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Abstract

Among protein secretion systems there are specialized ATPases that serve different functions such 

as substrate recognition, substrate unfolding, and assembly of the secretory machinery. ESX 

protein secretion systems require FtsK/SpoIIIE family ATPases but the specific function of these 

ATPases is poorly understood. The ATPases of ESX secretion systems have a unique domain 

architecture among proteins of the FtsK/SpoIIIE family. All well-studied FtsK family ATPases to 

date have one ATPase domain and oligomerize to form a functional molecular machine, most 

commonly a hexameric ring. In contrast, the ESX ATPases have three ATPase domains, either 

encoded by a single gene or by two operonic genes. It is currently unknown which of the ATPase 

domains is catalytically functional and whether each domain plays the same or a different 

function. Here we focus on the ATPases of two ESX systems, the ESX-1 system of 

Mycobacterium tuberculosis and the yuk system of Bacillus subtilis. We show that ATP hydrolysis 

by the ESX ATPase is required for secretion, suggesting that this enzyme at least partly fuels 

protein translocation. We further show that individual ATPase domains play distinct roles in 

substrate translocation and complex formation. Comparing the single chain and split ESX 

ATPases we reveal differences in the requirements of these unique secretory ATPases.
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Introduction

The majority of protein export systems contain associated ATPases that supply energy for 

functions including assembly of the secretory apparatus and substrate translocation. FtsK/

SpoIIIE family ATPases are conserved throughout bacteria and are involved in the 

translocation of DNA and proteins through membrane-spanning pores [1]. This translocation 

is important for cell division, sporulation, DNA conjugation, and other essential cell 

processes. FtsK/SpoIIIE family proteins are members of the larger FtsK-HerA superfamily 

of P-loop ATPases [1]. This superfamily includes VirB4-like ATPases of Type IV secretion 

systems, TrwB-like proteins involved in conjugal transfer of plasmids, and HerA family 

archeal helicases.

FtsK-HerA superfamily proteins share a characteristic molecular organization consisting of 

several N-terminal transmembrane segments followed by a cytoplasmic domain containing a 

single ATP-binding motif [2]. Because of the conservation and biological importance of 

these ATPases, numerous studies have investigated the structure and oligomeric state of 

these proteins. Structural analyses of FtsK, TwrB, and HerA have revealed that these 

proteins have a strong preference for forming ring-shaped hexamers [3-5], a preference 

extending throughout prokaryotic and eukaryotic organisms. For example, the single 

cytoplasmic ATPase domain from six FtsK monomers assemble into a homohexameric ring 

to create a pore with a central channel large enough to allow the passage of the double 

stranded DNA substrate [5]. The hexameric architecture of FtsK-HerA ATPases is a shared 

feature among many members of the larger AAA+ (ATPases Associated with various 

cellular Activities) and RecA protein families [6-8].

Recent work has revealed the presence of FtsK/SpoIIIE family ATPases in ESX secretion 

systems [9, 10]. ESX secretion systems (also referred to as Wss for WXG100 secretion 

system or Type VII in some instances) are a novel class of bacterial secretion systems 

[10-13]. The first identified ESX system was the ESX-1 secretion system of the human 

pathogen Mycobacterium tuberculosis [9, 14-16], and it has been shown that ESX-1 is a 

critical mediator of M. tuberculosis virulence [17, 18]. Subsequent genome sequence 

analyses have demonstrated a wide distribution of ESX systems throughout actinobacteria, 

firmicutes, chloroflexi, and several proteobacteria [9, 11, 16]. Within genetic loci encoding 

for ESX systems, two proteins are conserved among all species: an ATPase with multiple 

FtsK/SpoIIIE-like domains and a small substrate protein homologous to the secreted 

virulence factor EsxA of M. tuberculosis [9]. The molecular function and mechanisms of 

action of these systems remain poorly understood.

There are several unique structural features of the secretory FtsK-like ESX ATPases. First, 

whereas canonical members of the FtsK/SpoIIIE protein family contain a single enzymatic 

domain, the FtsK/SpoIIIE family ATPases of ESX secretion systems are predicted to contain 

two or three ATPase domains linked within a single polypeptide [9, 10]. Another striking 

feature of these FtsK/SpoIIIE family ATPases is the architecture of the genes encoding these 

proteins. In most ESX systems, the multidomain ATPase is encoded for by a single gene. 

For example, the gene yukBA of the Bacillus subtilis yuk secretion system encodes one 

protein with three predicted ATPase domains (Fig. 1a). However, an alternative protein 
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architecture is found in some ESX systems. For example, in the ESX-1 system of M. 

tuberculosis, the open reading frame encoding the ATPase has been split into two genes, 

eccCa and eccCb, containing one and two ATPase domains respectively (Fig. 1a) [16].

As suggested by the conservation of FtsK/SpoIIIE family ATPases among ESX systems, 

these ATPases are integral components of these secretion systems. Studies of ESX secretion 

systems from multiple organisms have demonstrated that these ATPases are required for 

substrate secretion [17, 19-22]. In mycobacteria both proteins in the split ESX ATPase, 

EccCa and EccCb, are required for secretion but only the EccCb ATPase interacts with the 

EsxB substrate [23]. In Staphylococcus aureus there is a linked ESX ATPase EssC in which 

the second and the third domains are dispensable for secretion [19]. Therefore, it is unclear 

whether each of the ATPase domains within these proteins is required for function, and if so, 

whether the multiple active sites contribute equally to function. Moreover, it is unknown 

how the split protein architecture of these ATPases reflects or affects protein function and 

assembly.

In this work, we address these questions by studying the ATPases of ESX systems 

representing two different ATPase protein architectures – single-chain and split protein 

variants. First, we make use of the model system that we have developed using the yuk 

secretion system of B. subtilis and analyze the single-chain ESX ATPase YukBA [22, 24]. 

We show that there are different functional requirements for the three ATPase domains of 

YukBA, where catalytic activity of only the most N-terminal ATPase domain is required for 

secretion. The nucleotide binding and enzymatic function of the other two ATPase domains 

are not required for substrate secretion. In contrast, in the split ESX ATPase in M. 

tuberculosis, nucleotide binding by each of the three ATPase domains is required for protein 

secretion. Together, our data suggest that the FtsK/SpoIIIE family ATPases of ESX 

secretion systems supply energy for protein translocation via ATP hydrolysis by the most N-

terminal ATPase domain. Nucleotide binding by the second and third ATPase domains may 

be required for assembly or oligomerization of the functional apparatus, a requirement that 

becomes essential for ESX ATPases demonstrating a split protein architecture. This 

requirement may be alleviated in ESX systems in which the ATPase is a single polypeptide 

chain containing three linked ATPase domains.

Results

The ATPase domains of YukBA are differentially required for YukE secretion in B. subtilis

In the B. subtilis ESX secretion system, the FtsK/SpoIIIE family ATPase YukBA is required 

for the secretion of the EsxA homologue YukE [21, 22] (Fig. 2a). The Walker A motif 

(GXXXXGKT/S) is the conserved nucleotide binding site of P-loop NTPase domains [25, 

26]. YukBA contains three ATPase domains, each containing a Walker A motif with a 

conserved lysine (K) residue at amino acids K688, K1016, and K1299 (Fig. 1b). We sought 

to determine the requirement for each of the ATPase domains within YukBA in yuk-

mediated secretion. We inactivated each ATPase domain of YukBA by mutagenizing the 

conserved lysine residues to an alanine (A), both individually and in combination. This 

mutation prevents ATP binding in other systems, thereby disrupting the enzymatic activity 

of the ATPase domain [27, 28].
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We tested the ability of each ATPase mutant protein to complement the B. subtilis ΔyukBA 

strain for YukE secretion. As seen in Fig. 2, the ΔyukBA deletion strain failed to secrete 

YukE while introduction of a wild-type copy of yukBA into ΔyukBA partially restored YukE 

secretion. Mutating the most N-terminal ATPase domain of YukBAK688A, completely 

abolished YukE secretion (Fig. 2a). Moreover, any YukBA mutant containing the K688A 

mutation (YukBAK688A,K1016A, YukBAK688A,K1299A, or YukBAK688A,K1016A,K1299A) 

failed to complement ΔyukBA for secretion. This indicates that the first ATPase domain is 

fully required for YukE secretion.

In contrast, production of YukBA proteins with mutations of the catalytic lysines in the 

second or third ATPase domains, YukBAK1016A or YukBAK1299A, complemented YukE 

secretion in the ΔyukBA strain (Fig. 2a). Likewise, production of YukBAK1016A,K1299A 

restore YukE secretion to wild-type levels. Thus, neither YukBAK1016 nor YukBAK1299 are 

required for YukE secretion, individually or in combination.

To provide supporting evidence that the phenotypic consequence of the YukBA Walker A 

motif lysine to alanine mutations are specific to the loss of ATPase activity, as opposed to a 

less specific effect such as a global perturbation in enzyme structure, we also mutated each 

active site lysine of yukBA to a threonine (T). This amino acid substitution is also commonly 

used to eliminate the enzymatic activity of an ATPase [29, 30]. Consistent with our previous 

results, we found that mutating the most N-terminal ATPase domain of YukBA, 

YukBAK688T, resulted in a loss of YukE secretion (Fig. 2b). The YukBAK1016T, 

YukBAK1299T, and YukBAK1016T,K1299T mutant proteins were able to complement YukE 

secretion, as was seen with the corresponding lysine to alanine mutations. We also tested 

that all of the mutant YukBA proteins are produced in the cells to ensure that observed 

secretion changes are not due to protein stability or expression alterations (Fig. 2). In 

summary, we show that the three ATPase domains of YukBA are not functionally 

equivalent.

Walker A mutants of YukBA interfere with the functionality of the wild-type ATPase

The most N-terminal ATPase domain of YukBA is required for YukE secretion. We next 

assessed whether the YukBA ATPase mutant proteins have a dominant negative phenotype 

when expressed in the presence of a wild-type copy of the protein. Upon expression of 

yukBAK688A in an otherwise wild-type strain, we found a greater than 80% reduction in 

YukE secretion (Fig. 3a). Likewise, when the K688A mutation is combined with the 

mutation of either other Walker A motif (yukBAK688A,K1016A, yukBAK688A,K1299A, or 

yukBAK688A,K1016A,K1299A), we saw dramatically reduced YukE secretion as compared to a 

strain in which wild-type YukBA was heterologously expressed. In agreement with these 

findings, we found similar inhibition of secretion when K688 was mutated to a threonine, 

either individually or in combination with other Walker box mutations (Fig. 3b). Thus, a 

YukBA mutant protein that has been mutated at the first Walker A motif (YukBAK688) 

appears to retain some ability to interact with and subsequently inhibit wild-type 

components of the translocon.

We then assessed the effects of expressing yukBAK1016A or yukBAK1299A in the presence of a 

wild-type secretion system. Although neither Walker A motif was required for secretion 
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individually or in combination, both mutants had a minor effect on YukE secretion when 

lysines were substituted to alanines or threonines (Fig. 3a-b). Overall, experiments 

expressing mutant copies of the YukBA ATPase in the presence of the wild-type protein 

showed that the mutant protein can interfere with functioning of the wild-type ATPase, 

likely indicating that the proteins oligomerize.

ATP hydrolysis by the first ATPase domain of YukBA is required for secretion

Disruption of the Walker A residues by mutation commonly eliminates binding of 

nucleotides to the active site of the target P-loop ATPase, which subsequently renders 

nucleotide hydrolysis impossible. The Walker B motif, another consensus sequence found in 

ATPases (hhhhDE), is responsible for nucleotide hydrolysis [25, 26, 31]. To separate the 

effects of nucleotide binding and hydrolysis we introduced mutations in the Walker B motifs 

of two of the ATPase domains in YukBA, where we could identify such motifs (Fig. 1b). As 

one can see from Fig. 1a, the second and third ATPase domains of YukBA do not have the 

glutamate (E) following the conserved aspartate (D). In case of the second domain there is a 

nearby DE pair following the aligned hhhhDN. Therefore, to test the effect of eliminating 

ATP hydrolysis on the yuk secretion, we mutated to alanine Walker B residue D794 in the 

first domain and the two putative Walker B residues in the second domain, D1114 and 

D1121.

Using a similar secretion assay, we assessed YukE secretion upon ectopic expression of the 

YukBA Walker B mutants in the ΔyukBA strain. We found that the Walker B motif mutants 

showed similar phenotypes to those observed when we mutated the Walker A motif in each 

ATPase domain (Fig. 4a). YukBAD749A, the Walker B mutant of the most N-terminal 

ATPase domain, failed to restore secretion in the absence of the wild-type ATPase. In 

contrast, mutating either of the two putative Walker B domains of the second ATPase 

domain (residues D1114 and D1121) did not affect YukE secretion. This is consistent with 

our results that nucleotide binding to these domains is not required for secretion. Therefore, 

ATP hydrolysis by the first ATPase domain of YukBA is critical for secretory function. We 

further tested the effect of expressing each Walker B mutant in the context of the wild-type 

protein and observed that the Walker B mutation in the most N-terminal ATPase domain 

exhibited a dominant negative phenotype, abrogating YukE secretion (Fig. 4b). Combined, 

these results are consistent with the idea that catalytic activity of the ESX ATPase is 

required for efficient transport.

The YukBA ATPase is integral membrane protein

YukBA is predicted to be a 171 kDa integral membrane protein. We performed a 

fractionation assay to confirm that YukBA localizes to the membrane as predicted by 

sequence analyses (Fig. 1a). In this experiment, YukBA labeled with GFP was present in the 

membrane fraction and solubilized by Triton detergent but not by 1M NaCl (Fig. 5) which is 

consistent with the prediction that YukBA is an integral membrane protein. Therefore, 

similar to the mycobacterial ESX ATPases, YukBA localizes to bacterial membrane.
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Each ATPase domain of the split ESX ATPase EccCa-EccCb is required for secretion in M. 
tuberculosis

While many of the FtsK/SpoIIIE family ATPases associated with ESX secretion systems 

show a protein architecture like that of B. subtilis YukBA (multiple ATPase domains linked 

within a single polypeptide), a subset of systems, including the ESX-1 secretion system of 

M. tuberculosis, represents an alternative protein architecture where the open reading frame 

encoding the ATPase has been split into two genes. It is unclear how this varied protein 

architecture may affect the enzymatic requirements for such systems. To address this 

question, we used the M. tuberculosis system to understand the individual domain 

requirements of the ESX-1 ATPase EccCa and EccCb in ESX-1-mediated secretion.

Through the study of transposon mutants, M. tuberculosis eccCa and eccCb were previously 

shown to be required for ESX-1-mediated secretion of the protein substrates EsxA and EsxB 

[17, 18]. Similarly, we found that transposon insertions in eccCa and eccCb disrupted 

secretion of three ESX-1 substrates: EsxA, EsxB, and EspA (Fig. 6). These defects could be 

complemented by the episomal expression of eccCa-eccCb in the eccCa::Tn mutant and 

eccCb alone in the eccCb::Tn strain.

EccCa contains a single Walker A motif (K485), while EccCb contains two predicted 

Walker A motifs (K90 and K382) (Fig. 1). We mutated the conserved lysine of each ATPase 

domain to an alanine and then tested the ability of the mutant proteins to complement ESX-1 

secretion in the corresponding eccCa- or eccCb-null strains. In these studies, 

complementation of eccCa::Tn with the eccCaK485A mutant expressed with eccCb failed to 

restore secretion of EsxA, EsxB, and EspA (Fig. 6), though expression of the wild-type 

eccCa gene with eccCb restored secretion. Similarly, mutating the eccCb ATPase domains 

individually or in combination (eccCbK90A, eccCbK382A, or eccCbK90A,K382A) disrupted 

secretion of EsxA, EsxB, and EspA. Thus, each ATPase domain of eccCa and eccCb is 

required for ESX-1 mediated secretion.

Some EccCa and EccCb ATPase mutants are dominant negative on ESX-1-mediated 
secretion

We next asked whether the expression of the Walker A mutants exerted a dominant negative 

phenotype on ESX-1-mediated secretion when expressed in a wild-type background. Ectopic 

expression of each individual domain mutant (EccCaK485A, EccCbK90A, or EccCbK382A) 

blocked secretion of all of the ESX-1 substrates in a dominant negative fashion (Fig. 7). The 

inhibition of secretion was not simply due to overexpression of EccCa or EccCb, which 

could in theory dilute away required interacting proteins, as overexpression of wild-type 

copies of these proteins did not affect ESX-1-mediated secretion. The dominant negative 

phenotype displayed by the three single EccCa-EccCb ATPase mutants suggests that these 

mutant proteins enter into secretory complexes and render the complex nonfunctional.

In contrast, ectopic expression of the double mutant protein EccCbK90A,K382A did not have a 

significant dominant negative effect on ESX-1-mediated secretion (Fig. 7). While the level 

of secretion in this strain was slightly reduced as compared to wild-type, the level of 

secretion was significantly greater than was seen with the expression of any individual 
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EccCa or EccCb ATPase mutant. The lack of a dominant negative effect did not reflect a 

lower expression level of the EccCbK90A,K382A protein as the EccCbK90A,K382A mutant 

protein was present at roughly the same abundance as the EccCbK382A protein, which had a 

dominant negative effect on secretion. These results suggest that EccCb residues K90 and 

K382 might be required for EccCb to form stable protein complexes.

Discussion

To date ESX ATPases are the only absolutely conserved components of the ESX secretory 

apparatus that are present in both firmicute-like and mycobacterial subtypes of these 

secretion systems [10]. These ATPases are required for substrate translocation in all tested 

ESX secretion systems [17, 19-22]. However, prior to this work, it was unknown whether 

nucleotide binding and hydrolysis within the three predicted ESX ATPase domains are 

required for substrate translocation. Additionally, it was unclear whether the domain 

requirements were the same in biological systems representing the two possible protein 

architectures –linked or split ATPase domains. Through mutagenic analysis of the ESX 

ATPases from two different secretion systems we established that ATP hydrolysis in only 

one of the ATPases is required for secretion. Nucleotide binding within the second and third 

domains in the linked ATPase is dispensable for substrate translocation. In contrast, the split 

ESX ATPases of mycobacterial ESX-1 system seem to rely on the nucleotide binding for 

assembly.

Protein translocation across cellular membranes requires energy that is usually supplied by 

the proton motive force and/or nucleotide triphosphate hydrolysis by ATPases and GTPases. 

For most of the known translocation pathways there is one or more associated secretory 

ATPase that, apart from energizing the protein passage through membrane per se, is also 

involved in substrate recognition, unfolding, and assembly of the secretion machinery itself. 

For example, in the Type IV secretion systems there are three associated ATPases – VirD4, 

VirB4, and VirB11. All three ATPases are implicated in powering substrate translocation by 

ATP hydrolysis while specializing differently in substrate binding and pilus biogenesis [32]. 

Multidomain ATPases of the ESX secretion systems were earlier hypothesized to fuel 

substrate translocation based on their absolute necessity for secretion [17, 19]. We tested this 

hypothesis by creating Walker B mutants of the separate ATPase domains. Our results 

clearly show that ATP hydrolysis is indeed required for ESX secretion. Moreover, it seems 

that catalytic activity of only the most N-terminal ATPase domain is essential for the 

secretory function.

Despite their common hexameric form, but consistent with their diversity of functions, there 

is striking variation in the patterns of ATP utilization and oligomerization within P-loop 

ATPases. The composition of a hexameric machine can either be homogenous, formed by 

six identical protein subunits, or heterogenous, where nonidentical proteins come together to 

form a hexamer. In homohexameric ATPases, nucleotide binding results in conformational 

changes in subunits that in turn determine the hydrolysis mechanism (for example, see [33, 

34]). Several mechanisms have been proposed for the homohexameric ATPases in which all 

subunits become specialized due to allosteric effects and asymmetry (i.e. [35-38]). 

Heterohexameric ATPases represent a more extreme form of subunit specialization, where 
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active sites within a complex can be differentially required for enzyme function, serving 

active, regulatory, or structural roles. Two striking examples of heterohexameric ATPases 

are the heavy chain of the dynein motor protein and the minichromosome maintenance 

(MCM) complex. Dyneins are large microtubule-walking motors that contain six AAA+ 

ATPase domains concatenated within a single polypeptide. Of these six domains, four 

contain intact active sites that are able to bind and hydrolyze ATP while the other two 

domains have lost the conserved Walker A motif and are believed to play structural roles 

[39, 40]. These six ATPase domains with distinct functions come together to form an 

asymmetric ring-shaped oligomer [39, 41]. The MCM complex is a replicative helicase 

made up of six different proteins, Mcm2 through Mcm7 [42]. These six proteins, each 

containing a Walker A ATP binding motif, oligomerize to form a hexameric ring-shaped 

complex [43]. The six individual subunits can be divided into two functional subgroups 

where three subunits are responsible for ATP hydrolysis, while three subunits serve a 

regulatory function [44]. The unique linked protein domain structure of ESX ATPases and 

the demonstrated differences in functional requirement for each domain is most reminiscent 

of such heterohexameric ATPases. Based on our results, ESX ATPases represent a new 

striking case of domain specialization within the heteromultimeric ATPases in which one 

third of the ATPase fold is hydrolyzing ATP.

Whereas the enzymatic activity of the second two domains of the YukBA ATPase is not 

required for substrate translocation, we hypothesize that they may interact with the substrate 

as was shown for the corresponding mycobacterial domains [17, 23, 45]. It is also possible 

that these domains play a structural role in the assembly of the secretion apparatus.

Covalently linked multidomain ATPases are also known to form different assemblies. As 

described above, the dynein hexamer exists as a single layered asymmetric ring. In contrast, 

the two covalently linked ATPase domains of p97, NSF, and ClpB oligomerize into a two-

tiered structure of stacked hexameric rings [46-50]. In such two-layered barrels one of the 

homohexamers is responsible for the ATP hydrolysis while the second homohexamer is only 

capable of nucleotide binding [51-53]. By expressing mutant versions of the ESX ATPases 

in the presence of the wild-type protein we observed that the mutant forms of the ATPases 

interfere with the functionality of the wild-type ATPases (Fig. 3a-b, 4b). Such interference 

as well as the dominant negative phenotypes of some substitutions is indicative of protein 

oligomerization. Moreover, these data are consistent with the expectation that FtsK-like 

ATPases tend to hexamerize to perform their functions and therefore it is likely that the 

YukBA ATPase oligomerizes. Mycobacterial EccCa and EccCb ATPases have previously 

been shown to interact [23] Interestingly, there are two possible ways to assemble the three 

ATPase domains into hexameric ring structures. One assembly implies formation of a dimer 

of trimers resulting in a single-layered ring, while the other assembly results in a three-

layered barrel consisting of three homohexamers stacked on top of each other.

There is no known example of the assemblies of either sort. Data from S. aureus ESX 

ATPase EssC may favor the three-layered assembly as a functional unit of the ESX 

ATPases. EssC contains three linked ATPase domains and deletion of the second and third 

domains revealed that the last two domains are dispensable for a substrate secretion 

suggesting that the first ATPase domain might be capable of independent assembly [19]. 
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Future studies will be necessary to determine which ESX ATPase oligomer represents a 

functional unit. The structure of the complex is of particular interest because the ESX 

systems are shown to translocate dimeric substrates and accommodate substrates of different 

sizes [24, 54, 55].

To date only one substrate has been identified for the B. subtilis yuk system, YukE [22], 

while the ESX-1 system has multiple protein substrates. For the mycobacterial ESX-1 

ATPases it was shown that the EsxB substrate bound only to EccCb but not to EccCa under 

tested conditions [23] but the effect of the nucleotide interaction on secretion was not tested. 

Our analyses of the mycobacterial ESX-1 ATPases show that the EccCa and EccCb have the 

same specialized requirements for secretion of all three tested substrates – EsxA, EsxB, and 

EspA (Fig. 6-7). Consistent with the recent identification of widespread recognition motifs 

across ESX substrates [24, 54, 56], we conclude that the energy and ligand binding 

requirements are generalizable for different substrates of the mycobacterial ESX secretion 

system.

In our comparison of the linked and split ESX ATPases we found a striking difference in the 

nucleotide binding requirements for secretion. While the nucleotide interaction in the second 

and third domains of the linked YukBA ATPase is not required for substrate secretion, 

nucleotide binding to both of the EccCb ATPase domains is essential for secretory function. 

It is well documented that nucleotide interactions are required for the assembly of many 

multimeric ATPase motors. Therefore, we hypothesize that EccCa and EccCb assembly may 

also be regulated by the nucleotide interaction. Such a hypothesis may explain the result that 

the double Walker A mutant of EccCb does not exhibit a negative dominant phenotype 

while the single Walker A mutants do disrupt the function of the wild-type protein (Fig. 7). 

It is also interesting to consider that in the five ESX loci present in M. tuberculosis only two 

have split FtsK-like ATPases, the ESX-1 ATPases considered here, and the ESX-5 ATPases. 

Bioinformatics analyses of the mycobacterial genomes indicate that the ESX-4 locus is 

likely ancestral and it contains a linked EccC4 ATPase [16]. Thus it is tempting to propose 

that the splitting of the multidomain ATPases might have created an additional regulated 

assembly step that allows mycobacterial species to tune specificity and regulation of 

secreting the multitude of ESX-dependent substrates.

Materials and Methods

Strain construction

All M. tuberculosis strains were derived from the wild-type strain H37Rv. All B. subtilis 

strains were derived from the prototrophic strain PY79 [57]. General methods for molecular 

cloning and strain construction of B. subtilis strains were performed according to published 

protocols [58]. Chromosomal DNA isolated from M. tuberculosis H37Rv or B. subtilis 

PY79 was used as a template for all PCR amplification. Introduction of DNA into B. subtilis 

PY79 derivatives was conducted by transformation [59]. To generate M. tuberculosis 

complementing constructs, the genomic region encoding eccCa, eccCb, or eccCa-eccCb in 

tandem (including the native intergenic region), was amplified from H37Rv genomic DNA. 

Forward primers added a ribosomal binding site (GAAGGAGATATACAT) upstream of 

each start codon, and the reverse oligo of eccCb added a C-terminal Flag-tag (protein 

Ramsdell et al. Page 9

J Mol Biol. Author manuscript; available in PMC 2016 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequence: DYKDDDDK). A second round of PCR added att sites for Gateway 

recombination of the product and the PCR products were recombined into a Gateway donor 

vector (pDONR, Invitrogen, Carlsbad, CA) and transferred to an episomal expression vector 

(pTETSG), which allows for regulated gene expression under the control of a tetracycline 

inducible mycobacterial promoter [60]. The resulting pTETSG constructs or an empty 

vector were transformed into wild-type H37Rv, eccCa::Tn, and eccCb::Tn strains. These 

strains were maintained under selection with 50 μg/ml Hygromycin (Roche, Mannheim, 

Germany) to prevent plasmid loss. Site directed mutagenesis of eccCa and eccCb expression 

vectors was performed to construct each Walker A mutant. The bacterial strains and 

plasmids used in this study are listed in Tables 1-4. All constructs were confirmed by 

sequencing.

Media and growth conditions

For general propagation, M. tuberculosis strains were maintained at 37°C in Middlebrook 

7H9 broth medium supplemented with 10% oleic acid-albumin-dextrose-catalase (OADC, 

Difco), 0.2% glycerol, and 0.05% Tween 80 or Middlebrook 7H10 agar containing 10% 

OADC, 0.5% glycerol, and 0.05% Tween 80. When appropriate, 50 μg mL−1 hygromycin 

was included in the growth medium. Where indicated in methods below, strains were 

cultured in Sauton’s broth medium supplemented with 0.05% Tween 80 instead of 7H9 

medium because the large quantity of albumin in 7H9 medium confounded analysis of 

secreted bacterial proteins.

B. subtilis strains were maintained at 37°C in lysogeny broth (LB) medium (10 g L−1 

tryptone, 5 g L−1 yeast extract, 5 g L−1 NaCl) or on LB plates containing 1.5% Bacto agar. 

When appropriate, antibiotics were included in the growth medium as follows: 100 μg mL−1 

spectinomycin, 5 μg mL−1 chloramphenicol, 5 μg mL−1 kanamycin, and 1 μg mL−1 

erythromycin plus 25 μg mL−1 lincomycin (mls).

Preparation of cell lysates and culture filtrates

For analysis of protein expression and secretion by M. tuberculosis, bacterial cultures grown 

to mid-log phase were normalized to an OD600 of 0.3 in fresh 7H9 medium containing 100 

ng mL−1 anhydrotetracycline (AT, Spectrum Chemicals), when appropriate, to induce 

protein expression. Cultures were grown overnight at 37°C to allow 24 hours for the 

induction of gene expression of the complementing construct prior to beginning culture 

supernatant collections. After 24 hours, cultures were pelleted, washed, resuspended in 

Sauton’s medium supplemented with 0.05% Tween 80 and AT and grown for 48 hours at 

37°C. Cell pellets were collected by centrifugation, resuspended in protein extraction buffer 

(50 mM Trism·HCL pH 7.5, 5 mM EDTA, protease inhibitor cocktail (Complete Mini, 

EDTA-free tablets, Roche)) and disrupted by bead beating. SDS sample buffer (Novex 2x 

Tricine SDS sample buffer, Invitrogen) was added and samples were heated at 95°C for 20 

minutes before removal from the biosafety level 3 facility. Protease inhibitor cocktail was 

added to the culture supernatants, which were then sterilized by double filtration through 0.2 

μM filters. The culture supernatants were concentrated by precipitation with 10% 

trichloroacetic acid (TCA), resuspended in SDS sample buffer and heated to 95°C for 20 

minutes.

Ramsdell et al. Page 10

J Mol Biol. Author manuscript; available in PMC 2016 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For analysis of protein expression and secretion by B. subtilis strains, mid-log bacterial 

cultures were started from a single colony, back diluted and normalized to an OD600 of 0.02 

in LB medium, and grown 2 hours at 37°C, at which time 100 μM IPTG (isopropyl-β-D-

thiogalactopyranoside) was added to induce protein expression; cultures were grown an 

additional 2 hours. Cell pellets were collected by centrifugation, resuspended in lysis buffer 

(20 mM Tris·HCl pH 7.5, 10 mM EDTA, 1 mM PMSF, 10 μg mL−1 DNase I, 100 μg mL−1 

RNaseA, 1 mg mL−1 lysozyme) and incubated at 37°C for 10 minutes. SDS sample buffer 

(Novex 2x Tricine SDS sample buffer, Invitrogen) was added and samples were heated to 

95°C for 15 minutes. Culture supernatants were filtered though a 0.2 μM filter to remove 

unlysed cells. Following the addition of a protease inhibitor cocktail (Complete Mini, 

EDTA-free tablets, Roche), the supernatants were concentrated by precipitation with 10% 

TCA, resuspended in SDS sample buffer and heated to 95°C for 15 minutes.

SDS-PAGE and immunoblot analysis

Prior to analysis, samples were reduced with 100 mM dithiothreitol (DTT) for 1 hour at 

37°C. Proteins were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 

transferred to a nitrocellulose membrane (Bio-Rad) for immunoblot analysis. Membranes 

were probed with anti-EsxA (ESAT-6, 1:2,000, ab26246, Abcam), anti-EsxB (CFP-10, 

1:1,000, ab45074, Abcam), anti-EspA (1:2,000, [61]), anti-Flag (1:5,000, F7425, Sigma), 

anti-YukE (polyclonal, 1:1,000, [22]) and anti-Myc (1:3,000, ab9106, Abcam) antibodies. 

Peroxidase-conjugated goat anti-rabbit (1:3,000, ab6721, Abcam) and goat anti-mouse 

(1:10,000, 32430, Thermo Scientific) secondary antibodies were detected by 

chemiluminescence using SuperSignal West Femto (Thermo Scientific). Antibodies to the 

cytosolic E. coli protein RNAP (1:1,000, WP023, Neoclone) or the cytosolic B. subtilis 

protein SigmaA (1:1,000,000 [62]) were used to ensure equal protein loading and as a lysis 

control for M. tuberculosis and B. subtilis immunoblots, respectively. Equal loading of 

culture supernatants was confirmed by visualizing the total protein loaded by Coomassie 

staining. Blots were imaged and densitometric quantitation of YukE, EsxA, EsxB, and EspA 

secretion was performed using a FluorChem FC2 gel documentation system (Alpha 

Innotech) and provided software.

Fractionation of B. subtilis lysates

YukBA labeled with GFP was ectopically expressed in B. subtilis upon IPTG induction. 

Whole cell lysates were prepared from cells grown in LB medium and harvested during 

mid-exponential phase. Soluble (S3) and insoluble (P3) protein fractions were separated by 

centrifugation at 3,000 × g. The S3 fraction was further separated by centrifugation at 

100,000 × g to collect the soluble (S100) and insoluble (P100) fractions. The P100 fraction 

was divided into three equal volumes and incubated with either buffer, 1M NaCl, or 10% 

Triton detergent and then spun again at 100,000 × g to collect the soluble (S100) and 

insoluble (P100) fractions. The samples were analyzed by SDS-PAGE under reducing 

conditions and Western blot with anti-GFP antibodies.
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Highlights

• Three ATPase domains in the ESX ATPases contribute differently to secretion

• ATP hydrolysis by the first ATPase domain is required for ESX secretion

• Linked and split ESX ATPases differ in their requirement for nucleotide binding

Abbreviations

ESX early secretory antigen target 6 kDa (ESAT-6) secretion
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Figure 1. ATPases of the ESX secretion systems
(a) Protein domain structure of the ESX-1-encoded ATPases EccCa-EccCb of M. 

tuberculosis and the yuk-encoded ATPase YukBA of B. subtilis. Predicted FtsK-like ATPase 

domains are indicated as boxes of different shades of grey. The positions of Walker A and B 

motifs of each ATPase domain are indicated. (b) Excerpts of the alignment of all six ATPase 

domains of the YukBA, EccCa, and EccCa ATPases showing conserved Walker motifs. The 

additional “DE” site that was tested for the second YukBA domain is marked with double 

asterisk (**) above the alignment.
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Figure 2. Walker A motif of the first ATPase domain of YukBA is required for substrate 
secretion
(a) and (b) Immunoblot analysis of cell pellet (P) and culture supernatant (S) of indicated 

strains grown in LB medium. Each yukBA Walker A motif mutant was C-terminally myc-

tagged, fused to an IPTG- inducible promoter (Phyperspank), and inserted in single copy at a 

nonessential locus in the chromosome of the ΔyukBA strain. A dash (−) indicates a strain 

lacking an integrated copy of yukBA. Strains expressing yukBA K to A (a) and K to T (b) 

Walker A motif mutants were assayed for YukE secretion. Reduced P and S samples were 

separated on an SDS-PAGE gel and analyzed by immunoblot with YukE-specific antibodies 

(antibody specificity is demonstrated by the ΔyukE strain). An α-Myc antibody was used to 

verify expression of the YukBA complementing constructs; an antibody to SigmaA was 

used as a lysis and loading control.
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Figure 3. YukBA Walker A motif mutants might interfere with the function of the wild-type 
YukBA
(a) and (b) Immunoblot analysis of cell pellet (P) and culture supernatant (S) of indicated 

strains grown in LB medium. Each yukBA ATPase mutant gene was C-terminally myc-

tagged, fused to an IPTG- inducible promoter (Phyperspank), and inserted in single copy at a 

nonessential locus in the chromosome of an otherwise wild-type strain. A dash (−) indicates 

a strain lacking an integrated copy of yukBA. Strains expressing yukBA K to A (a) and K to 

T (b) ATPase mutants were assayed for YukE secretion. Reduced P and S samples were 

separated on an SDS-PAGE gel and analyzed by immunoblot with YukE-specific antibodies 

(antibody specificity is demonstrated by the ΔyukE strain). An α-Myc antibody was used to 

verify expression of the YukBA complementing constructs, and an antibody to SigmaA was 

used as a lysis and loading control.
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Figure 4. ATP hydrolysis in the first ATPase domain is required for secretion
(a) Immunoblot analysis of cell pellet (P) and culture supernatant (S) of indicated strains 

grown in LB medium. Each yukBA ATPase mutant gene was C-terminally myc-tagged, 

fused to an IPTG- inducible promoter (Phyperspank), and inserted in single copy at a 

nonessential locus in the chromosome of an otherwise wild-type strain. A dash (-) indicates 

a strain lacking an integrated copy of yukBA. Strains expressing Walker B YukBA mutants 

were assayed for YukE secretion. Reduced P and S samples were separated on an SDS-

PAGE gel and analyzed by immunoblot with YukE-specific antibodies. An α-Myc antibody 

was used to verify expression of the YukBA complementing constructs, and an antibody to 

SigmaA was used as a lysis and loading control. (b) Same as in (a) Walker B mutants of 

YukBA were expressed in wild-type yuk operon background. These strains were used to test 

the effects of the presence of two different YukBA copies on YukE secretion.
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Figure 5. YukBA is integral membrane protein
Biochemical fractionation of YukBA-GFP was conducted to assess whether YukBA-GFP 

was a membrane-associated or integral membrane protein. YukBA-GFP has a predicted 

molecular weight of 199 kDa consistent with the species detected with GFP-specific 

antibodies. Soluble (S3) and insoluble (P3) protein fractions separated by centrifugation at 

3,000 × g; soluble (S100) and insoluble (P100) fractions that were separated from the S3 

fraction by centrifugation at 100,000 × g. The P100 fraction was further separated by 

incubation with either buffer, 1M NaCl, or 10% Triton detergent with subsequent spin at 

100,000 × g to collect the soluble (S100) and insoluble (P100) fractions. YukBA elutes from 

the membrane P100 fraction only upon membrane solubilization with Triton that is 

indicative of an integral membrane protein.
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Figure 6. Each ATPase domain of the split EccCa-EccCb ATPase is required for secretion
Immunolot analysis of cell pellet (P) and culture supernatant (S) of the indicated strains 

grown in Sauton’s medium. Each eccCa or eccCb Walker A motif mutant construct was 

episomally expressed in the corresponding eccCa::Tn or eccCb::Tn strain. A dash (-) 

indicates expression of an empty vector control. In each complementing construct, eccCb 

was C-terminally flag-tagged. Samples were separated by SDS-PAGE under reducing 

conditions and analyzed for ESX-1 secretion using antibodies specific to the ESX-1 

substrates EsxA, EsxB, and EspA. An ESX-1 deletion mutant, ΔRD1 [63], was used as a 

negative control; an antibody to E. coli RNAP was used as a lysis and loading control. Data 

are representative of at least three independent experiments.
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Figure 7. Some mutations in the ATPase domains of EccCa-EccCb exhibit a dominant negative 
effect on secretion
Immunoblot analysis of cell pellet (P) and culture supernatant (S) of the indicated strains 

grown in Sauton’s medium. Each eccCa or eccCb Walker A motif mutant construct was 

episomally expressed in wild-type H37Rv. A dash (−) indicates expression of an empty 

vector control. In each complementing construct, eccCb was C-terminally flag-tagged. 

Samples were separated by SDS-PAGE under reducing conditions and analyzed for ESX-1 

secretion using antibodies specific to the ESX-1 substrates EsxA, EsxB, and EspA. An 

ESX-1 deletion mutant, ΔRD1 [63], was used as a negative control; an antibody to E. coli 

RNAP was used as a lysis and loading control. Data are representative of at least three 

independent experiments.
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Table 1

B. subtilis strains used in this study

Strain Genotype Source,
Reference

PY79 Prototrophic domesticated laboratory strain [56]

bLH014 yukE::cat This work

bLH015 yukE::erm-Pyuk [22]

bLH110 yukBA::erm-Pyuk [22]

bLH266 amyE::Phyperspank-yukBA-myc (spec) This work

bLH267 amyE::Phyperspank-yukBAK688A-myc (spec) This work

bLH268 amyE::Phyperspank-yukBAK1016A-myc (spec) This work

bLH269 amyE::Phyperspank-yukBAK1299A-myc (spec) This work

bLH318 amyE::Phyperspank-yukBAK688A,K1016A-myc (spec) This work

bLH319 amyE::Phyperspank-yukBAK688A,K1299A-myc (spec) This work

bLH320 amyE::Phyperspank-yukBAK1016A,K1299A-myc (spec) This work

bLH321 amyE::Phyperspank-yukBAK688A,K1016A,K1299A-myc (spec) This work

bLH397 amyE::Phyperspank-yukBAK688T-myc (spec) This work

bLH398 amyE::Phyperspank-yukBAK1016Tmyc (spec) This work

bLH399 amyE::Phyperspank-yukBAK1299T-myc (spec) This work

bLH400 amyE::Phyperspank-yukBAK688T,K1016T-myc (spec) This work

bLH401 amyE::Phyperspank-yukBAK1016T,K1299T-myc (spec) This work

bLH402 amyE::Phyperspank-yukBAK688T,K1299T-myc (spec) This work

bLH403 amyE::Phyperspank-yukBAK688T,K1016T,K1299T-myc (spec) This work

bLH404 yukBA::erm-Pyuk; amyE::Phyperspank-yukBA-myc (spec) [22]

bLH405 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK688A-myc (spec) This work

bLH406 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK1016A-myc (spec) This work

bLH407 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK1299A-myc (spec) This work

bLH408 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK688A,K1016A-myc (spec) This work

bLH409 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK1016A,K1299A-myc (spec) This work

bLH410 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK688A,K1299A-myc (spec) This work

bLH411 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK688A,K1016A,K1299A-myc (spec) This work

bLH412 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK688T-myc (spec) This work

bLH413 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK1016Tmyc (spec) This work

bLH414 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK1299Tmyc (spec) This work

bLH415 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK688T,K1016T-myc (spec) This work

bLH416 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK1016T,K1299T-myc (spec) This work

bLH417 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK688T,K1299T-myc (spec) This work

bLH418 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAK688T,K1016T,K1299T-myc (spec) This work
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Strain Genotype Source,
Reference

bTS254 amyE::Phyperspank-yukBAD794A-myc (spec) This work

bTS255 amyE::Phyperspank-yukBAD1115A-myc (spec) This work

bTS256 amyE::Phyperspank-yukBAD1121A-myc (spec) This work

bTS257 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAD794A-myc (spec) This work

bTS258 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAD1115A-myc (spec) This work

bTS259 yukBA::erm-Pyuk; amyE::Phyperspank-yukBAD1121A-myc (spec) This work

bLH001 Ω yukBA-gfp (spec) This work
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Table 2

M. tuberculosis strains used in this study

Strain Genotype Source, Reference

H37Rv Wild-type laboratory strain ATCC25618

ΔRD1 H37Rv::ΔRD1 [61]

eccCa::Tn H37Rv::Tn3870 [18]

eccCb::Tn H37Rv::Tn3871 [18]

H37RV-1 pTETSG (empty) This work

eccCa::Tn-1 eccCa::Tn; pTETSG (empty) This work

eccCb::Tn-1 eccCb::Tn; pTETSG (empty) This work

H37Rv-57 pTETSG-eccCbK90A-flag This work

eccCb::Tn-57 eccCb::Tn; pTETSG-eccCbK90A-flag This work

H37Rv-58 pTETSG-eccCbK382A-flag This work

eccCb::Tn-58 eccCb::Tn; pTETSG-eccCbK382A-flag This work

H37Rv-59 pTETSG-eccCbK90A, K382A-flag This work

eccCb::Tn-59 eccCb::Tn; pTETSG- eccCbK90A, K382A-flag This work

H37RV-61 pTETSG-eccCb-flag This work

eccCb::Tn-61 eccCb::Tn; pTETSG-eccCb-flag This work

H37Rv-105 pTETSG-eccCa-eccCb-flag This work

eccCa::Tn-105 eccCa::Tn; pTETSG-eccCa-eccCb-flag This work

H37Rv-106 pTETSG-eccCaK485A-eccCb-flag This work

eccCa::Tn-106 eccCa::Tn; pTETSG-eccCaK485A-eccCb-flag This work
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Table 3

B. subtilis plasmids used in this study

Plasmid Description Source

pLH016 yukEr::cat This work

pLH018 yukE::erm-Pyuk This work

pLH026 yukBA::erm-Pyuk This work

pLH042 amyE::Phyperspank-yukBA-myc (spec) This work

pLH054 His6-SUMO-YukE This work

pTLR235 amyE::Phyperspank-yukBAK688A-myc (spec) This work

pTLR236 amyE::Phyperspank-yukBAK1016A-myc (spec) This work

pTLR237 amyE::Phyperspank-yukBAK1299A-myc (spec) This work

pTLR245 amyE::Phyperspank-yukBAK688A,K1016A-myc (spec) This work

pTLR246 amyE::Phyperspank-yukBAK1016A,K1299A-myc (spec) This work

pTLR247 amyE::Phyperspank-yukBAK688A,K1299A-myc (spec) This work

pTLR248 amyE::Phyperspank-yukBAK688A,K1016A,K1299A-myc (spec) This work

pTLR252 amyE::Phyperspank-yukBAK688T-myc (spec) This work

pTLR253 amyE::Phyperspank-yukBAK1016T-myc (spec) This work

pTLR254 amyE::Phyperspank-yukBAK1299T-myc (spec) This work

pTLR255 amyE::Phyperspank-yukBAK688T,K1016T-myc (spec) This work

pTLR256 amyE::Phyperspank-yukBAK1016T,K1299T-myc (spec) This work

pTLR257 amyE::Phyperspank-yukBAK688T,K1299T-myc (spec) This work

pTLR258 amyE::Phyperspank-yukBAK688T,K1016T,K1299T-myc (spec) This work

pTS237 amyE::Phyperspank-yukBAD794A-myc (spec) This work

pTS238 amyE::Phyperspank-yukBAD115A-myc (spec) This work

pTS239 amyE::Phyperspank-yukBAD1121A-myc (spec) This work

pLH001 Ω yukBA-gfp (spec) This work
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Table 4

M. tuberculosis plasmids used in this study

Plasmid Description Source,
Reference

pTETSG Episomal expression vector constructed to express genes under the
control of a tetracycline inducible mycobacterial promoter

[62]

pTLR089 pTETSG-eccCbK90A-flag This work

pTLR090 pTETSG-eccCbK382A-flag This work

pTLR091 pTETSG-eccCbK90A,K382A-flag This work

pTLR171 pTETSG-eccCa-flag This work

pTLR172 pTETSG-eccCb-flag This work

pTLR184 pTETSG-eccCa-eccCb-flag This work

pTLR250 pTETSG-eccCaK485A-eccCb-flag This work
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