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Abstract

Objectives—As a case study of the impact of universal versus targeted interventions on 

population health and health inequalities, we used simulations to examine (1) whether universal or 

targeted manipulations of collective efficacy better reduced population-level rates and racial/

ethnic inequalities in violent victimization; and (2) whether experiments reduced disparities 

without addressing fundamental causes.

Methods—We applied agent-based simulation techniques to the specific example of an 

intervention on neighborhood collective efficacy to reduce population-level rates and racial/ethnic 

inequalities in violent victimization. The agent population consisted of 4000 individuals aged 18 

years and older with sociodemographic characteristics assigned to match distributions of the adult 

population in New York City according to the 2000 US Census.

Results—Universal experiments reduced rates of victimization more than targeted experiments. 

However, neither experiment reduced inequalities. To reduce inequalities, it was necessary to 

eliminate racial/ethnic residential segregation.
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Conclusions—These simulations support the use of universal intervention but suggest that it is 

not possible to address inequalities in health without first addressing fundamental causes.

The work of Geoffrey Rose transformed our conception of public health prevention efforts. 

Rose introduced the notion of a universal strategy of prevention, which targets a whole 

population regardless of variation in individuals’ risk status.1,2 This strategy is grounded on 

2 important assumptions: (1) the distribution of risk in a population is shaped by contextual 

conditions that differ between populations, and (2) most cases arise from the large 

population with only an average level of risk, rather than from the small population at high 

risk.1,2 Although each individual at average risk has a low probability of disease incidence, 

so many are exposed that the number of cases arising from this group is large. Thus, 

intervening on the entire population improves the risk distribution for all, resulting in the 

most effective improvement in population health. Rose differentiated such a universal 

strategy from the targeted strategy, which dominates much of biomedicine to this day. The 

targeted strategy identifies and intervenes on individuals with high disease risk. This 

strategy is appropriate to the individuals treated, as it is tailored to their specific risk factors. 

However, because it does not deal with the root of the problem by shifting the population 

risk distribution, a targeted strategy must continue indefinitely treating those at highest risk.3

Rose's strategy of universal intervention has been criticized for not addressing the structural 

factors that lead to different distributions of risk between social groups, such that those with 

the lowest initial level of risk are the first to derive benefits from universal interventions, 

potentially exacerbating health inequalities.4–6 This has been seen in interventions in areas 

such as smoking prevention, smoking cessation, cervical cancer screening, and neonatal 

intensive care whereby a universal intervention was associated with attendant widening of 

intergroup differences in health.7–9 Such a view is consistent with fundamental cause theory, 

which argues that higher social status, as indexed by knowledge, money, power, social 

connectedness, and prestige is always associated with better access to resources that 

optimize health, even though health and its predictors may change with time.10–12 Hence, an 

intervention may shift the mean distribution of disease, but if the intervention fails to 

address the underlying economic and political forces that lead to a different risk exposure 

across social groups, those with more resources (and thus lower initial risk) will benefit 

more from the intervention so that inequalities may increase with the intervention.

Questions about the effect of universal versus targeted prevention strategies on population 

health and health inequalities, and the role that fundamental causes play in population 

health, are critical to the articulation of effective public health planning strategies. Although 

an energetic debate exists about the potential merits and shortcomings of targeted versus 

universal interventions,4,13–15 we are not aware of any empirical tests that examine the 

impact of universal versus targeted public health interventions on both population-level rates 

of disease and inequalities in disease. We aimed to fill this gap by quantifying the impact of 

universal and targeted interventions on both population health and health inequalities and 

testing whether it was possible for interventions to effectively address population health and 

health inequalities without addressing fundamental causes of health. Empirical testing of 

these questions would require large-scale population-based experiments that manipulate 

social exposures. Such experiments are prohibitively expensive or logistically impossible to 
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implement. We instead addressed these questions through the use of agent-based simulation 

modeling that allowed us to simulate large populations in silico.

We used a case study to test the impact of universal versus targeted interventions on 

population health and health inequalities: manipulating collective efficacy to reduce both 

population-level rates and racial/ethnic inequalities in violent victimization. The concept of 

collective efficacy arises from social disorganization theory and involves the ability of 

community residents to collectively harness resources and effectively respond to negative 

situations for the benefit of the community (informal social control), combined with the 

degree to which community residents mutually trust and respect each other (social 

cohesion).16 Collective efficacy has been consistently associated with reduced neighborhood 

victimization across observational studies in the United States and other countries.16–21 

Interventions are currently under way in cities across the United States and other countries 

to mobilize collective efficacy as a way to improve public health.22–26

We used collective efficacy and victimization for our case study because the focus of 

intervention (i.e., collective efficacy) and the health indicator (i.e., violent victimization) are 

socially distributed, and the role of fundamental causes of health is particularly relevant in 

this case. Collective efficacy arises in more stable, less economically disadvantaged 

neighborhoods.16,17,27,28 Victimization, in turn, is racially and economically patterned: in 

1980–2008, Blacks were disproportionately represented as homicide victims and offenders. 

They were 6 times more likely to die from homicide than were Whites, and the offending 

rate was 8 times higher among Blacks than among Whites.29 An important determinant of 

the elevated rates of homicide among Blacks is the disproportionate segregation of Blacks 

into economically disadvantaged neighborhoods,30–36 where there are lower levels of 

protective social processes such as collective efficacy as well as exposure to multiple other 

risk factors for violent victimization.37,38 Hence, racial residential segregation is a 

fundamental cause of violent victimization as well as multiple other correlated health-related 

problems.37

We used in silico experiments that capitalize on innovative complex systems approaches to 

answer 2 major questions: (1) what is the comparative impact of universal versus targeted 

experimental manipulations of collective efficacy on population-level rates of violent 

victimization and on Black–White inequalities in victimization? and (2) when the level of 

racial residential segregation is altered, does the impact of collective efficacy on population-

level rates of violent victimization and of Black–White inequalities in victimization change?

We used agent-based modeling (ABM) to simulate a series of in silico neighborhood 

experiments. Because ABMs consist of simulations that follow prescribed rules about the 

characteristics of agents, their networks, contexts, and behaviors, investigators can simulate 

scenarios in which only 1 aspect of the initial conditions is changed, thus allowing us to 

conduct counterfactual neighborhood policy “experiments” without issues of resource costs 

or ethical concerns. These in silico experiments can serve as a first step to build the evidence 

base on tractable interventions that can then be tested in community-randomized trials.
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METHODS

We created an ABM simulating the dynamic processes that govern exposure to violence, 

including contact between individuals and the influence of the neighborhood environment 

(for a diagram summarizing the processes, see Appendix 1, available as a supplement to this 

article at http://www.ajph.org). We implemented and compared 2 neighborhood 

experimental manipulations of collective efficacy, 1 universal and 1 targeted, under the 

contexts of complete and no residential segregation. Our intention was not to emulate a 

realistic context of residential segregation but to use extremes to illustrate the impact that 

residential segregation can have on interventions. We developed the ABM using Recursive 

Porous Agent Simulation Toolkit (Repast) software version 3.1 (Argonne National 

Laboratory, Argonne, IL), which uses Java programming language version 7 (Oracle, 

Redwood Shores, CA), and implemented it in Eclipse version 4.2 (Eclipse Foundation, 

Ottawa, Canada). The model followed the overview, design concepts details protocol39,40; 

for more details about model parameters, including a flowchart and pseudo-code 

demonstrating the processes in the model, see Appendices 4 and 5 (available as a 

supplement to this article at http://www.ajph.org).

The purpose of the ABM was to compare the effects that universal and targeted 

experimental manipulations of collective efficacy have on population rates of violent 

victimization as well as Black–White inequalities in victimization, under alternate scenarios 

of racial and economic residential segregation. The broader objective of the model, then, 

was to determine whether a universal or targeted intervention approach could reduce health 

inequalities without addressing fundamental causes of those inequalities (e.g., residential 

segregation).

Entities, State Variables, and Scales

The model consisted of adult “agents” residing in a physical environment divided into 

neighborhoods. The static and time-varying variables characterized individual agents, in 

addition to their location on the grid representing the physical environment and the identity 

number of the neighborhood where they live. Individual behaviors included violent 

perpetration, violent victimization, other traumatic event exposure, and development of 

posttraumatic stress disorder (PTSD). We developed equations predicting the probability of 

each agent behavior using data from 2 longitudinal studies: the National Epidemiologic 

Survey of Alcohol and Related Conditions41 and the World Trade Center study.42

The model physical environment consisted of a square 200 × 200 grid of cells divided into 

16 neighborhoods. Each neighborhood was characterized by its location on the grid and list 

of resident agents. In addition, we assigned initial values of neighborhood collective efficacy 

at baseline in response to the neighborhood's income and violence levels, using an equation 

calculated from the New York Social Environment Study.43,44 (For information on the 3 

studies we used to calibrate the model and how we measured each agent and neighborhood 

characteristic and which data source we used to calibrate each characteristic, see Appendices 

2 and 3, available as a supplement to this article at http://www.ajph.org.)
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Each time step of the model represented 1 year. We ran simulations for 40 years, with the 

first 10 years discarded as a “burn-in period,” during which the agent population 

accumulated a history of violence and other traumatic experiences but other agent 

characteristics (e.g., age, income) remained unchanged.

Process Overview and Scheduling

The model proceeded in discrete annual time steps. Within each time step, 7 modules were 

processed in the following order (a flow-chart demonstrating processes in the model and 

pseudocode for the model are available in Appendices 4 and 5):

1. aging,

2. resolution of PTSD and income decline from the previous time step,

3. potential victimization and perpetration,

4. actual violent incidents,

5. other traumatic events and development of PTSD,

6. changes in income in response to violence and PTSD, and

7. updates to neighborhood characteristics.

Within each module, we processed agents and neighborhoods in sequential order, except for 

the occurrence of actual violent incidents, for which we randomly ordered potential 

perpetrators when seeking potential victims. This random shuffling of potential perpetrators 

ensured diversity in the pairs of perpetrators and victims who interacted in a completed 

violent event during the course of the model run.

Design Concepts

The model implemented several hallmark features of agent-based models, including 

emergence, adaptation, sensing, interaction, stochasticity, and collectives. Specifically, 

emergence was present, as population levels of violence and PTSD emerged from the 

behaviors and experiences of the individual agents, which in turn were influenced by the 

characteristics of their neighborhoods and their interactions with other agents.

Adaptation was modeled, as traumatic event exposure (including violent perpetration, 

victimization, and other traumatic events) and PTSD, once experienced, increased an agent's 

probability of future traumatic events and PTSD during subsequent time steps, reflecting 

vulnerability to revictimization and the strong influence of prior psychological problems on 

future psychological distress.45–48

As for sensing, we assumed that individual agents knew their own characteristics (e.g., age, 

gender), which influenced their behaviors. They were also assumed to know the 

characteristics of the neighborhood in which they resided, and agents with the potential to 

perpetrate violence were able to detect the nearby presence of potential victims.

Interaction was critical to the model dynamics, in that violence occurred in the model 

through the direct interaction of a potential victim and potential perpetrator in the physical 
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space. Specifically, each potential perpetrator searched the physical space within a 20-cell 

radius; any potential victims in that area who had not already been victimized at that time 

step were then “victimized” by the perpetrating agent with a certain probability, depending 

on the level of collective efficacy in the neighborhood. Thus, a perpetrator may have had 

many victims, but each victim only had 1 perpetrator, and some potential victims remained 

unharmed if not in proximity to a potential assailant or if in a neighborhood with high 

collective efficacy, which we theorized to protect potential victims from violence through 

the intervention of potential witnesses.17 The level of victimization committed in this model 

thus best represents violent acts committed by strangers, in which few repeat perpetrators 

commit the majority of violent acts.49

We used stochasticity in assigning agent characteristics and behaviors. Specifically, we 

interpreted all agent demographic and behavioral parameters as probabilities and assigned 

characteristics and behaviors by drawing a random number between 0 and 1 and comparing 

the selected number to the agent's calculated probability. As a result, the population 

composition varied slightly across model runs but population patterns of violence 

demonstrated expected frequencies and correlates.

Collectives were present in the model in the form of agents grouped together in 

neighborhoods. We averaged the characteristics of all the agents located within the 

boundaries of each neighborhood to derive the neighborhood's average level of income and 

violent victimization.

Finally, to allow observation for model testing, we recorded the values of agent and 

neighborhood parameters for each unit at each time step. For model analysis, we recorded 

only population-level variables for each time step (e.g., percentage of agents who were 

victimized). To account for the stochastic nature of the model, we ran each model scenario 

200 times, with the median, 5th percentile, and 95th percentiles reported from across the 200 

runs.

Initialization

At initialization, the agent population consisted of 4000 individuals aged 18 years and older 

with sociodemographic characteristics assigned to match distributions of the adult 

population in New York City according to the 2000 US Census (for a table specifying the 

default values of the initialization parameters of the model, see Appendix 6, available as a 

supplement to this article at http://www.ajph.org).50 We divided the grid representing the 

physical space into 16 neighborhoods, and each cell in the grid could be occupied by only 1 

agent. Assignment of agent locations and determination of neighborhood boundaries 

depended on the objectives of the model run with respect to racial and economic residential 

segregation. We implemented 2 residential segregation scenarios in different model runs: 

complete segregation of agents by race and income and no racial or economic segregation. 

To achieve complete segregation by race and income, each of the 16 neighborhoods in the 

model corresponded to 1 of the 16 possible combinations of race/ethnicity and household 

income, with only agents assigned that particular combination of race and income residing 

in that neighborhood. For example, all White agents with an income of $75 000 or more 

lived in 1 neighborhood, whereas Black agents with an income of $75 000 or more lived in 
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another neighborhood. The size of the neighborhood was proportionate to the size of the 

race/income combination in the total population, with the width of the neighborhood on the 

grid reflecting the racial distribution and the height of the neighborhood on the grid 

reflecting the income distribution (for a snapshot of the grid, see Appendix 7, available as a 

supplement to this article at http://www.ajph.org). By contrast, for populations with no racial 

or economic segregation, we randomly assigned agents to a location on the grid, which was 

divided into 16 neighborhoods of equal size, producing neighborhoods that each had 

residents with a mix of race and income characteristics.

Other parameters set at baseline included the magnitude of the neighborhood influence on 

agent behaviors. Because of previous evidence for the influence of neighborhood 

characteristics on exposure to violence,51–54 we allowed 5% of individual agents’ 

probabilities of violent victimization and violent perpetration to be determined by their 

neighborhood characteristics. We set the radius within which potential perpetrators searched 

for victims at initialization to 20 cells. To assign baseline levels of collective efficacy to 

each neighborhood, we aggregated individual collective efficacy ratings from New York 

Social Environment Study data to the New York City neighborhood (i.e., community 

district) level.44,55 Appendix 8, available as a supplement to this article at http://

www.ajph.org, describes the equation used to predict neighborhood collective efficacy.)

Finally, we set the probability of a violent act being completed when potential victims were 

in sufficient proximity to potential perpetrators at 0.70 for high collective efficacy 

neighborhoods, reflecting estimates of a 30% reduction in violence associated with higher 

community collective efficacy.16 By contrast, all interactions between potential perpetrators 

and potential victims resulted in completed violent acts in low collective efficacy 

neighborhoods.

The environment did not change during the course of the model run, so the model did not 

use input data to represent time-varying processes.

An overview of the 7 modules implemented at each time step follows (for the specific data 

sources and equations we used to calculate behavioral probabilities, see Appendix 9, 

available as a supplement to this article at http://www.ajph.org):

1. Aging: Following the burn-in period, each agent aged by 1 year at each time step.

2. Resolution of PTSD and income decline from the previous time step: Resolution of 

PTSD followed an exponential decay function on the basis of patterns of PTSD 

symptom duration among untreated individuals,47 with sharp declines in the first 

year after the development of PTSD and more gradual declines thereafter. For 

agents who had experienced only violent victimization at the previous time step 

(and not PTSD), we returned income to its previous category. For agents who had 

experienced PTSD at the previous time step, we returned income to its previous 

category only if PTSD had resolved at the current time step.

3. Potential victimization and perpetration: At each time step, each agent had a certain 

probability of committing a violent act and of being a victim of a violent act. 

Probabilities of violent perpetration and violent victimization depended on the 
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individual's age, sex, marital status, education level, household income, prior 

history of violent perpetration, history of violent victimization, and history of 

PTSD.56–59 Although racial inequalities have been noted for both violent 

victimization and perpetration,46,60–62 we did not include race/ethnicity as a 

specific determinant of violence because race/ ethnicity itself does not cause 

violence.62 Racial inequalities in outcomes could thus emerge from the model 

through racial patterning of other risk factors for violence, including income and 

residential location.

4. Actual violent incidents: After calculating an agent's probability of violent 

perpetration and victimization, we selected 2 random numbers between 0 and 1. If 

the selected number was less than the agent's calculated probability of victimization 

or perpetration, respectively, the agent had the potential to commit or experience 

violence; whether a violent act actually occurred, however, also depended on a 

potential victim's exposure to a potential perpetrator, and vice versa. This 

circumstance captures an often overlooked but fundamental determinant of 

violence44 and uses one of the main advantages of agent-based models for studying 

violence (i.e., the ability to incorporate interactions between individuals).

5. Other traumatic events and development of PTSD: Because PTSD is a strong 

predictor and outcome of victimization, we also incorporated it as a potential agent 

outcome in the model.56–58 Agents who had experienced violent victimization or 

another traumatic event or who had perpetrated violence at each time step had the 

potential to develop PTSD at that time step.46,47,63

6. Changes in income in response to violence and PTSD: If an agent was a victim of 

violence, that agent experienced a reduction in income, represented by a drop to the 

next lowest income category. This 1-year income decline was meant to re-flect the 

short-term declines in income that may be associated with victimization (e.g., costs 

associated with physical injury or property damage resulting from violence).64,65 

Furthermore, agents who developed PTSD also experienced a drop in income to the 

next lowest category, with income returning to its previous level only when PTSD 

resolved. This reflects the potentially more long-term costs associated with the 

mental health consequences of violence, including lost wages and reduced 

productivity and the costs of mental health services.65

7. Updates to neighborhood characteristics: At each time step, we recalculated the 

average levels of income and violent victimization for each neighborhood to 

account for changes in income and experiences of violence among neighborhood 

residents. We also recalculated neighborhood collective efficacy to account for 

changes in neighborhood levels of income and violence.

To calibrate the model, we used an iterative process comparing ABM estimates to empirical 

data on the prevalence of violent victimization, perpetration, and PTSD; we adjusted 

parameters (e.g., probabilities of violence) and initial conditions (e.g., radius within which 

potential perpetrators search for victims) until ABM estimates more closely matched 

expected estimates on the basis of empirical data.66
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Simulation Experiments

We ran universal and targeted experimental manipulations of neighborhood collective 

efficacy with a range of doses (ranging from one half of an SD to a value of 5.0) and 2 

alternative durations (1 year and 30 years), producing a range of experimental effects. To 

assess the role of fundamental causes in the experiments, we repeated each experiment in a 

context of no racial residential segregation and a context of complete racial residential 

segregation. We also undertook sensitivity analyses to test the robustness of the results to the 

initial conditions of the model and to evaluate the effects of alternate interventions and of 

interventions conducted in the context of alternate segregation scenarios, thereby ensuring 

that our primary results reflected overall patterns in the simulation results.

The first series of experiments designed to reduce violent victimization were aimed at all 

neighborhoods in the model and are thus termed “universal” experiments. We first assigned 

baseline levels of neighborhood collective ef-ficacy on the basis of neighborhood income 

and violence; under the universal experiment, we increased neighborhood collective efficacy 

by a set amount for all neighborhoods, ranging from one half of an SE (0.14) to the 

maximum possible value of 5.0. We ran models with a 1-year duration of experiment, with 

neighborhood collective efficacy remaining at the experiment levels for 1 time step and then 

changing according to changes in neighborhood income and violence. We also repeated 

models with a 30-year experiment, in which experiment levels of neighborhood collective 

efficacy remained in effect throughout the entire model run.

The second series of experiments were targeted to high-violence neighborhoods only—these 

were the neighborhoods with above average levels of violent victimization at each time step. 

As in the universal experiment, we assigned baseline levels of neighborhood collective 

efficacy; then high-violence neighborhoods experienced an increase in collective efficacy by 

a set amount for either a 1-year or 30-year duration.

We conducted a series of sensitivity analyses to check the robustness of the model results to 

alternate specifications of segregation, intervention conditions, and initial conditions (see 

Appendix 11, available as a supplement to this article at http://www.ajph.org).

RESULTS

We successfully calibrated the ABM so that the estimates of violent victimization, violent 

perpetration, and PTSD the model produced were consistent with previously published 

estimates and estimates from a New York City population (for a table contrasting the 

published and model estimates, see Appendix 10, available as a supplement to this article at 

http://www.ajph.org). On average, 3.8% of the agent population experienced violent 

victimization each year, whereas 28.2% of agents were victims of violence at least once in 

the course of the model run. A smaller proportion of agents perpetrated violence each year 

(0.85%), with 14.0% committing a violent act against another agent at least once during the 

model run. Although race/ethnicity was not explicitly used in determining probabilities of 

violence and PTSD, racial inequalities emerged from the model run, as in reality, with Black 

agents exhibiting higher levels of annual and lifetime violent victimization, perpetration, and 

PTSD.
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Population-Level Rates of Violent Victimization

Figure 1 presents estimates of annual violent victimization for different levels and durations 

of universal and targeted experiments increasing neighborhood collective efficacy, in an 

agent population completely segregated by race and income as well as an agent population 

with no racial or economic segregation. Specifically, we compared violence in populations 

in which we did not implement any experiment (i.e., we assigned neighborhood collective 

efficacy at baseline and changed it in response to changes in neighborhood levels of 

violence and income) with violence in populations in which neighborhood collective 

efficacy was artificially increased by 0.5 SDs to the maximum level, either in all 

neighborhoods in the model (i.e., universal experiment) or only in the highest violence 

neighborhoods (i.e., targeted experiment).

We repeated model runs with the experiment lasting for 1 year and for 30 years (i.e., the 

duration of the model run). Both universal and targeted experiments successfully reduced 

annual violent victimization in the population in all scenarios. In 1-year experiments (Figure 

1a and c), there was a successive reduction in violent victimization for every 0.5 SD increase 

in neighborhood collective efficacy. Thirty-year experiments (Figure 1b and d) produced a 

substantial decrease in victimization, compared with the no experiment scenario, of a similar 

magnitude across levels of the collective efficacy experiment.

At all levels of collective efficacy, a universal increase of collective efficacy resulted in a 

lower prevalence of victimization than did targeted increases in collective efficacy. It was 

necessary to increase collective efficacy to the maximum value in high-violence 

neighborhoods to exert a larger effect than that exerted by a small universal increase of 

collective efficacy. We found comparable effects in a context of no segregation.

Racial/Ethnic Inequalities in Violent Victimization

Figure 2 presents race-specific estimates of annual violent victimization for different levels 

and durations of universal and targeted experiments in agent populations completely 

segregated by race and income and with no racial or economic segregation. Although both 

universal and targeted collective efficacy experiments reduced average levels of violent 

victimization among both Blacks and Whites, in populations in which race and income 

segregated agents, a consistently higher proportion of Black agents experienced 

victimization in all models (Figure 2a and b). Racial inequalities in violent victimization in 

the segregated context remained largely unchanged by the experiments. On average, we 

found a 1.4% difference between Blacks and Whites in victimization (95% confidence 

interval [CI] = 0.6, 2.4) under no intervention. When we implemented 1-year universal 

neighborhood collective efficacy experiments, the difference ranged between 1.5% (95% CI 

= 0.7%, 2.3%) and 1.6% (95% CI = 0.6%, 2.5%), whereas 1-year targeted experiments 

resulted in a difference ranging from 1.3% (95% CI = 0.5%, 2.1%) to 1.5% (95% CI = 0.6%, 

2.4%; Figure 3a).

In populations with no segregation, levels of victimization were closer for Blacks and 

Whites, and experiments had a greater impact on Blacks than in segregated populations 

(Figure 2c and d). Under no intervention, Blacks and Whites differed by 0.6% in 
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victimization (95% CI = 0.1%, 1.1%; Figure 3c and d). When we implemented 1-year 

universal neighborhood collective efficacy experiments, the difference ranged from of 0.5% 

(95% CI = 0.1%, 1.0%) to 0.6% (95% CI 0.1%, 1.1%), whereas 1-year targeted experiments 

also resulted in a difference of 0.6% (95% CI = 0.0%, 1.2%).

Figure 4 shows the percentage reduction in average annual violent victimization overall and 

among Blacks and Whites, by level of neighborhood collective efficacy increase for both 

universal and targeted experiments, compared with models in which we did not implement 

any experiment. All experiments produced a reduction in violent victimization, with 

increasing reductions associated with successive increases in neighborhood collective 

efficacy and larger reductions produced by universal versus targeted experiments. However, 

in populations segregated by race and income (Figure 4a and b), the benefits of experiments 

accrued disproportionately to White agents, who experienced substantially larger reductions 

in violent victimization than did Black agents. For example, annual violent victimization 

was reduced by 24.4% among White agents when neighborhood collective efficacy was 

increased to the maximum for all neighborhoods versus a reduction of only 14.0% for Black 

agents. However, in populations with no racial or economic segregation (Figure 4c and d), 

violent victimization was reduced similarly for both Black and White agents.

(Results of sensitivity analyses are available in Appendices 11–15, as a supplement to this 

article at http://www.ajph.org.) The pattern of findings remained the same under different 

segregation and intervention scenarios as well as under alternative assumptions about the 

influence of neighborhood conditions.

DISCUSSION

Using a simulation, we found that universal interventions that increased collective efficacy 

by a small amount for the entire population had the same or larger effect on victimization 

than did experiments that selectively increased collective efficacy by a large amount in high-

risk neighborhoods. However, neither universal nor targeted experiments reduced racial 

inequalities in victimization under situations of complete segregation. In such contexts, 

experiments benefited Whites more than Blacks, preserving racial inequalities in 

victimization. Addressing the structural drivers of risk achieved the largest impact on 

inequalities—that is, by eliminating racial residential segregation.

Our findings provide an empirical test of Rose's ideas about a population strategy of 

prevention. Consistent with his predictions, a small shift in collective efficacy across all 

neighborhoods resulted in the same or greater reduction in victimization than did a targeted 

shift in high-violence neighborhoods.1,2 This suggests that although the risk of violence 

involvement is highest among neighborhoods with high rates of violence, it is the large 

number of neighborhoods with modestly elevated rates of violence that contribute the largest 

proportion of victimization cases. Prevention strategies directed at all neighborhoods (i.e., 

universal, population-based strategies) may thus be more effective in reducing the overall 

amount of violent events in a population than are strategies aimed at the small fraction of 

historically violent neighborhoods (i.e., targeted strategies).67 Previous evaluations of the 

impact of universal versus targeted strategies on health have focused on individual-level 
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interventions3,15; we have advanced the literature on prevention policy by focusing on 

contextual interventions that are carried out at the neighborhood level.

However, although universal interventions may effectively address population-level rates of 

health, our study suggests that it may not be possible for interventions to address racial/

ethnic inequalities in health without first addressing their fundamental causes. Consistent 

with the fundamental causes of health perspective,5,10–12 the association between race/

ethnicity and victimization persisted despite experimental manipulations of neighborhood 

collective efficacy. Because of residential segregation, race/ethnicity embodies an array of 

economic resources that define health no matter what intervening social intervention is 

enacted.37 In this case, Blacks were concentrated in more economically disadvantaged 

neighborhoods, where temporary increases in collective efficacy (and thus temporary 

decreases in victimization) decayed over time because of the persistent unaddressed levels 

of neighborhood disadvantage. It was necessary to first address such unequal distribution of 

racial/ethnic groups across neighborhoods to ensure that Blacks and Whites experienced a 

comparable benefit from a collective efficacy experiment.

These results illustrate the tight link between social processes such as collective efficacy and 

neighborhood residential segregation and suggest that current collective efficacy 

interventions22–26 that attempt to increase collective efficacy while leaving patterns of 

residential segregation in place will have a limited impact on racial/ethnic inequalities in 

population health. Instead, for public health policy to both improve population health and 

reduce health inequalities, a combined approach is advisable. This involves joint investment 

in policies that encourage public health advances (e.g., universal neighborhood-level 

violence prevention interventions) and policies that weaken the link between public health 

innovations and socioeconomic resources (e.g., policies that reduce resource inequalities, 

including tax policies, regulation of lending practices, fair housing policies, or college 

admissions policies).12

We have illustrated the contributions that simulation approaches such as ABM can make to 

conducting virtual experiments. ABM allowed us to answer questions about community-

level experiments that would have been difficult to answer using real-life social 

experiments. That is, through simulations, we were able to enact a series of counterfactual 

experiments, reflecting different doses of collective efficacy, at different durations, 

administered to different targets (i.e., universal vs targeted), and assuming different patterns 

of racial and economic residential segregation. By simulating counter-factuals, we were also 

able to decouple race/ ethnicity from socioeconomic status and assess the impact that 

neighborhood dynamics and neighborhood experiments have on racial/ethnic inequalities in 

victimization. Because of systematic individual selection into neighborhoods by race/

ethnicity and socioeconomic status, that would not have been possible in observational 

studies.68,69

Limitations

Our conclusions should be considered with the following limitations. First, we did not 

consider the role of adverse experimental effects or costs on our outcomes of interest. Prior 

studies suggest that assumptions about intervention costs and potential adverse effects can 
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influence the relative effectiveness of targeted versus universal interventions.3,15 Future 

studies of neighborhood-level experiments need to incorporate data on cost and adverse 

effects into the calculation of experimental outcomes. Second, our agents reflected the 

composition of New York City neighborhoods, so generalizability beyond comparably 

multi-ethnic urban areas is limited.

Third, because of our lack of New York City–specific measures of violent perpetration and 

our consequent inability to link New York City neighborhood data with measures of 

perpetration, we used information on the relationship between neighborhood characteristics 

and the risk of victimization to estimate the relationship between neighborhood 

characteristics and the risk of perpetration. To the extent that these 2 relationships differ, this 

could have affected our findings on the neighborhood experiments. However, the close 

match between empirical data on perpetration and the perpetration prevalence estimates that 

emerged from our ABM allay this concern. Fourth, the validity of an ABM is contingent on 

the quality of data used to inform the parameterization. Extensive calibration of the model 

helped us ensure that it reflected known distributions before experiments were simulated.

Fifth, to develop an interpretable model, and because of data limitations, the model required 

a set of simplifying assumptions, including specification of restricted mechanisms through 

which neighborhood interventions could in-fluence agent behaviors, and the use of a 

simplified set of situational determinants of violence that did not include factors such as 

nature of the violent act or type of weapon. Our intention was not to present a full 

representation of the processes that create racial/ ethnic differentials in victimization but to 

explore specific interactions between key neighborhood and individual-level processes 

hypothesized in the literature and to evaluate results using different scenarios. Finally, we 

limited our experimental manipulations to a single intervention increasing collective ef-

ficacy. Combinations of interventions, including hybrid strategies that incorporate universal 

and targeted interventions, may be more effective at reducing population levels and 

inequalities in violent victimization.

Conclusions

We presented a quantitative simulation method to compare universal and targeted contextual 

interventions and to test the implications of fundamental cause theory for prevention policy. 

Our methods build on Rose's work on prevention policies and on Link and Phelan's work on 

fundamental causes of health.1,2,4 Although universal interventions may produce the largest 

effects on population health, our findings suggest that it may not be possible to address 

racial/ethnic inequalities in health without first addressing the fundamental causes of such 

inequalities. Simulations such as ours hold promise for helping public health policymakers 

evaluate potential intervention strategies from the perspective of population health and 

health inequalities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Estimates of annual violent victimization comparing universal and targeted neighborhood 

collective efficacy interventions with (a) 1-year duration segregated by race and income, (b) 

30-year duration segregated by race and income, (c) 1-year duration assigned to random 

locations, and (d) 30-year duration assigned to random locations.

Cerdá et al. Page 18

Am J Public Health. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Estimates of absolute difference in annual violent victimization between Blacks and Whites 

comparing universal and targeted neighborhood collective efficacy interventions with (a) 1-

year duration segregated by race and income, (b) 30-year duration segregated by race and 

income, (c) 1-year duration assigned to random locations, and (d) 30-year duration assigned 

to random locations.
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FIGURE 3. 
Estimates of annual violent victimization among Blacks and Whites, comparing universal 

and targeted neighborhood collective efficacy interventions with (a) 1-year duration 

segregated by race and income, (b) 30-year duration segregated by race and income, (c) 1-

year duration assigned to random locations, and (d) 30-year duration assigned to random 

locations.
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FIGURE 4. 
Estimates of percentage reduction in annual violent victimization, overall and among Blacks 

and Whites, by increase in collective efficacy, comparing universal and targeted 

neighborhood collective efficacy interventions with (a) 1-year duration segregated by race 

and income, (b) 30-year duration segregated by race and income, (c) 1-year duration 

assigned to random locations, and (d) 30-year duration assigned to random locations.
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