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Supplemental Methods 

 

Principles of the Multi-Reg algorithm 
 
A key challenge in identifying driver genes from DNA copy number is that amplification 

and deletions frequently involve large regions of DNA, each consisting of multiple genes.  

To pinpoint the driver genes within such genomic regions, we previously developed 

CONEXIC (1), a computational algorithm that integrates copy number and gene 

expression data, to identify driver genes and connect these to their expression 

signatures.  A key limitation to our previous approach is that CONEXIC can only identify 

the one dominant driver for each expression signature. 

However, multiple drivers can contribute to the same effect, sometimes acting in parallel. 

For example, almost all GBM patients have activated RTK signaling and disrupted 

p53/RB signaling, but each patient has a different combination of deletions, 

amplifications and mutations in some of the many genes known to influence these 

signaling pathways (2). For example, loss of function (deletion/under-expression) of 

some driver genes or gain of function (amplification/over-expression) of other driver 

genes can result in the same phenotype and expression signature.  

Multi-Reg is a significant advance compared to existing methods of network analysis, 

since it seeks multiple regulators for each phenotype. In brief, Multi-Reg begins with 

regions that are altered in copy number in a statistically significant manner (either 

amplified or deleted, Fig. 1A). It identifies all genes in each region as candidate driver 

candidate genes (Fig. 1B). Then for each candidate driver it generates its gene 

expression signatures. i.e. the list of candidate target genes associated with this driver. 

Comparing the expression signatures between drivers from the same region allows us to 

focus on significant drivers (Fig. 1C). The final step involves assigning the predicted set 

of targets for each candidate driver to a distinct expression signature subtype of GBM 
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(MES, Proliferative, Proneural). This leads to the testable hypothesis about the biological 

function that each driver gene influences (Fig. 1D).  

In this glioblastoma dataset, we started by generating a list of 747 candidate drivers by 

identifying regions significantly altered in copy number and taking all genes in each 

region as candidate drivers. 

Applying the complete algorithm, detailed below, resulted in identification of 83 drivers, 

which can explain the expression of 12,125 targets (above 90% of the 13,223 genes 

expressed in this dataset). 
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Processing Expression Data 

We used gene expression for 427 samples, measured by University of North Carolina, 

using the G4502A_07 Agilent chip. We only considered samples that passed our quality 

control and had low batch effects. 

 

Filtering expression samples by quality control 

Motivation: In order to get more accurate results we filtered our samples and 

concentrated on high quality samples. 

 

Details: We first filtered out samples in a manner very similar to that described in the 

TCGA paper (2). Briefly, our quality control filtering included the following: 

(1) Net Signal range distributions in the red and green channels. Samples with large 

differences between the net signal of red and green channel were flagged, as were 

those with a high signal in the negative control spots in either the red or green channel. 

(2) Presence of Outliers. Samples with a high percent of non-uniform features (identified 

as outliers) were flagged.  

(3) Reproducibility of SpikeIns. SpikeIns are an internal Agilent control comprising RNA 

at known concentrations added to the microarray. The linearity between known and 

measured values of the spiked in RNA is measured. If SpikeIns are reproducible, the R2 

values should be close to 1. Any sample with R2 less than 0.9 for the SpikeIns was 

flagged. 

 

Samples were grouped into batches by processing source and time. Batches with a high 

percentage of flagged samples were removed completely, while batches with low 

percentage of flagged samples had only the flagged samples removed. 
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In addition to the quality control steps described above, we also considered the effects 

each batch had on expression. We evaluated this effect on expression by the number of 

probes that had ANOVA or Bartlett tests (for mean and standard deviation respectively) 

with p-value lower than 0.0001. The 4 worst batches were removed. 

 

Results: These filtering steps resulted in 136 samples of high quality gene expression 

data. 

 

Filtering and unifying expression probes 

Motivation: Most genes on the Agilent arrays are measured by more than one probe on 

the array. We wanted to go from multiple values for each gene to one value per gene, by 

averaging the probe values. 

 

Details: After filtering batches and samples, we used the ANOVA or Bartlett tests 

described above to remove probes that still had a substantial batch effect (p-value 

smaller than 0.0001). These probes were removed from all batches, while keeping all 

other probes. We then normalized each batch by subtracting the mean expression value 

of each probe for that batch. 

We removed remaining probes if they were not differentially expressed across the 

different tumor samples (standard deviation smaller than 0.3). We averaged the 

expression values of multiple probes for the same gene if they agreed and removed all 

genes measured by inconsistent probes. 

We then normalized the expression values of each gene to mean of zero and a standard 

deviation of one across all samples. 

Results: This resulted in a final set of 13,223 genes, measured across 136 microarray 

samples. 
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Removing cis effects 

Motivation: The expression of each gene is determined both by its copy number (known 

as cis-regulatory effect) and by the regulatory effect of other genes, including drivers 

(trans-regulatory effects). To remove the effect of each gene's copy number, we isolate 

and separate the cis-regulatory effect from the trans-regulatory effect, and concentrate 

on the latter. 

 

Details: We first modeled the gene expression of each gene (gi) as a linear function of its 

own copy number (CNi), and then treated the residual error as the trans-regulatory effect. 

That is, we first modeled each gene, gi as  

gi = B0 + B1 * CNi 

where B0 and B1 are constant coefficients that give the best fit, and then calculated the 

residuals Ri as 

Ri = gi  - B0 - B1 * CNi 

 

To do this, we first calculated the DNA copy number for each gene. Of the 13,223 genes 

modeled, 12,645 genes have a known chromosomal location using the hg18 build of the 

genome, and their copy number could be calculated (See Processing Copy Number 

Data below). A defined genomic location (and therefore copy number) was not available, 

when using hg18, for 578 genes. For these 578 genes, the original expression (gi) was 

taken to represent the "residual", i.e. the trans-regulatory effect. The residuals were 

normalized to mean of zero and a standard deviation of one for each gene.  

 

Results: For all further stages, when modeling the driver-target relationship we used 

these normalized residuals as the expression of target genes, but used the original total 

expression (gi) of drivers. This was done because the effect of drivers is mediated by the 
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change in the expression of each driver, regardless of whether this change happened 

due to cis- or trans-regulation of the drivers. 
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Processing Copy Number Data  
 

In addition to expression data, we used copy number data from 431 glioblastoma 

samples collected by the TCGA Glioblastoma project (2) and measured on Agilent CGH 

arrays by Harvard Medical School. 

Copy number of a gene in a specific sample was determined using the maximum or 

minimum copy-number value (for amplification and deletion, respectively) of relevant 

markers on the microarray. In general, for each gene we considered all markers that 

overlap the gene's chromosomal location, as defined by the hg18 build of the genome. If 

the microarray contained no measurements that overlap this gene we took the copy-

number value for the single measurement on the microarrays closest to this gene's 

chromosomal location. Using the same thresholds as in (3), if the copy number of the 

gene is above 0.12, the gene is marked as amplified, if the copy number value is below -

0.12, it is marked as deleted. 

 

Identification of genes significantly aberrant in copy number 

Motivation: First, we aimed to identify genes that are significantly aberrant in copy 

number (either amplified or deleted) in multiple tumors and consider these genes as 

candidate drivers. We expected many driver genes to be contained in this candidate list.  

 

Details: We applied the JISTIC algorithm (4) and defined all genes and regions with a q-

value threshold below 0.01 as significant. 

  

Result: This resulted in 128 significantly amplified regions (containing 346 genes) and 

110 deleted regions (containing 404 genes), giving a total of 747 aberrant genes (3 

genes were identified as both amplified and deleted). 



	
   9	
  

Integrating data types and selecting candidate Drivers 

 

At this stage we have 136 samples for which both high quality gene expression and copy 

number data are available. We now combine the data from these two sources in to 

improve our ability to identify drivers. 

 

Filtering copy number aberrant genes by differential expression 

Motivation: As an initial filter, we required candidate drivers to be differentially expressed 

across the different tumor samples. This filtering step removes genes that are expressed 

at a constant level across all tumor samples. This filter removes, among others, genes 

that are not expressed at all and are therefore unlikely to be drivers.  

 

Details: We defined differentially expressed genes as genes whose expression varied 

with standard deviation greater than 0.3. 

 

Results: This step resulted in 462 candidate driver genes that reside in significantly 

amplified or deleted regions, and have variable expression. 

 

Integrating Expression and Copy number 

Motivation:  We expect that if alteration of copy number for a specific gene was a driving 

event, then the change in copy number would influence the change in gene expression 

for that gene. Therefore, we further narrowed down the candidate set, by focusing on 

genes whose expression is significantly altered by their amplification or deletion status.  

 

Details: We used a scoring method described in the GSEA algorithm (5). We applied this 

method to each gene, testing if samples where the gene is amplified or deleted have 
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higher or lower expression respectively than all other samples. Candidate genes that 

received a statistically significant GSEA score (p < 0.05) are considered overexpressed 

when amplified or underexpressed when deleted. Genes which are underexpressed 

when amplified or overexpressed when deleted were removed. 

 

Results: 249 genes in total passed this filtering step (126 amplified, 180 deleted, 57 

overlap) and were used in the following stages. 

 

 

Integrating mutated genes 

Motivation: Not all driving events are mediated through an effect on driver copy number. 

To increase our chances of identifying driver genes with no significant copy number 

alternations, we added mutated genes to the list of candidates. 

 

Details: We downloaded the list of mutations present in each sample from cbio (6). We 

found 25 genes that are mutated in at least 4 samples, and added them to the list of 

candidate drivers, except for one mutated gene that is not expressed at all in our 

samples. Thus, we added 24 genes - an additional 10% of the 249 genes selected by 

copy number. 

 

Result: This raised the total number of candidate driver genes to 267 genes (since some 

of the amplified or deleted genes overlap with the mutated genes). Genes added at this 

step included the well-known oncogene PIK3CG and the gene controlling cell cycle 

checkpoints CHEK2. PTEN was mutated in our samples, but we had already identified it 

as a deleted gene.   
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Associating Candidate Drivers to Targets 

 

Identifying possible driver-target relationships using Mutual Information (MI) 

Motivation: We assume that if target genes are affected by the driver biologically, then 

they will be associated with this driver statistically. We used Mutual Information (MI) to 

identify associations between each driver and candidate target genes. MI can identify 

linear and non-linear relationships because it does not require linearity, unlike other 

methods of association such as Pearson correlation.  

 

Details: Mutual Information (MI) is an information-theory measure of the mutual 

dependence of two random variables. That is, MI is high when the value of one variable 

is well predicted by the value of the other. We used the adaptive partitioning estimator, 

as described in the work by Lian and Wang (7) to estimate Mutual Information (MI). 

To identify genes associated to each candidate driver, MI was calculated between both 

the copy number and gene expression for every candidate driver and the expression of 

each one of the 13233 genes.  

To evaluate which values of MI are significant we use a non-parametric approach to 

generate a null distribution.  We generated 1000 random permutations of each driver 

and repeated the procedure on the permuted data.  Setting a p-value threshold of 0.05, 

we considered all driver-target combinations that had a smaller p-value as significant. 

 

Results: This step identified lists of candidate targets for each and every driver. Each 

driver has two lists - one list of targets associated with the driver's copy number, and one 

list of targets associated with the driver's expression. 
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Filtering candidate drivers by number of targets 

Motivation: We expect real drivers to have a large impact on cellular phenotype and 

therefore to be associated with a very large number of targets. Therefore, to distinguish 

between real drivers and spurious MI associations, we kept only the driver genes that 

were associated with more genes than would be expected by chance. 

 

Details: We kept only drivers where the number of targets was above five percent of the 

total number of genes expressed, which in this case means above 662 genes out of 

13,223.  

 

Results: We calculated the number of targets, as described above, for both copy number 

and gene expression of each of the candidate drivers. We kept candidate drivers only if 

both sets of targets were larger than 662. This step resulted in the identification of 213 

candidate drivers.  

 

Removing spurious correlations  

Motivation: Chromosomal locations that are amplified or deleted in cancer are usually 

big and contain many genes, where all genes in the same region have similar or 

identical copy number. But only few of the genes in a given region are likely to be drivers, 

the rest of the genes most probably are passengers, who might spuriously score well, 

due to their copy number induced correlation with the drivers. We expect the "real" driver 

or drivers to predict the expression of targets best.  

The driver or drivers whose expression explained a large enough number of candidate 

targets (above the defined minimum) was selected as the most likely driver or drivers for 

that region. 
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Details: We first defined the borders of copy number regions by identifying consecutive 

areas on the chromosome that are either significantly amplified or significantly deleted 

(received a q-value less than 0.01 using JISTIC, see above). Genes that have high 

Mutual Information between their expression and the copy number of any candidate 

driver in a specific region were identified as tentative targets. 

For each target, all possible drivers in the same region receive a score, (see below). The 

driver with the maximal score for this target is identified, and this can be counted as a 

"vote" for that driver. The number of targets that "voted" for each driver is counted, and 

drivers with the number of votes larger than a minimum (662 genes, see above) were 

picked as real drivers. 

 

Results: Limiting the driver candidates to only drivers with a minimal number of votes 

resulted in 80 possible drivers, in 69 different chromosomal regions. 

 

Adding mutated genes 

Motivation: Mutations can also affect cancer genes, either activating them or inactivating 

them, in combination with expression. We wanted to consider genes that had less than 

the minimal number of votes if they were mutated in many of the samples. 

 

Details: Genes that did not have the minimum number of votes but had mutations in 

more than 5 percent of the glioblastoma samples were added to the list of driver genes 

above. 

 

Results: This resulted in the addition of 3 genes, including EGFR, NF1 and TP53. Two 

other mutated genes (RB1 and PTEN) were already included in our list of drivers. 

Adding mutated genes increased the number of drivers to 83.  
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Combining candidate drivers and targets to generate modules 

 

While a driver gene may be informative for many target genes, these target genes do not 

necessarily share an expression pattern (see Fig. S1A). Mutual Information leads us to 

identify multiple expression patterns in the group of target genes. In order to identify 

patterns of expression that are more likely to be biologically meaningful, we grouped the 

target genes with similar behavior using Normal Gamma (see below). This resulted in 

the identification of groups of co-expressed target genes (called modules). 

Scoring all possible split points for a driver 

Motivation: There are many ways to split the target gene population in two. We wanted 

to identify good splits and focus on them. The basic question we ask, repeatedly, is this: 

given a driver and its target, does the group of target values behave as if it was chosen 

from one Normal Gaussian population, or is it better to split the target values into two 

groups, chosen from two separate Normal Gaussian populations (where the two groups 

are split by a given driver value)? 

 

Details: We ordered the samples according to the value of a given driver (Fig. S1A) and 

observed the gene expression of all candidate targets (Fig. S1B).  

We then began our search for good splits by using each and every driver value as a 

possible split point. That is, if the driver value is larger than X, we will assign the target to 

one population; if not, we will assign the target to the other population. We ignored 

possible splits that would result in a population smaller than a defined minimum (10 

samples in our Glioblastoma analysis).  

 

Results: Scoring all possible split points for a given driver (Fig. S1D) allowed us to 

identify the best possible split for each driver-target combination (Fig. S1E). Target 
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genes whose maximum score was negative were removed from further analysis, since 

they more likely to have been drawn from a single Gaussian population. 

 

Selecting split points for groups of targets 

Motivation: While we have identified split points that are optimal for each target, our goal 

was to select split points that would be good for groups of target genes, where these 

split points identify modules. 

 

Details: Combining the two matrices described above generated two vectors for every 

driver - sum of scores, and number of targets. 

The first vector (Fig. S1H, red) contains the sum of scores of all targets for each and 

every split point. This is a measure of how good is the split point is for the targets in 

aggregate - a split point that was good for one gene but bad for all other genes will 

receive a lower score. This vector was smoothed using cubic smoothing splines, whose 

derivatives were used to find local maxima. 

The second vector (Fig. S1H, blue) contains how many targets selected each split point 

as a best split point. This vector, which gives a "vote" count for split points, was 

smoothed using a moving window average, using the minimum population size (10 

samples, see above) as the window size. The number of votes for each split point was 

compared to a null distribution of votes, represented by a uniform distribution (Fig. S1H, 

green).  

Group split points that were local maxima for scores and had more gene "votes" than the 

null distribution were selected as candidate split points. Candidate split points closer to 

each other than the minimum population size (10 samples) were unified. 
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Results: We obtained a list of candidate split points for each driver, and a table showing 

which split point did each target vote for. 

 

Going from split points to modules 

Motivation: Having identified candidate split points, we wanted to use these split points 

to define modules. All target genes that voted for a candidate split point are grouped 

together in a module. In a sense a module is defined by the existence of a good split 

point for a group of targets. 

 

Details: We identified all target genes that voted for the candidate split points in every 

driver. Genes that voted for a split point within 5 samples (minimal population size 

divided by 2) of a candidate split point were considered to have voted for that split point. 

All genes that voted for a given split point were grouped as a module. Each module was 

then divided into two. All target genes whose expression has a positive correlation with 

the driver values constitute an upregulated module, while all targets with a negative 

correlation constitute a downregulated module.  

 

Results: Identifying the target genes based on split points resulted in the identification of 

several groups of co-expressed target genes, called modules, per driver. 

 

Unifying modules 

Motivation: If we end up with many small and very similar modules, it will be difficult to 

understand what each of them might mean biologically. We want to end up with the 

smallest number of different modules for each driver. In order to limit the number of 

modules, we unified, for each driver, modules whose expression is similar. 
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Details: For each pair of modules from the same driver, we calculated the Normal 

Gamma score of all the genes in each module. We compared the sum of these two 

scores to the Normal Gamma score of module containing all genes belonging to at least 

one of the original modules. If the two modules have a similar expression pattern, the 

Normal Gamma score of the combined module will be close to (or even larger than) the 

sum of scores for the two separate modules. 

We unified modules from the same driver with  

ScoreUnified > Score1 + Score2 - SplitPenalty 

 

Where we penalized close split points using the following function: 

SplitPenalty = max(Score1, Score2) / abs(split1 - split2) 

That is, the maximum score is divided by the number of driver values that separate the 

split points. In this manner, very close split points are much more heavily penalized, 

since it makes less sense to keep both of them and generate two separate but only 

slightly different modules 

 

If there were more than two split points, the algorithm merged them recursively, 

recalculating the score after merging as necessary. 

 

Results: After processing all drivers, this resulted in 83 candidate drivers and 199 

modules - most drivers had one module upregulated and one module downregulated, 

while only 25 drivers had more than one module of the same type 
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Normal Gamma Score function 

 

We use a Bayesian scoring approach that maximizes the overall joint probability of both 

the data and of the model structure. If D represent the data and S represent the structure 

of the network, then the scoring function is expressed as 

! 

logP(D,S) = logP(D | S) + logP(S), 

where the first term is the likelihood of the data for a given model (in the Bayesian 

approach we integrate over all possible model parameters) and the second term is the 

prior on the model structure. 

Following the Module Networks approach (8) we use the Normal Gamma distribution 

(also known as a one dimensional Gaussian-Wishart distribution) for our likelihood 

function, see Segal et al (9) for full details. Normal Gamma gives a higher score to data 

with lower variance, which we use to find splits that create two different contexts 

representing two distinct behaviors. The Normal Gamma score is described below: 

 

 

 

Leaf is a vector of gene expression values that appear in samples where the candidate 

driver is above or below the split point value. α,λ and β are parameters. A split is scored 

	
  



	
   19	
  

by comparing the score of the data without any splits to the score of the data split into 

two populations by the driver value. 

  

If we have split correctly, the resulting Normal distributions on both sides of the split will 

have smaller standard deviation than that of a Normal distribution including all data 

without the split. In this case, the score will be above zero, which means the data is 

more likely to have come from two Normal distributions than from one Normal 

distribution. 
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Analyzing the mouse microarrays 

 

Data processing 

We log2 transformed the microarray data and normalized the transformed data using 

Quantile Normalization. We removed probes expressed at very low levels (less than 7.5), 

saturated and non-uniform probes. We unified consistent probes measuring the same 

gene and removed inconsistent probes, which resulted in 7759 expressed genes. 

The glioblastoma signatures (10) were translated from the human to the mouse genome 

using Homologene release 66. Genes that had more than one match in either mouse or 

human were removed from further analysis. 

 

Analyzing the response of glioblastoma signatures to RHPN2 overexpression 

We normalized each treatment sample by calculating the log of the ratio of the data from 

each treatment sample and the data generated from the control sample done in parallel 

with it. We averaged all samples expressing WT RHPN2 protein to get one value per 

gene for this condition. We used Gene Set Enrichment Analysis (GSEA) (5) to test 

whether the genes associated with Glioblastoma signatures were significantly 

upregulated or downregulated. We used the standalone version of GSEA 2.07, available 

from http://www.broadinstitute.org/gsea/ and ran it with the default parameters and 

100,000 permutations. 
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Figure S1 - Illustration of the Module Generating process 

Figure S1A-C - Gene expression of all targets as identified by MI (B), sorted by the 

driver gene expression values (A). Each row represents a target, each column 

represents a sample, and each cell represents the expression value of this target-

sample combination. Red, Green and Black represent overexpression, underexpression 

and average expression, respectively. A representative split point is shown by the dotted 

yellow line (B), where the Normal Gamma scores for this split point for the first 10 genes 

are shown to the right (C).  
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Figure S1D - Normal Gamma score for each split point, same targets as shown in Fig. 

S1A. Each column represents a choice of split point defined by the driver expression, 

each row represents a target, and each cell represents the Normal Gamma score given 

to this combination of split point and target. Red and blue represent high and low scores, 

while grey represents driver values not considered as split points. 
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Figure S1E - best split point for each target. Zero indicates that this split-target 

combination was not maximal for this target, while 1 indicates that the split was the 

maximal (white and black, respectively).  
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Figure S1F-H - Identifying candidate split points. Summarizing the score matrix (F) and 

the best split point indicator (G) results in two vectors which are used for split point 

identification (H). Red represents the sum of scores and indicates the suitability of a split 

point for a group of targets in aggregate. Blue represents the number of genes voting for 

each split point, and green represents a null distribution for the votes. 

  



	
   27	
  

 

 

 

 

 

 

 

 

Figure S2. RHPN2 CNV and Expression in GBM. 

(A) and (B) RHPN2 CNV and Expression plots of GBM samples from TCGA dataset. 

(C) RHPN2 Amplification (AMP), Overexpression (OverExp) and direct correlation AMP 

and OverExp percentages of GBM samples from TCGA and glioma samples from 

Rembrandt database. 
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Figure S3. RHPN2 expression in different cell lines.  

(A) Western Blot analysis of ectopic expression of RHPN2 in C17.2 NSCs. 

(B) qRT-PCR analysis of RHPN2 expression in different glioma cell lines and 

immortalized human astrocytes (hASTRO).  

(C) Western Blot analysis of ectopic expression of RHPN2 in primary Human Astrocytes 

(HA).  

(D) Morphology of HA upon pLOC VEC and RHPN2 infection. Scale bar: 50 µm. 

(E) Western Blot analysis of ectopic expression of RHPN2 in SF188 cell line.  

(F) Evaluation of RHPN2 silencing efficiency in SNB19 cells, by qRT-PCR analysis. 

pGIPZ is control vector; shRHPN2 32, 58, 61, 65 are four different shRNA constructs 

targeting RHPN2. 
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Table S1. List of primers  

Primers	
  mesenchymal	
  genes	
  mouse	
  
 

Sequence	
  (5'-­‐3')	
  
 

mActa2_f	
  
 

GGACGTACAACTGGTATTGTGC 
 

mActa2_r	
  
 

CGGCAGTAGTCACGAAGGAAT 
 

mSerpine1_f	
  
 

CATCCCCCATCCTACGTGG 
 

mSerpine1_r	
  
 

CCCCATAGGGTGAGAAAACCA 
 

mItga7_qPCR_F1	
  
 

CTGCTGTGGAAGCTGGGATTC 
 

mItga7_qPCR_R1	
  
 

CTCCTCCTTGAACTGCTGTCG 
 

mOsmr_qPCR_f1	
  
 

CATCCCGAAGCGAAGTCTTGG 
 

mOsmr_qPCR_r1	
  
	
  

GGCTGGGACAGTCCATTCTAAA 
 

mGapdh_f	
  
	
  

TGACCACAGTCCATGCCATC 
 

mGapdh_r	
  
	
  

GACGGACACATTGGGGGTAG 
 

mCtgf_f	
  
	
  

GGGCCTCTTCTGCGATTTC 
 

mCtgf_r	
  
	
  

ATCCAGGCAAGTGCATTGGTA 
 

mActn1_f	
  
	
  

GACCATTATGATTCCCAGCAGAC 
 

mActn1_r	
  
	
  

CGGAAGTCCTCTTCGATGTTCTC 
 

m18s_f	
  
	
  

TCAAGAACGAAAGTCGGAGG 
 

m18s_r	
  
	
  

GGACATCTAAGGGCATCACA 
 

mC1rl_qPCR_f1	
  
	
  

TCGTCCTCCAAGAGCAAAATC 
 

mC1rl_qPCR_r1	
  
	
  

TAAGTGTTCCCTGTCTGGTCTG 
 

mTNC_f	
  
	
  

ACGGCTACCACAGAAGCTG 
 

mTNC_r	
  
	
  

ATGGCTGTTGTTGCTATGGCA 
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Table S2. Results of Multi-Reg. Chromosomal regions and candidate driver genes 

identified by Multi-Reg. The table includes information for chromosomal position, CNV, 

mutations, strand, gene position, GBM subclass and relative p-value. RHPN2 is 

highlighted in yellow. 

 


