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Abstract

Marginal zone lymphoma (MZL) is the third most common subtype of B-cell non-Hodgkin 

lymphoma. Here we perform a two-stage GWAS of 1,281 MZL cases and 7,127 controls of 

European ancestry and identify two independent loci near BTNL2 (rs9461741, P=3.95×10−15) and 

HLA-B (rs2922994, P=2.43×10−9) in the HLA region significantly associated with MZL risk. This 

is the first evidence that genetic variation in the major histocompatibility complex influences MZL 

susceptibility.

Introduction

Marginal zone lymphoma (MZL) encompasses a group of lymphomas that originate from 

marginal zone B-cells present in extranodal tissue and lymph nodes. Three subtypes of MZL 

have been defined, extranodal MZL of mucosa-associated lymphoid tissue (MALT), splenic 

MZL and nodal MZL, which together account for 7–12% of all non-Hodgkin’s lymphoma 

(NHL) cases. Geographic differences in incidence have been observed1, and inflammation, 

immune system dysregulation and infectious agents, such as Helicobacter pylori, have been 

implicated particularly for the gastric MALT subtype2, but little else is known of MZL 

etiology. Here we perform the first two stage, subtype specific genome-wide association 

study (GWAS) of MZL and identify two independent SNPs within the HLA region 
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associated with MZL risk. Together with recent studies on other common subtypes of NHL, 

these results point to shared susceptibility loci for lymphoma in the HLA-region.

Results

Stage 1 MZL GWAS

As part of a larger NHL GWAS, 890 MZL cases and 2,854 controls from 22 studies in the 

US and Europe (Supplementary Table 1) were genotyped using the Illumina OmniExpress 

array. Genotype data from the Illumina Omni2.5 was also available for 3,536 controls from 

three of the 22 studies3. After applying rigorous quality control filters (Supplementary Table 

2, Methods), data for 611,856 SNPs with minor allele frequency >1% in 825 cases and 

6,221 controls of European ancestry (Supplementary Fig. 1) remained for the stage 1 

analysis (Supplementary Table 3). To discover variants associated with risk, logistic 

regression analysis was performed on these SNPs adjusting for age, gender and three 

significant eigenvectors computed using principal components analysis (Supplementary Fig. 

2, Methods). Examination of the quantile-quantile (Q-Q) plot (Supplementary Fig. 3) 

showed minimal detectable evidence for population substructure (λ=1.01) with some excess 

of small p-values. A Manhattan plot revealed association signals at the HLA region 

(Supplementary Fig. 4) (6p21.33:31,061,211–32,620,572) on chromosome 6 reaching 

genome-wide significance. Removal of all SNPs in the HLA region resulted in an 

attenuation of the excess of small P-values observed in the Q-Q plot, although some excess 

still remained. To further explore associations within the HLA region and identify other 

regions potentially associated with risk, common SNPs available in the 1000 Genomes 

project data release 3 were imputed (Methods).

Stage 2 genotyping

Ten SNPs in promising loci with P≤7.5 × 10−6 in the stage 1 discovery were selected for 

replication (stage 2) in an additional 456 cases and 906 controls of European ancestry 

(Supplementary Tables 1 and 3). Of the SNPs selected for replication, two SNPs were 

directly genotyped on the OmniExpress, while the remaining eight were imputed with high 

accuracy (median info score = 0.99) in stage 1 (Supplementary Table 4). Replication was 

carried out using Taqman genotyping. In the combined meta-analysis of 1,281 cases and 

7,127 controls, we identified two distinct loci (Table 1, Fig. 1, Supplementary Table 4) at 

chromosomes 6p21.32 and 6p21.33 that reached the threshold of genome-wide statistical 

significance (P<5 ×10−8). These are rs9461741 in the butyrophilin-like 2 (MHC class II 

associated) (BTNL2) gene at 6p21.32 in HLA class II (P=3.95 ×10−15, OR=2.66, CI=2.08–

3.39); and rs2922994 at 6p21.33 in HLA class I (P=2.43 ×10−9, OR=1.64, CI=1.39–1.92). 

These two SNPs were weakly correlated (r2=0.008 in 1000 Genomes CEU population), and 

when both were included in the same statistical model, both SNPs remained strongly 

associated with MZL risk (rs9461741, P=2.09 × 10−15; rs2922994, P=6.03 ×10−10), 

suggesting that the two SNPs are independent. Both SNPs were weakly correlated with other 

SNPs in the HLA region previously reported to be associated with other NHL subtypes or 

Hodgkin lymphoma (r2<0.14 for all pairwise comparisons). None of the previously reported 

SNPs were significantly associated with MZL risk after adjustment for multiple testing 

(P<0.0025) in our study, suggesting the associations are subtype-specific (Supplementary 
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Table 5). Another SNP rs7750641 (P=3.34 ×10−8; Supplementary Table 4) in strong linkage 

disequilibrium (LD) with rs2922994 (r2=0.85) also showed promising association with MZL 

risk. rs7750641 is a missense variant in transcription factor 19 (TCF19), which encodes a 

DNA binding protein implicated in the transcription of genes during the G1-S transition in 

the cell cycle4. The non-HLA SNPs genotyped in stage 2 were not associated with MZL risk 

(Supplementary Table 4).

HLA alleles

To obtain additional insight into plausible functional variants, we imputed the classical HLA 

alleles and amino acid residues using SNP2HLA5 (Methods). No imputed HLA alleles or 

amino acid positions reached genome-wide significance (Supplementary Table 6). However, 

for HLA class I, the most promising associations were observed with HLA-B*08 

(P=7.94×10−8), HLA-B*08:01 (P=7.79×10−8), and the HLA-B allele encoding an aspartic 

acid residue at position 9 (Asp9) (P=7.94×10−8), located in the peptide binding groove of 

the protein. HLA-B*08:01 and Asp9 are highly correlated (r2≥0.99), and thus their effect 

sizes were identical (OR=1.67, 95% CI: 1.38–2.01). They are both also in strong LD with 

rs2922994 (r2=0.97). Due to the fact that they are collinear, the effects of the SNPs and 

alleles were indistinguishable from one another in conditional modeling. For HLA class II, a 

suggestive association was observed with HLA-DRB1*01:02 (OR=2.24, 95% CI: 1.64–3.07, 

P=5.08 ×10−7) (Supplementary Table 6), which is moderately correlated with rs9461741 

(r2=0.69). Conditional analysis revealed that the effects of rs9461741 (the intragenic SNP in 

BTNL2) and HLA-DRB1*01:02 were indistinguishable statistically (stage 1: rs9461741, 

Padjusted=0.064 and HLA-DRB1*01:02, Padjusted=0.29). A model containing both HLA-

B*08:01 and HLA-DRB1*01:02 showed that the two alleles were independent (HLA-

B*08:01: Padjusted=4.65 ×10−8 and HLA-DRB1*01:02: Padjusted=2.97 ×10−7), further 

supporting independent associations in HLA class I and II loci.

MALT vs. non-MALT

Heterogeneity between the largest subtype of MZL, namely MALT and other subtypes 

grouped as non-MALT, was evaluated for the MZL associated SNPs (Supplementary Table 

7). The effects were slightly stronger for MALT, but no evidence for substantial 

heterogeneity was observed (Pheterogeneity ≥ 0.05). Studies have suggested that H. pylori 

infection is a risk factor for gastric MZL2. An examination of SNPs previously suggested to 

be associated with H. pylori infection in independent studies6 did not reveal any significant 

association with the combined MZL or the MALT subtype in this study (Supplementary 

Table 8). Toll-like receptors (TLR) are considered strong candidates in mediating 

inflammatory immune response to pathogenic insults. A previous study reported7 a 

nominally significant association with rs4833103 in the TLR10–TLR1–TLR6 region with 

MZL risk. After excluding the cases and controls in the previous report7, we found little 

additional support for this locus (MZL: P=0.006, OR=1.18, and MALT: P=0.38, OR=1.08).

Secondary functional analyses

To gain additional insight into potential biological mechanisms, expression quantitative trait 

loci (eQTL) analyses were performed in two datasets consisting of lymphoblastoid cell lines 
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(Methods). Significant associations were seen for rs2922994 and rs7750641with HLA-B and 

HLA-C (Supplementary Table 9) while suggestive associations (FDR≤0.05) for correlated 

SNPs of rs2922994 (r2>0.8) in HLA class I and RNF5 (Supplementary Table 10) were 

observed. No significant eQTL association was observed for rs9461741 or other correlated 

HLA class II SNPs. Chromatin state analysis (Methods) using ENCODE data revealed 

correlated SNPs of rs2922994 showed a chromatin state consistent with the prediction for an 

active promoter (rs3094005) or satisfied the state of a weak promoter (rs2844577) in the 

lymphoblastoid cell line GM12878 (Supplementary Fig. 5). GM12878 is the only 

lymphoblastoid cell line from which high quality whole genome-annotation data for 

chromatin state is readily available. Analyses were also performed with HaploReg 

(Supplementary Table 11) and RegulomeDB (Supplementary Table 12) that showed overlap 

of the SNPs with functional motifs, suggesting plausible roles in gene regulatory processes.

Discussion

The most statistically significant SNP associated with MZL, rs9461741, is located in HLA 

class II in the intron between exons 3 and 4 of the BTNL2 gene. BTNL2 is highly expressed 

in lymphoid tissues8 and has close homology to the B7 co-stimulatory molecules, which 

initiate lymphocyte activation as part of antigen presentation. Evidence is consistent with 

BTNL2 acting as a negative regulator of T-cell proliferation and cytokine production8, 9 and 

attenuating T-cell mediated responses in the gut10. We were unable to statistically 

differentiate the effects of rs9461741 from HLA-DRB1*01:02 and, thus, our observed 

association could be due to HLA-DRB1. HLA-DRB1 has been shown to be associated with 

other autoimmune diseases, including rheumatoid arthritis11 and selective IgA deficiency12. 

Similarly, rs2922994 is located 11kb upstream of HLA-B, which is known to play a critical 

role in the immune system by presenting peptides derived from the endoplasmic reticulum 

lumen. rs7750641, a missense variant in TCF19, was previously associated with pleiotropic 

effects on blood-based phenotypes13 and is highly expressed in germinal center cells and up-

regulated in human pro-B and pre-B cells14. Autoimmune diseases, such as Sjögren’s 

syndrome and systemic lupus erythematosus, are established risk factors for developing 

MZL, with the strongest associations seen between Sjögren’s syndrome and the MALT 

subtype15. Of note, SNPs in HLA-B and the classical alleles HLA-DRB1*01:02 are strongly 

associated with Sjögren’s syndrome,16 while HLA-DRB1*03 has been associated with 

rheumatoid arthritis.17 The multiple independent associations in the HLA region and their 

localization to known functional autoimmune and B-cell genes suggest possible shared 

genetic effects that span both lymphoid cancers and autoimmune diseases. Chronic 

autoimmune stimulation leading to over-activity and defective apoptosis of B-cells, and 

secondary inflammation events triggered by genetic and environmental factors are biological 

mechanisms that may contribute to the pathogenesis of MZL.

We have performed the largest GWAS of MZL to date and identified two independent SNPs 

within the HLA region that are robustly associated with the risk of MZL. In addition to the 

known diversity in etiology and pathology, there is mounting evidence of genetic 

heterogeneity across the NHL subtypes of lymphoma. However, the HLA region appears to 

be commonly associated with multiple major subtypes, such as MZL, CLL18, DLBCL19, 

and FL20, 21,22, 23. Further studies are needed to identify biological mechanisms underlying 
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these relationships and advance our knowledge regarding their interactions with associated 

environmental factors that may modulate disease risks.

Methods

Stage 1 MZL GWAS study subjects and Ethics

As part of a larger NHL GWAS initiative, we conducted a genome-wide association study 

(GWAS) of marginal zone lymphoma (MZL) using 890 cases and 2,854 controls of 

European descent from 22 studies of non-Hodgkin lymphoma (NHL) (Supplementary Table 

1 & Supplementary Table 2), including nine prospective cohort studies, eight population-

based case-control studies, and five clinic or hospital-based case-control studies. All studies 

were approved by the respective Institutional Review Boards as listed. These are ATBC:

(NCI Special Studies Institutional Review Board), BCCA: UBC BC Cancer Agency 

Research Ethics Board, CPS-II: American Cancer Society, ELCCS: Northern and Yorkshire 

Research Ethics Committee, ENGELA: IRB00003888 - Comite d’ Evaluation Ethique de 

l’Inserm IRB # 1, EPIC: Imperial College London, EpiLymph: International Agency for 

Research on Cancer, HPFS: Harvard School of Public Health (HSPH) Institutional Review 

Board, Iowa-Mayo SPORE: University of Iowa Institutional Review Board, Italian GxE: 

Comitato Etico Azienda Ospedaliero Universitaria di Cagliari, Mayo Clinic Case-Control: 

Mayo Clinic Institutional Review Board, MCCS: Cancer Council Victoria’s Human 

Research Ethics Committee, MD Anderson: University of Texas MD Anderson Cancer 

Center Institutional Review Board, MSKCC: Memorial Sloan-Kettering Cancer Center 

Institutional Review Board, NCI-SEER (NCI Special Studies Institutional Review Board), 

NHS: Partners Human Research Committee, Brigham and Women’s Hospital, NSW: NSW 

Cancer Council Ethics Committee, NYU-WHS: New York University School of Medicine 

Institutional Review Board, PLCO: (NCI Special Studies Institutional Review Board), 

SCALE: Scientific Ethics Committee for the Capital Region of Denmark, SCALE: Regional 

Ethical Review Board in Stockholm (Section 4) IRB#5, UCSF2: University of California 

San Francisco Committee on Human Research, WHI: Fred Hutchinson Cancer Research 

Center, Yale: Human Investigation Committee, Yale University School of Medicine. 

Informed consent was obtained from all participants.

Cases were ascertained from cancer registries, clinics or hospitals, or through self-report 

verified by medical and pathology reports. To determine NHL subtype, phenotype data for 

all NHL cases were reviewed centrally at the International Lymphoma Epidemiology 

Consortium (InterLymph) Data Coordinating Center and harmonized using the hierarchical 

classification proposed by the InterLymph Pathology Working Group24, 25 based on the 

World Health Organization (WHO) classification26.

Genotyping and quality control

All MZL cases with sufficient DNA (n=890) and a subset of controls (n=2,854) frequency 

matched by age, sex, and study to the entire group of NHL cases, along with 4% quality 

control duplicates, were genotyped on the Illumina OmniExpress at the NCI Core 

Genotyping Resource (CGR). Genotypes were called using Illumina GenomeStudio 

software, and quality control duplicates showed >99% concordance. Monomorphic SNPs 

Vijai et al. Page 5

Nat Commun. Author manuscript; available in PMC 2015 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and SNPs with a call rate of <95% were excluded. Samples with a call rate of ≤93%, mean 

heterozygosity <0.25 or >0.33 based on the autosomal SNPs, or gender discordance (>5% 

heterozygosity on the X chromosome for males and <20% heterozygosity on the X 

chromosome for females) were excluded. Furthermore, unexpected duplicates (>99.9% 

concordance) and first-degree relatives based on identity by descent (IBD) sharing with Pi-

hat>0.40 were excluded. Ancestry was assessed using the Genotyping Library and Utilities 

(GLU- http://code.google.com/p/glu-genetics/) struct.admix module based on the method by 

Pritchard et al.27 and participants with <80% European ancestry were excluded 

(Supplementary Fig. 1). After exclusions, 825 cases and 2,685 controls remained 

(Supplementary Table 2). Genotype data previously generated on the Illumina Omni2.5 

from an additional 3,536 controls from three of the 22 studies (ATBC, CPS-II, and PLCO) 

were also included3, resulting in a total of 825 cases and 6,221 controls for the stage 1 

analysis (Supplementary Table 3). Of these additional 3,536 controls, 703 (~235 from each 

study) were selected to be representative of their cohort and cancer-free3, while the 

remainder were cancer-free controls from an unpublished study of prostate cancer in the 

PLCO. SNPs with call rate <95%, with Hardy-Weinberg equilibrium P<1×10−6, or with a 

minor allele frequency <1% were excluded from analysis, leaving 611,856 SNPs for 

analysis. To evaluate population substructure, a principal components analysis (PCA) was 

performed using the Genotyping Library and Utilities (GLU), version 1.0, struct.pca 

module, which is similar to EIGENSTRAT28 -http://genepath.med.harvard.edu/~reich/

Software.htm. Plots of the first five principal components are shown in Supplementary Fig. 

2. Genomic inflation factor was computed prior (λ=1.014) and after removal of SNPs in the 

HLA loci (λ=1.010). Association testing was conducted assuming a log-additive genetic 

model, adjusting for age, sex, and three significant principal components. All data analyses 

and management were conducted using GLU.

Imputation of variants

To more comprehensively evaluate the genome for SNPs associated with MZL, SNPs in the 

stage 1 discovery GWAS were imputed using IMPUTE229 -http://mathgen.stats.ox.ac.uk/

impute/impute_v2.html and the 1000 Genomes Project (1kGP- http://www.

1000genomes.org/) version 3 data29, 30. SNPs with a minor allele frequency <1% or 

information quality score (info) <0.3 were excluded from analysis, leaving 8,478,065 SNPs 

for association testing. Association testing on the imputed data was conducted using 

SNPTEST31 - https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html version 

2, assuming dosages for the genotypes and adjusting for age, sex, and three significant 

principal components. In a null model for MZL risk, the three eigenvectors EV1, EV3 and 

EV8 were nominally associated with MZL risk and hence were included to account for 

potential population stratification. Heterogeneity between MZL subtypes was assessed using 

a case-case comparison, adjusting for age, sex, and significant principal components.

Stage 2 Replication of SNPs from the GWAS

After ranking the SNPs by p-value and LD filtering (r2<0.05), ten SNPs from the most 

promising loci identified from stage 1 after imputation with P<7.5 × 10−6 were taken 

forward for de novo replication in an additional 456 cases and 906 controls (Supplementary 

Tables 1 and 4). Wherever possible, we selected either the best directly genotyped SNP or 
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the most significant imputed SNP for the locus. Only imputed SNPs with an information 

score >0.8 were considered for replication. Only SNPs with MAF>1% were selected for 

replication, and no SNPs were taken forward for replication in regions where they appeared 

as singletons or obvious artifacts. For the HLA region, we selected one additional SNP 

(rs7750641) that was highly correlated with rs2922994 for additional confirmation. 

Genotyping was conducted using custom TaqMan genotyping assays (Applied Biosystems) 

validated at the NCI Core Genotyping Resource. Genotyping was done at four centers. 

HapMap control samples genotyped across two centers yielded 100% concordance as did 

blind duplicates (~5% of total samples). Due to the small number of samples, the MD 

Anderson, Mayo, and NCI replication studies were pooled together for association testing; 

however, MSKCC was analyzed separately to account for the available information on 

Ashkenazi ancestry. Association results were adjusted for age and gender and study site in 

the pooled analysis. The results from the stage 1 and stage 2 studies were then combined 

using a fixed effect meta-analysis method with inverse variance weighting based on the 

estimates and standard errors from each study. Heterogeneity in the effect estimates across 

studies was assessed using Cochran’s Q statistic and estimating the I2 statistic. For all SNPs 

that reached genome-wide significance in Table 1, no substantial heterogeneity was 

observed among the studies (Pheterogeneity ≥ 0.1 for all SNPs, Supplementary Table 4).

Technical validation of imputed SNPs rs9461741 and rs2922994

Genotyping was conducted using custom TaqMan genotyping assays (Applied Biosystems) 

at the NCI Cancer Genomics Research Laboratory on a set of 470 individuals included in the 

stage 1 MZL GWAS. The allelic dosage r2 was calculated between the imputed genotypes 

and the technical validation done using assayed genotypes which showed that both SNPs 

were imputed with high accuracy (INFO ≥0.99) and a high correlation (r2≥0.99) between 

dosage imputation and genotypes obtained by Taqman assays.

HLA imputation and analysis

To determine if specific coding variants within HLA genes contributed to the diverse 

association signals, we imputed the classical HLA alleles (A, B, C, DQA1, DQB1, DRB1) 

and coding variants across the HLA region (chr6:20–40Mb) using SNP2HLA5- http://

www.broadinstitute.org/mpg/snp2hla/. The imputation was based on a reference panel from 

the Type 1 Diabetes Genetics Consortium (T1DGC) consisting of genotype data from 5,225 

individuals of European descent who were typed for HLA-A, B, C, DRB1, DQA1, DQB1, 

DPB1, DPA1 4-digit alleles. Imputation accuracy of HLA alleles was assessed by 

comparing HLA alleles to the HLA sequencing data on a subset of samples from the NCI32. 

The concordance rates obtained were 97.32%, 98.5%, 98.14% and 97.49% for HLA-A, B, C 

and DRB1 respectively in the NCI GWAS suggesting robust performance of the imputation 

method. Due to the limited number of SNPs (7,253) in the T1DGC reference set, imputation 

of HLA SNPs was conducted with IMPUTE2 and the 1kGP reference set as described 

above. A total of 68,488 SNPs, 201 classical HLA alleles (two- and four-digit resolution) 

and 1,038 AA markers including 103 AA positions that were ‘multi-allelic’ with three to six 

different residues present at each position, were successfully imputed (info score >0.3 for 

SNPs or r2>0.3 for alleles and AAs) and available for downstream analysis. Multi-allelic 

markers were analyzed as binary markers (e.g., allele present or absent) and a meta-analysis 
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was conducted where we tested SNPs, HLA alleles and AAs across the HLA region for 

association with MZL using PLINK33 or SNPTEST31 as described above.

Expression quantitative trait loci (eQTL) analysis

We conducted an expression quantitative trait loci (eQTL) analysis using two independent 

datasets: Childhood asthma34 and HapMap35. As described previously34 for the childhood 

asthma dataset35, peripheral blood lymphocytes were transformed into lymphoblastoid cell 

lines for 830 parents and offspring from 206 families of European ancestry. Data from 405 

children were used for the analysis as follows: using extracted RNA, gene expression was 

assessed with the Affymetrix HG-U133 Plus 2.0 chip. Genotyping was conducted using the 

Illumina Human-1 Beadchip and Illumina HumanHap300K Beadchip, and imputation 

performed using data from 1kGP. All SNPs selected for replication were tested for cis 

associations (defined as gene transcripts within 1 Mb), assuming an additive genetic model, 

adjusting for non-genetic effects in the gene expression value. Association testing was 

conducted using a variance component-based score test36 in MERLIN37, which accounts for 

the correlation between siblings. To gain insight into the relative importance of associations 

with our SNPs compared to other SNPs in the region, we also conducted conditional 

analyses, in which both the MZL SNP and the most significant SNP for the particular gene 

transcript (i.e., peak SNP) were included in the same model. Only cis associations that 

reached P<6.8×10−5, which corresponds to a false-discovery rate (FDR) of 1% are reported 

(Supplementary Table 9).

The HapMap dataset consisted of a publicly available RNAseq dataset35 from transformed 

lymphoblastoid cell lines from 41 CEPH Utah residents with ancestry from northern and 

western Europe (HapMap-CEU) samples available from the Gene Expression Omnibus 

(GEO) repository (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE16921. In 

this dataset, we examined the association between the two reported SNPs in the HLA region, 

rs2922994 and rs9461741, as well as all SNPs in LD (r2> 0.8 in HapMap-CEU release 28) 

and expression levels of probes within 1Mb of the SNPs. As rs9461741 was not genotyped 

in HapMap, we selected rs7742033 as a proxy as it was the strongest linked SNP available 

in HapMap (r2=0.49 in 1kGP-CEU). Genotyping data for these HapMap-CEU individuals 

were directly downloaded from HapMap (www.hapmap.org). Correlation between 

expression and genotype for each SNP-probe pair was tested using the Spearman’s rank 

correlation test with t-distribution approximation and estimated with respect to the minor 

allele in HapMap-CEU. P-values were adjusted using the Benjamini-Hochberg FDR 

correction and eQTLs were considered significant at an FDR<0.05 (Supplementary Table 

10).

Bioinformatics ENCODE and Chromatin State Dynamics

To assess chromatin state dynamics, we used Chromos38, which has pre-computed data from 

ENCODE on 9 cell types using Chip-Seq experiments39. These consist of B-lymphoblastoid 

cells (GM12878), hepatocellular carcinoma cells (HepG2), embryonic stem cells (hESC), 

erythrocytic leukemia cells (hK562), umbilical vein endothelial cells (hUVEC), skeletal 

muscle myoblasts (hSMM), normal lung fibroblasts (hNHLF), normal epidermal 

keratinocytes (hNHEK), and mammary epithelial cells (hMEC). These pre-computed data 
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have genome-segmentation performed using a multivariate hidden Markov-model to reduce 

the combinatorial space to a set of interpretable chromatin states. The output from Chromos 

lists data into 15 chromatin states corresponding to repressed, poised and active promoters, 

strong and weak enhancers, putative insulators, transcribed regions, and large-scale 

repressed and inactive domains (Supplementary Fig. 5).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Regional plot showing the HLA associations with MZL
The figure shows the association log10 p-values from the log-additive genetic model for all 

SNPs in the region from stage 1 (dots) (n=825 cases, n=6,221 controls) and the log10 p-

values from the log-additive genetic model for both stage 1 and 2 combined (purple 

diamonds) for rs2922994 (n=1,230 cases, n=7,053 controls) and rs9461741 (n=1,277 cases, 

n=7,097 controls). The purple dots show the log10 p-values of these SNPs in stage-1. Top 

panel (A) shows the region encompassing both SNPs. Bottom panel (B) regional plot of the 

most significant SNP rs2922994 at 6p21.33 (C), and rs9461741 at 6p21.32. The colors of 

the dots reflect the linkage disequilibrium (as measured by r2) with the most significant SNP 

as shown in the legend box.
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