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Abstract

MicroRNAs (miRNAs) are an integral part of the post-transcriptional machinery of gene 

expression and have been implicated in the carcinogenic cascade. Single nucleotide 

polymorphisms (SNPs) in miRNAs and risk of breast cancer have been evaluated in populations 

of European or Asian ancestry, but not among women of African ancestry. Here we examined 145 

SNPs in 6 miRNA processing genes and in 78 miRNAs which target genes known to be important 

in breast cancer among 906 African American (AA) and 653 European American (EA) cases and 

controls enrolled in the Women’s Circle of Health Study (WCHS). Allele frequencies of most 

SNPs (87%) differed significantly by race. We found a number of SNPs in miRNAs and 

processing genes in association with breast cancer overall or stratified by estrogen receptor (ER) 

status. Several associations were significantly different by race, with none of the associations 

being significant in both races. Using a polygenic risk score to combine the effects of multiple 

SNPs, we found significant associations with the score in each subgroup analysis. For ER-positive 
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cancer, each unit increment of the risk score was associated with a 51% increased risk in AAs 

(OR=1.51, 95% CI=1.30–1.74, p=3.3*10−8) and a 73% increased risk in EAs (OR=1.73, 95% 

CI=1.45–2.06, p=1.4*10−9). These data show, for the first time, that miRNA-related genetic 

variations may underlie the etiology of breast cancer in both populations of African and European 

ancestries. Future studies are needed to validate our findings and to explore the underlying 

mechanisms.

Keywords

microRNA; SNP; breast cancer; epidemiology; estrogen receptor; polygenic risk score

Introduction

In women, breast cancer is the most common non-skin cancer diagnosed in the United 

States. In 2011, an estimated 230,480 new cases of breast cancer were diagnosed in women, 

and an estimated 39,520 women died from the disease [1]. The incidence rates of breast 

cancer were higher in European American (EA) women while the death rates were higher in 

African American (AA) women [2]. Studies have also shown that AA women tend to 

develop estrogen receptor (ER) negative tumors at an earlier age, and EA women are more 

likely to develop ER positive tumors at later ages [3–8]. The disparities in breast cancer 

incidence and survival between AA and EA populations have been attributed to several 

factors, including disease management, access to proper care, and biological influences. A 

recent study of the disparity in breast cancer mortality between AA and EA women 

concluded that differences in mortality are driven by higher hazard rates of breast cancer 

death in AA women, irrespective of ER expression [9]. In that work, the authors suggest that 

other biological factors may play a role in breast cancer disparities [9].

MicroRNAs (miRNAs) are small, noncoding RNAs that bind to the 3’ UTR of target 

mRNAs, and silence gene expression by inducing degradation of target mRNAs or 

inhibition of protein translation [10]. Because miRNAs may regulate approximately 60% of 

human genes [11], the relationship between miRNAs and human diseases has been 

extensively explored in the last decade. Many studies have demonstrated differential gene 

expression of miRNAs between normal and diseased tissue in cancer, and specific miRNAs 

have been linked to carcinogenic properties, including resistance to apoptosis, unchecked 

proliferation, angiogenesis, limited growth inhibition, and the propensity to invade and 

metastasize (reviewed in [12]). Aberrant miRNA expression patterns have been identified in 

breast cancer [13–15]. Of note, racial differences in miRNA expression have been observed 

in several studies. Son et al found that miRNA expression profiles in non-small cell lung 

cancer were different between Korean and Western populations [16]. In another study, a 

number of miRNAs were significantly differentially expressed in uterine leiomyoma 

between AA and EA women [17]. However, whether miRNA expression profiles are 

different in breast cancer tissues between AA and EA women is still unknown.

Functional genetic variations can affect gene expression or activity and thereby modify 

cancer risk. This might be particularly important for genetic variations in miRNA genes, 
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considering the fact that at least 60% of human protein-encoding genes are regulated by 

miRNAs. miRNAs can serve as either tumor suppressor genes or oncogenes. Genetic 

variations in miRNA genes can affect the levels of mature miRNAs, and consequently alter 

the mRNA expression levels of the target genes. Furthermore, SNPs in miRNA processing 

genes likely alter the production of miRNAs and SNPs in miRNA binding sites in target 

genes may change the interaction between miRNAs and target genes and subsequently their 

expression. SNPs in miRNA genes, miRNA processing genes, and binding sites in target 

genes have been tested in relation to the risk of several types of cancer, including breast 

cancer [18–21]. However, to the best of our knowledge, no previous studies have examined 

these relationships in women of African ancestry.

In this study, we employed a candidate gene approach for identifying SNPs in miRNA 

processing genes and in miRNA precursors (pre-miRNAs) that target genes known to play a 

role in breast cancer. We analyzed a total of 145 SNPs that present in 78 pre-miRNAs and 6 

miRNA processing genes for associations with breast cancer risk in a large case-control 

study of AA and EA women.

Study Population and Methods

Study population

The Women’s Circle of Health Study (WCHS) was designed specifically to study the role of 

genetic and non-genetic factors in relation to aggressive breast cancer risk in AA and EA 

women. Study design, enrollment, and collection of data and biospecimens have been 

described in detail previously [22]. Briefly, women diagnosed with incident breast cancer 

were identified through both hospital-based case ascertainment in targeted hospitals that had 

large referral patterns of AAs in four boroughs of the metropolitan New York City area, and 

using population-based case ascertainment in seven counties in New Jersey (NJ) through the 

NJ State Cancer Registry. The eligibility criteria for cases were: self-identified AA and EA 

women, 20–75 years of age at diagnosis, no previous history of cancer other than non-

melanoma skin cancer, recently diagnosed with primary, histologically confirmed breast 

cancer, and English speaking. Controls without a history of any cancer diagnosis other than 

non-melanoma skin cancer living in the same area as cases were identified through random 

digit dialing and were matched to cases by self-reported race and 5-year age categories. To 

increase enrollment of AA women, particularly those with lower socioeconomic status, 

cases and controls were also invited to participate through community recruitment efforts as 

described in details previously [23]. Following agreement to participate, in-person 

interviews were conducted to complete informed consent and to query participants on a 

number of potential risk factors, including medical history, family history of cancer, diet, 

physical activity, and other lifestyle factors. Anthropometric measures were taken, and 

biospecimens were collected. Blood and/or saliva samples were collected for later extraction 

of DNA. Permission to obtain pathology data, including ER status, as well as tumor tissue 

blocks was included in the informed consent form. This study was approved by the 

Institutional Review Boards at Roswell Park Cancer Institute (RPCI), the Cancer Institute of 

New Jersey (CINJ) – Robert Wood Johnson Medical School (RWJMS), Mount Sinai School 

of Medicine (MSSM), and the participating hospitals in NYC. At the time of genotyping 
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(April 2010), DNA and data were available from 491 AA cases and 415 AA controls. We 

selected 336 EA cases and 317 EA controls from the WCHS by frequency matching them to 

AA cases and controls by 5-year age group.

Identification of SNPs

For this study, we focused on miRNA genes that are predicted to regulate key breast cancer 

genes (BRCA1/2, p53, PTEN, CHEK2, ATM, NBS1, RAD50, BRIP1, PALB2, ER, PR and 

ERBB2). A total of 146 miRNAs fit the criteria. We searched Entrez SNP (http://

www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=snp) for SNPs in premiRNA 

regions of these selected miRNAs and in binding sites of target genes and identified 99 

SNPs with minor allele frequencies (MAFs) greater than 0.05 in either EAs or AAs. For 

miRNA processing genes, including AGO1, AGO4, DGCR8, XPO5, PACT, and TARBP2, 

we searched an extended genomic region 15kb from both 3’ and 5’ ends of each gene. 

Genotype data were downloaded from HapMap (23) and other resequencing projects 

through the Genome Variation Service at Seattle SNP (http://gvs.gs.washington.edu/GVS/), 

and multi-population tagSNPs to capture variations in both populations of European and 

African ancestry were selected using the TAGster program [24]. In total, 154 SNPs were 

selected for genotyping.

SNP genotyping

Genomic DNA extracted from blood or saliva samples was evaluated and quantified by 

Nanodrop UV-spectrometer (Thermo Fisher Scientific Inc., Wilmington, DE) and 

PicoGreen-based fluorometric assay (Molecular Probes, Invitrogen Inc., Carslbad, CA), and 

stored at −80°C until analysis. To control for potential bias due to population admixture, a 

panel of 108 ancestry informative markers (AIMs) that have been shown to be effective in 

correcting this bias in case-control studies were chosen [25]. Selected SNPs and AIMs were 

genotyped by Illumina GoldenGate genotyping assay (Illumina Inc., San Diego, CA) at the 

Genomics Facility at RPCI. Five percent duplicates and two sets of in-house trio samples 

were included for genotyping quality control purposes. No SNP violated Mendelian 

heritability. Six SNPs failed genotyping due to poor clustering or abnormal heterozygosity 

and were excluded. The average successful genotyping rate for each sample and each SNP 

was ≥99%. Three additional SNPs failed Hardy-Weinberg equilibrium and were excluded. 

As a result, a total of 145 SNPs were analyzed (Supplementary Table S1).

Statistical analysis

STRUCTURE program was used to estimate the proportion of European ancestry for each 

woman based on the genotype data of AIMs. Descriptive characteristics were analyzed by 

student t-test or chi-square test using SAS 9.3 (SAS Institute, Cary, NC). All genotype 

analyses were performed for AA and EA populations separately, using PLINK program if 

not otherwise specified. Genotypic (co-dominant) models were assumed for SNP effects. 

When genotype frequency of the rare homozygote was ≤5% in both populations, it was 

collapsed with the heterozygote (dominant model) for power considerations. In addition, 

recessive models were also explored. To test if there was a linear dose-effect of the variant 

alleles, SNPs were coded as 0, 1 and 2 according to the copy number of the variant allele 
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and tested using log-additive genetic models. A best model was selected for each SNP by 

considering both sample size and direction of associations across genotypes. Univariate 

single SNP analysis was first performed. Covariates, including age, body mass index (BMI), 

proportion of European ancestry, family history of breast cancer, and education, were then 

adjusted in multivariate logistic regression models to derive odds ratios (ORs) and 95% 

confidence intervals (CIs). Multiple comparison error was controlled by 10,000 

permutations for SNP analyses. To test whether the associations of SNPs with breast cancer 

differed between AA and EA women, modification effect by race was examined by 

including an interactive term between race and each SNP in the model based on all women 

and tested using likelihood ratio tests. In addition to overall breast cancer risk, the analyses 

were also stratified by ER status within each race following the same analytical approaches.

Polygenic risk score

In addition to single SNP analysis, we also performed multi-marker analyses by using a 

modified method of the weighted polygenic risk score as described previously [26]. In brief, 

this multi-marker risk score was calculated as a sum of the number of risk genotypes 

(dominant and recessive models) and risk alleles (additive model), depending on the final 

model chosen for each SNP, weighted by the regression coefficients from logistic 

regression. For SNPs associated with a decreased risk, the reference and comparison groups 

were flipped so that the genotypes or alleles counted were associated with an increased risk. 

For a pair of SNPs located within 500kb on the same chromosome and in high linkage 

disequilibrium (r2≥0.8), only one SNP with stronger association from the pair was selected 

to be included in the polygenic score. For easier interpretation, the final score was 

standardized by dividing the sum of regression coefficients and then multiplying the 

expected maximum of number of risk genotypes and alleles, therefore, each unit of the 

polygenic score equals to one risk genotype or allele. The score was analyzed as a 

continuous variable in the logistic regression model with adjustment for the same set of 

covariates as described above.

Results

Description of study population

Table 1 outlines the characteristics of the study population. AA women tended to have a 

higher BMI than EA women (31.4 vs 27.3 kg/m2), were less likely to use HRT (86% non-

users in AAs vs. 75% non-users in EAs), and tended to have lower frequencies of family 

history of breast cancer (13.4% vs 21.0%), when compared to EA cases. The majority of 

women had college and graduate school education, but rates of women who pursued higher 

education were lower in AAs (57.6%) vs. EAs (82.2%). As expected, family history of 

breast cancer was higher in the cases than controls for both AAs and EAs, and controls were 

more highly educated. Among EAs, HRT use was slightly higher among cases, although the 

association was not statistically significant.

Differences in allele frequencies of SNPs between AA and EA women

Chromosomal location and minor allele frequency (MAF) of the 145 SNPs included in the 

final analysis are shown in Supplementary Table S1. MAFs of 126 of the 145 SNPs (87%) 
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in the controls were significantly different between AA and EA women (p ≤0.05), 31 of 

which have the minor allele flipped between AAs and EAs.

Associations of SNPs in miRNA genes and processing genes with breast cancer risk

Top-ranked significant associations between SNPs in miRNA genes and overall breast 

cancer risk are shown in Table 2 for AAs and EAs separately. Among AA women, three 

SNPs, including rs7354931 in AGO4, rs12586258 in hsa-miR-758, and rs2018562 in hsa-

miR-513a-2 were associated with risk of breast cancer. The most significant SNP 

rs12586258 was associated with an almost 40% decreased risk in a dominant genetic model 

(OR=0.61, 95% CI=0.42–0.89, p=0.01). Among EA women, we identified seven SNPs, 

including rs2059691 in PACT, rs1527423 in hsa-miR-106b, rs1834306 in hsa-miR-100, 

rs11107973 in hsa-miR-331, rs10144193 in hsa-miR-544, rs1951032 in hsa-miR-487, 

rs5750504 in hsa-miR-659, that were significantly associated with breast cancer risk (Table 

2). The most significant SNP rs1951032 was associated with an 81% increased risk in a 

dominant genetic model (OR=1.81, 95% CI=1.26–2.61, p=0.001). However, none of the 

above associations remained significant after correction for multiple comparisons. 

Interestingly, none of the SNPs showed a significant association with breast cancer in both 

AA and EA populations. In fact, five out of the above eight SNPs showed differential 

associations between AA and EA populations with a p for interaction by race <0.05 (Table 

2).

Stratified analysis by ER status

When stratified by ER status, eight SNPs were associated with ER-positive cancer risk in 

AAs, with only one SNP, rs2018562 in hsa-miR-513a-2, being previously associated with 

overall breast cancer risk in AAs (OR=1.51, 95% CI=1.03–2.22, p=0.04) (Table 3). This 

same SNP was also associated with ER-negative cancer risk in AAs (OR=1.74, 95% 

CI=1.06–2.86, p=0.03), indicating that the association was not restricted to either subtype by 

ER status. Among EAs, nine SNPs were associated with ER-positive cancer risk (Table 3). 

These include the five SNPs previously associated with overall cancer risk in EAs 

(rs1834306 in hsa-miR-100, rs11107973 in hsa-miR-331, rs10144193 in hsa-miR-544, 

rs1951032 in hsa-miR-487, and rs5750504 in hsa-miR-659). The risk allele of the most 

significant SNP, rs5750504 in hsa-miR-659, was associated with an increased risk (per copy 

of the A allele: OR=1.45, 95% CI=1.12–1.87, p=0.005 in an additive genetic model). When 

tested for interaction by race, 3 of the 17 SNPs associated with ER-positive cancer risk in 

either AAs or EAs showed differential associations by race (p for interaction by race <0.05; 

Table 3).

For ER-negative cancer, four SNPs, which were not found in association with overall cancer 

risk, were associated specifically with ER-negative cancer risk in AAs, including the most 

significant SNP rs107822 in hsa-miR-219 (OR=1.99, 95% CI=1.24–3.19, p=0.004) (Table 

4).Three other SNPs were found in significant association with ER-negative breast cancer in 

EAs, including the most significant SNP rs2281611 in hsa-miR-495 (OR=2.29, 95% 

CI=1.19–4.39, p=0.01) (Table 4). Only 1 of the 7 SNPs, rs2281611 in hsa-miR-495I, 

associated with ER-negative cancer risk in either AAs or EAs showed differential 

associations by race (p for interaction by race <0.05; Table 4).
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Associations with polygenic risk score

A polygenic risk score was derived to examine the combined effects of significant single 

SNPs in relation to overall breast cancer risk in AA and in EA women, and stratified by ER 

status within each race category. The SNPs, designated risk allele or genotype, expected 

range of the polygenic score, mean and standard deviation of the score in cases and controls, 

and risk estimates per unit of the score are shown in Table 5. In each subgroup, breast cancer 

patients had higher polygenic risk score than controls, and per unit increment of the score 

was associated with significantly increased risk. The most significant results were found for 

ER+ cancer risk. Among AAs, per unit of the polygenic score was associated with a more 

than 50% increased risk of ER+ cancer risk (OR=1.51, 95% CI=1.30–1.74, p=3.3*10−8). 

Among EAs, per unit of the polygenic score was associated with a more than 70% increased 

risk of ER+ cancer risk (OR=1.73, 95% CI=1.45–2.06, p=1.4*10−9).

Discussion

In this study, we aimed to examine potential relationships between miRNA genetic variants 

in AA and EA women in relation to breast cancer risk. To achieve this goal, we analyzed 

145 SNPs in miRNAs and miRNA processing genes associated with breast cancer from 906 

AA women and 653 EA women enrolled in the WCHS study. There were marked 

differences in allele frequencies of SNPs in miRNAs examined in this study between 

populations of African and European ancestry. We found a number of SNPs in miRNAs and 

processing genes in association with overall breast cancer risk and stratified by ER status in 

either EA or AA women. Given the sample size, none of the associations remained 

significant after controlling for multiple comparisons. Nevertheless, using a polygenic risk 

score to combine the number of risk alleles or genotypes weighted by their effect sizes, we 

found highly significant associations between the risk score and breast cancer overall and by 

ER status. To our knowledge, this is the first study of its kind to investigate miRNA gene 

variants in breast cancer in both AA and EA women.

The associations between SNPs in miRNA genes and breast cancer risk have been 

previously studied, with rs11614913 in hsa-miR-196a2 and rs2910164 in hsa-miR-146a 

found to be significant [27,28,18,19,29], although the associations are not consistent across 

the studies [30–32]. We included both of these SNPS in our study but, unfortunately, 

rs2910164 in hsa-miR-146a was dropped out due to low genotyping quality. For rs11614913 

in hsa-miR-196a2, no association was observed in either the EA or AA population or by ER 

status. Our results are consistent with the report from Catucci et al. In their analysis of 1,894 

German and Italian breast cancer patients and 2,760 healthy women, they failed to observe a 

significant association between rs11614913 in hsa-miR-196a2 and breast cancer [32]. Lack 

of association was also observed in a recent study in an EA case-control study in Australia 

[30].

Overall, we observed 10 SNPs that were significantly associated with breast cancer in either 

EA or AA women. None of these SNPs have been previously investigated in relation to 

breast cancer. Interestingly, three of these significant SNPs, rs12586258 in hsa-miR-758, 

rs10144193 in hsa-miR-544 and rs1951032 in hsa-miR-487, are located in a shared miRNA 

cluster on chromosome 14, which may potentially be the largest tumor suppressor miRNA 
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cluster. In addition, a fourth SNP in the chromosome 14 miRNA cluster, rs2281611 in hsa-

miR-495, was associated with ER negative breast cancer in EA women in our study. This 

cluster has been shown to be down-regulated through epigenetic alteration in ovarian 

tumors, hepatocellular carcinomas, and gliomas [33–36]. Further studies should be 

conducted to identify the potential role of this miRNA cluster in breast cancer etiology. 

Although all three SNPs are located in the primary miRNA regions, not the precursor or 

mature miRNA regions, studies have shown that genetic variations in primary miRNA 

regions might affect the secondary structures of the primary transcripts of miRNAs and 

thereby alter the production of mature miRNAs. More interestingly, the effect of these three 

SNPs might not be limited to the miRNAs which they are close to. Since miRNAs tend to be 

transcribed together (e.g. miRNAs in the chromosome 14 cluster) and then spliced into 

individual miRNAs, genetic variations in primary miRNA regions have the potential to 

modify the expression of multiple mature miRNAs originating from the same primary 

transcripts.

The biogenesis of miRNAs is a complex process involving multiple proteins and RNAs 

(10). The major players include DROSHA, DGCR8, RAN, XPO5, DICER, and AGO family 

members. In this study, we evaluated tagSNPs in AGO1, AGO4, DGCR8, XPO5, PACT, and 

TARBP2 genes. We found that AGO4 gene variants were consistently associated with breast 

cancer among AA women (overall and ER positive), which have not been previously 

reported. The main function of the AGO protein family is to act cooperatively to silence 

both perfectly and partially complementary target RNAs bearing multiple small RNA-

binding sites. Because of the potential overlap in function among the family members (e.g. 

AGO1, AGO3 and AGO4), the exact role of AGO4 in miRNA function is still unclear. 

Notably, AGO4 was found to be overexpressed in colon cancers with distant metastases 

[37]. This finding may provide some insight into the aggressive behavior of breast tumors in 

AA women.

There were significant interactions between SNPs and race on breast cancer risk in our 

analyses. It is notable that no associations were observed in both AA and EA populations. 

Although the significant racial difference could be due to chance because of our moderate 

sample size, the findings may reflect the fact that the genomic structures are quite different 

between EAs and AAs. In fact, 126 of 145 genotyped SNPs showed significant MAF 

differences between EA and AA women in the control group. These differences in 

associations by race are also commonly reported in the literature. For example, among 11 

EA GWAS SNPs, Zheng et al found that only two SNPs (2q35 and FGFR2 loci) were 

associated with breast cancer in AA women [38]. Thus, our results provide an impetus to 

pursue more genetic susceptibility studies in the AA populations.

One limitation of our study is the lack of a validation population. Our sample size became 

relatively limited after stratification by race and ER status, and none of the associations 

remained significant after correcting for multiple comparisons. Although the associations of 

the polygenic risk score and breast cancer risk were highly significant in our analyses, the 

SNPs chosen to be included in the scores have not been validated in an independent 

population, which may include false positive SNPs, and the effect sizes of the SNPs may 

have been inflated given our sample size. Therefore, we cannot exclude the possibility of 
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false positive findings in our study. However, the highly significant associations with the 

polygenic risk scores may provide support to our hypothesis of a role of miRNA genetic 

variations in breast cancer etiology. AA women are more likely to be diagnosed at a younger 

age than EAs. We enrolled all eligible AA women, but randomly frequency matched eligible 

EAs by 5 year age categories. We also initially limited eligibility to women 65 years or 

younger because of low participation of older women without breast cancer to case-control 

studies. Thus, the overall study population is relatively younger than many other studies. 

The high proportion of premenopausal women in this study needs to be considered in 

relation to generalizability of our findings to populations of older age.

To the best of our knowledge, this is the first study to investigate the role of SNPs in 

miRNA genes and miRNA processing genes in the etiology of breast cancer in a large 

population with both AA and EA women. We found prevalent differences in allele 

frequencies in SNPs in miRNAs, and significant associations between risk of breast cancer 

risk and a number of SNPs in miRNA genes and in miRNA processing genes, as well as a 

polygenic risk score, in either AA or EA women. Some of the SNPs showed significant 

interactions with ancestry. Additional studies are needed to confirm the associations and 

explore the genetic basis and underlying molecular mechanisms of the associations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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