diastolic volume, ml 81.2±23.4 84.2±24.0 84.6±32.3 0.56

LV end-systolic volume, ml 31.6±12.1 33.1±12.1 35.4±19.2 0.12

Relative wall thickness 0.47±0.11 0.49±0.09 0.56±0.20 <0.001

LV mass index, g/m2 89.1±22.6 96.4±26.3 122.0±47.3 <0.001

Left atrial volume index, ml/m2 29.1±11.1 31.5±10.6 40.9±16.7 <0.001

LV ejection fraction, % 61.8±5.6 61.2±6.5 60.0±7.1 0.05

Stroke volume, ml 84.8±22.9 88.6±32.0 80.7±31.3 0.09

Cardiac output, L/min/m2 6.5±2.0 6.6±2.5 5.8±2.6 0.006

Pulmonary artery systolic pressure, mmHg 35.3±9.7 43.5±14.6 51.2±16.3 <0.001

Right atrial pressure, mmHg 6.0±2.7 6.9±3.5 9.8±4.7 <0.001

E velocity, cm/s 93.2±28.6 103.2±34.5 118.2±40.9 <0.001

A velocity, cm/s 82.8±22.5 93.1±26.3 81.6±38.7 0.01

E/A ratio 1.2±0.5 1.1±0.4 1.7±1.0 <0.001

Tissue Doppler e′ velocity, cm/s 9.3±3.2 7.5±2.1 7.9±3.4 <0.001

E/e′ ratio 11.2±3.7 15.2±6.4 18.6±10.6 <0.001

Diastolic dysfunction grade, n (%) <0.001

 Normal diastolic function 21 (16) 9 (8) 2 (1)

 Grade I (mild) diastolic dysfunction 15 (12) 16 (13) 12 (8)

 Grade II (moderate) diastolic dysfunction 60 (47) 56 (47) 43 (29)

 Grade III (severe) diastolic dysfunction 23 (18) 31 (26) 83 (56)

 Indeterminate diastolic function 9 (7) 8 (7) 9 (6)

RV basal diameter, cm 3.6±0.6 3.8±0.5 4.2±0.8 <0.001

RV end-diastolic area index, cm/m2 12.4±2.1 12.7±2.4 16.2±4.7 <0.001

RV end-systolic area index, cm/m2 6.7±1.5 7.2±1.5 9.9±3.4 <0.001

RV wall thickness, cm 0.46±0.03 0.50±0.07 0.56±0.11 <0.001

RV fractional area change 0.46±0.06 0.43±0.05 0.40±0.08 <0.001

TAPSE, cm 2.2±0.6 2.1±0.6 1.7±0.6 <0.001

Invasive hemodynamics (N=216)

Right atrial pressure, mmHg 10.5±4.6 15.3±6.5 14.6±6.8 <0.001
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Parameter Group 1 (N=128) Group 2 (N=120) Group 3 (N=149) P-value

Pulmonary artery systolic pressure, mmHg 42.4±12.0 55.9±15.4 56.7±19.7 <0.001

Pulmonary artery diastolic pressure, mmHg 21.7±6.3 28.2±7.7 26.5±9.1 <0.001

Mean pulmonary artery pressure, mmHg 28.8±7.7 35.9±9.9 36.6±11.7 <0.001

Pulmonary capillary wedge pressure, mmHg 19.9±6.3 24.6±8.3 23.7±9.7 0.002

Pulmonary vascular resistance, Wood units 1.2±2.5 2.8±4.6 2.3±3.7 0.043

Cardiac output, L/min 6.1±2.1 6.5±2.1 5.8±2.3 0.15

Continuous variables are presented as mean±SD; LV=left ventricular; RV=right ventricular; TAPSE = tricuspid annular plane systolic excursion
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Table 5

Association of Pheno-Groups with Adverse Outcomes on Cox Proportional Hazards Analysis

Group 1 (N=128) Group 2 (N=120) Group 3 (N=149) P-value

Outcome, n(%)

 CV hospitalization 22 (17) 41 (34) 71 (48) <0.001

 HF hospitalization 10 (8) 36 (30) 52 (35) <0.001

 Death 5 (4) 18 (15) 36 (24) <0.001

 Combined endpoint 23 (18) 54 (45) 84 (56) <0.001

Unadjusted, HR (95% CI)

 CV hospitalization 1.0 2.4 (1.4–4.1)*** 3.9 (2.4–6.3)*** —

 HF hospitalization 1.0 4.8 (2.4–9.6)*** 5.7 (2.9–11.3)*** —

 Death 1.0 4.0 (1.5–10.9)** 6.5 (2.5–16.6)*** —

 Combined endpoint 1.0 3.0 (1.9–5.0)*** 4.4 (2.8–7.0)*** —

Model 1, HR (95% CI)

 CV hospitalization 1.0 2.4 (1.4–4.2)*** 4.0 (2.3–6.8)*** —

 HF hospitalization 1.0 4.9 (2.3–10.1) 5.7 (2.7–11.8)** —

 Death 1.0 3.0 (1.1–8.4)* 4.0 (1.5–10.6)** —

 Combined endpoint 1.0 2.9 (1.7–4.8)*** 4.1 (2.5–6.8)*** —

Model 2, HR (95% CI)

 CV hospitalization 1.0 2.1 (1.2–3.6)** 2.9 (1.7–5.1)*** —

 HF hospitalization 1.0 4.1 (1.9–8.6)*** 4.2 (2.0–9.1)*** —

 Death 1.0 2.2 (0.8–6.0) 1.7 (0.6–4.9) —

 Combined endpoint 1.0 2.4 (1.4–3.9)*** 2.8 (1.6–4.8)*** —

**
≤0.01;

***
≤0.001

Model 1 = Pheno-groups + BNP; Model 2 = Pheno-groups + BNP + MAGGIC risk score

The MAGGIC risk score includes the following variables: age, ejection fraction, creatinine, diabetes, chronic obstructive pulmonary disease, 
systolic blood pressure, body-mass index, heart rate, New York Heart Association class, ACE-inhibitor use, beta-blocker use, heart failure duration, 
and current smoker.
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