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Abstract

OBJECTIVE—This study evaluated whether measures of waking or diurnal cortisol secretion, or 

self-reported psychological disturbances differed among police officers with a Period3 (PER3) 

clock gene length polymorphism.

METHODS—The cortisol awakening response was characterized via the area under the salivary 

cortisol curve with respect to the increase (AUCI) or total waking cortisol (AUCG). Diurnal 

cortisol measures included the slope of diurnal cortisol and the diurnal AUCG. Psychological 

disturbances were characterized using the Center for Epidemiologic Studies Depression Scale, 

Impact of Events Scale, and Life Events Scale.

RESULTS—Officers with a 4/5 or 5/5 genotype had higher awakening AUCG and greater diurnal 

cortisol AUCG levels compared to officers with the 4/4 genotype. Among those working more 
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afternoon or night shifts, waking AUCI and AUCG were greater among officers with a 4/5 or 5/5 

genotype compared to the 4/4 referents.

CONCLUSION—Cortisol secretion was modified among police officers with different PER3 

VNTR clock gene variants.
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INTRODUCTION

Clock genes are part of the body’s intrinsic timekeeping system. Their expression exhibits 

positive and negative transcription-translation feedback loops that help maintain tissue-

specific circadian rhythmicity (Cermakian & Boivin 2009; Yu & Weaver 2011). Clock 

genes have been described in the body’s central pacemaker, the suprachiasmatic nuclei 

(SCN) (Fu & Lee 2003; Okamura et al. 2010), and in most peripheral tissues and major 

organ systems (Hastings et al. 2007). Clock gene expression helps maintain ~24-hour 

cyclical variation in numerous physiological and cellular processes in a manner that is 

synchronized with ambient light-dark cycles, and dysregulation of clock genes can impact 

sleep-wake cycles, cardiovascular, digestive and endocrine systems, and mental state 

(Hastings et al. 2007; Kripke et al. 2009; Takeda & Maemura 2010; Landgraf et al. 2012). 

Clock genes also influence cell cycle control (e.g. cell proliferation, DNA repair, apoptosis) 

(Khapre et al. 2010), and disrupted clock gene expression may increase susceptibility to 

several chronic diseases including cancer (Huang et al. 2011).

A variable number tandem repeat (VNTR) sequence within the human Period3 (PER3) 

clock gene (rs57875989) codes for 4 or 5 copies of a 54-base pair length polymorphism. 

Phenotypic differences in various physiological or psychological measures have been 

described among those with the 4/4 or 5/5 genotype, Some investigators have reported that 

the 4/4 genotype may be associated with evening diurnal preference (Archer et al. 2003; 

Ellis et al. 2009) and greater heroin dependence (Zou et al. 2008), whereas others suggest 

that the 5/5 or combined 4/5+5/5 genotypes are associated with morning preference (Archer 

et al. 2003; Ellis et al. 2009), poorer cognitive performance after short-term (40-hr) sleep 

deprivation (Groeger et al. 2008), higher circulating concentrations of insulin-like growth 

factor-1 or interleukin-6 (Chu et al. 2008; Guess et al. 2009), earlier age of onset of bipolar 

disorder (Benedetti et al. 2008), a tendency for depressive symptoms (Guess et al. 2009), or 

increased odds of breast cancer primarily among premenopausal women (Zhu et al. 2005). 

However, associations among those with different PER3 VNTR genotypes have not been 

consistent. For example, several studies have found no association between PER3 VNTR 

genotypes and diurnal preference or breast cancer (Dai et al. 2010; Barclay et al. 2011; 

Osland et al. 2011). Individuals with the 5/5 PER3 VNTR had strong correlations between 

PER3 expression and the timing of peak cortisol or melatonin levels in blood, whereas those 

with the 4/4 genotype did not (Boivin et al. 2003; Archer et al. 2008). Thus, the PER3 

VNTR may serve as a marker of genetic susceptibility to the effects of sleep deprivation or 

circadian misalignment that can influence the timing of secretion of cortisol or melatonin, 

Wirth et al. Page 2

Neuro Endocrinol Lett. Author manuscript; available in PMC 2013 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two hormones with typically robust circadian rhythms (Dijk & Archer 2010). However, the 

functional consequences of this polymorphism in terms of adaptation to work schedule or 

work-related stress are not completely understood, particularly among shiftworkers.

Cortisol is a well-described adrenal steroid “stress hormone” (Henry 1992). Salivary cortisol 

typically increases by 40-75% upon awakening (cortisol awakening response), and then 

decreases throughout the day (except for a common post-prandial spike after the mid-day 

meal) (Kudielka et al. 2006; Fries et al. 2009). Daily cortisol rhythms are controlled by the 

SCN through efferent connections with neurons of the paraventricular nucleus and through 

hypothalamic-pituitary-adrenal (HPA) axis-independent alterations in ACTH 

(adrenocorticotropic hormone) sensitivity in the adrenal cortex (Nader et al. 2010). Stressful 

circumstances stimulate an increase in cortisol secretion (Kudielka et al. 2006). If these 

stressful circumstances become chronic in nature, they may result in an inability of the HPA 

axis to self-regulate cortisol, referred to as the “exhaustion stage” of the general adaptation 

syndrome, or allostatic overload (Motzer & Hertig 2004). The extent to which diurnal 

cortisol secretion patterns are influenced by polymorphic variation in clock genes is not well 

understood (Hastings et al. 2007; Archer et al. 2008; Nader et al. 2010). However, cortisol 

dysregulation can perturb physiological processes controlling inflammation (Elenkov 2008), 

and possibly augment susceptibility to depression, post-traumatic stress disorder, 

cardiovascular disease (CVD), type II diabetes, or stroke (Zuzewicz et al. 2000; Neylan et 

al. 2005; Huber et al. 2006; Gidron & Ronson 2008; Scheer et al. 2008). An altered pattern 

of circadian cortisol secretion also is associated with poor cancer survival (Sephton et al. 

2000; Sephton et al. 2012).

The Buffalo Cardio-Metabolic Occupational Police Stress (BCOPS) cohort study provides a 

prospective framework for examining biological processes through which stressors 

associated with police work may mediate adverse health outcomes. The protocol combines 

the characterization of stress biomarkers, subclinical CVD measures, psychosocial factors, 

and shiftwork to examine their potential associations with psychological disturbances and 

chronic diseases afflicting police officers (Violanti et al. 2006; Violanti et al. 2009). 

Shiftwork can result in circadian rhythm dysregulation, sleep insufficiency, and chronic 

stress (Shields 2002; Burch et al. 2009), which could eventually lead to cortisol 

dysregulation and allostatic overload (McEwen & Stellar 1993). Previously, we found that 

recent night work (within 3-14 days), or a high number of cumulative shift changes over a 

period of years was associated with reductions in the salivary cortisol awakening response 

among officers in this cohort (Wirth et al. 2011). The possible implications for cortisol 

dysregulation, or changes in the human stress response due to PER3 genetic variation among 

police or other workers in stressful occupations remains to be determined. Our objective in 

the present analysis was to test the hypotheses that police officers with a 4/5 or 5/5 PER3 

genotype have a more robust awakening (waking AUCI or AUCG) or diurnal cortisol rhythm 

(diurnal AUCG, slope) compared to those with the 4/4 genotype, and whether this 

relationship may be modified by shiftwork. Potential differences in depressive or stress-

related symptoms among those with different PER3 VNTR genotypes were also examined.
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METHODS

Study population

Police officers from the Buffalo, New York Police Department enrolled in the BCOPS 

cohort were selected using a computer-generated random sample (42 females, 58 males) 

(Violanti et al. 2006; Wirth et al. 2011). The study received Institutional Review Board 

approval and all subjects provided informed consent. Participants were examined at a health 

clinic on a scheduled training day or day off, and saliva collection occurred the day after the 

clinic visit at the officers’ homes. Data collection included a peripheral white blood cell 

sample for DNA recovery, serial saliva collection over a single non-work day, long-term 

shiftwork history, basic demographic characteristics, and the completion of several validated 

instruments that ascertained stress related to traumatic events (Impact of Events Scale or 

IES) (Horowitz et al. 1979), significant life events (Life Events Scale) (Paykel et al. 1971), 

or depressive symptoms (Center for Epidemiologic Studies Depression scale or CES-D) 

(Radloff 1977). A majority of the participating officers (88%) were either working a day 

shift or had a day off prior to their clinic visit.

Shiftwork history

Daily work histories were obtained for each participant from 1994 or initiation of 

employment (if it occurred after 1994) to the date of study examination between 2001 and 

2003 using electronic payroll records (Wirth et al. 2011). The typical work schedule after 

1994 consisted of four work days, four days off, four work days, three days off, and then the 

cycle was repeated. Long-term shiftwork variables included the cumulative number of shift 

changes and a categorical shift status variable defined as the shift on which each participant 

spent the majority of her or his time working during the study period. Shifts were classified 

based on start times as day (between 04:00-11:59 h), afternoon (between 12:00-19:59 h), or 

night (between 20:00-03:59 h). Most subjects (>85%) spent a majority (≥70%) of their total 

work time on their designated shift. This process of classifying officers into a shift status has 

shown good consistency summarized over 30, 60, or 90 days, and after 5 years of 

employment (Violanti et al. 2009; Wirth et al. 2011). Those on night or afternoon shifts 

were combined for the stratified analyses. Although officers worked fixed shifts during the 

study period (i.e., day, afternoon, or night only), they occasionally worked for an absent 

colleague or were temporarily assigned to a different shift schedule. The frequency of shift 

changes was defined as the number of times a participant switched between any two shift 

types during the study period.

Salivary cortisol

Salivary cortisol measurements are noninvasive, thereby reducing participant burden and 

facilitating protocol compliance; and the biologically active hormone can be readily 

quantified via a sensitive and specific immunoassay (Violanti et al. 2009). Participants 

collected serial saliva samples: upon first awakening, then at 15-, 30-, and 45-minute 

intervals after waking and at 12:00h (before lunch), 17:00h (before dinner), and at bedtime 

(Wirth et al. 2011). Cortisol levels obtained based on collection from time of awakening 

have a higher test-retest stability compared to samples collected at specific clock times 

(Coste et al. 1994; Pruessner et al. 1997; Neylan et al. 2005). On the morning of 
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participation, sample collection was achieved by placing a Salivette cotton roll (Sarstedt 

Aktiengesellschaft & Company, Numbrecht, Germany) into the mouth for three minutes to 

allow for saturation. The saturated roll was then refrigerated until delivery at the research 

laboratory for processing. Samples were shipped to the National Institute for Occupational 

Safety and Health (Toxicology and Molecular Biology Branch, Health Effects Laboratory, 

Morgantown, WV) where they were centrifuged and archived at −20 °C (Fekedulegn et al. 

2007). Cortisol determinations were performed at the Technical University of Dresden, 

Dresden, Germany, using a chemiluminescence immunoassay (CLIA, IBL-Hamburg, 

Germany) (Fekedulegn et al. 2007; Violanti et al. 2009; Wirth et al. 2011). Quality control 

samples were quantified at low and high concentrations for each assay plate, and analyses 

were repeated if control samples were outside the range of the expected concentration. The 

intra- and inter-assay coefficients of variation were 8% or below for either the high (25 

nmol/l) or low (3 nmol/l) control concentrations. Blind replicate samples of participants’ 

salivary cortisol (10%) had a coefficient of variation of 15%.

Waking cortisol was summarized using the area under the curve with respect to increase 

above baseline (i.e. first waking sample), and AUC above the assay detection limit or 

ground concentration (Fekedulegn et al. 2007). The AUCI represents the change in cortisol 

secretion after awakening, or its reactivity (Fekedulegn et al. 2007). If cortisol levels 

decrease relative to the first waking value, it is possible to obtain a negative AUCI value. 

The AUCG measures the total amount of cortisol secreted during the sampling period 

(Fekedulegn et al. 2007). The diurnal slope represents the change in cortisol secretion across 

the day, which was estimated by fitting the initial waking, noon, dinner, and bed time 

salivary cortisol sample concentrations to a linear equation and estimating the line of best fit 

(Kraemer et al. 2006; Heaney et al. 2012). All cortisol time points were required to calculate 

diurnal AUCG measures, but this requirement was not true for diurnal slope. To maintain 

consistency, we restricted all main diurnal analyses only to participants with both diurnal 

AUCG and diurnal cortisol slope measures.

Genotyping

Peripheral blood samples were collected on the day of the clinic visit, centrifuged using a 

Ficoll gradient to separate WBCs, then stored in capillary tubes at −80 °C for recovery of 

DNA. Genomic DNA was extracted using the DrGentle protocol (Takara, Japan) and DNA 

pellets (50-100 μg) were dissolved in 100-200 μL of TE buffer. About 200ng was subjected 

to polymerase chain reaction (PCR) using a Perkin Elmer GeneAmp System 9700 

(Waltham, MA) according to the manufacturer’s protocol. The PER3 VNTR repeat 

polymorphism was amplified using the following two primers: (forward) 5′-

CAAAATTTTATGACACTACCAGAATGGCTGAC-3′ and (reverse) 5′-

AACCTTGTACTTCCACATCAGTGCCTGG-3′ (Zhu et al. 2005). The PCR was 

performed in a reaction mixture of 25 μl containing standard PCR buffer, 5% DMSO, 1.0 

mM MgCl2, 0.2 mM dNTP, 1 unit Taq polymerase (Gibco-Invitrogen), and 0.4 μM of each 

oligonucleotide primer. The reactions were heated to 94 °C for 2 minutes followed by 35 

cycles of 94 °C for 30 seconds, 60 °C for 30 seconds, and 72 °C for 5 seconds. Reactions 

were extended for 7 minutes at 72 °C, and PCR products were then separated by 

electrophoresis on 3% agarose gel. Laboratory personnel were blinded to the identity and 
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characteristics of the participants. Quality control re-analyses of 10% of the genotypes 

indicated 100% concordance.

Statistical analysis

Analyses were performed using SAS analytical software package (version 9.2, Cary, NC)®. 

Relationships between each dependent variable (waking AUCI, waking AUCG, diurnal 

AUCG, diurnal slope, IES, CES-D, and Life Events Scale) and potential confounding factors 

(i.e. age, gender, race, education, marital status, rank, and years of police work) were 

evaluated univariately using the generalized linear models (PROC GLM) procedure in SAS. 

Variables were selected for further evaluation as potential confounders if their statistical 

significance was p≤0.15. A backward elimination procedure was then used to develop final 

models that included all variables that were statistically significant (p≤0.05) or, when 

removed from the model, changed the beta coefficient of the PER3 VNTR genotype by at 

least 10%. One diurnal AUCG observation was removed due to a studentized residual of 

4.02 and a Cook’s D of 0.48, which is greater than the suggested cut-point (4/sample size 

included in analysis [n=54] or 0.07). The GLM procedure in SAS was used to compute 

adjusted (least squares or LS) means of each dependant variable among those with different 

PER3 VNTR genotypes, after adjustment for the selected covariates. A square root 

transformation was used to obtain normally distributed values and normalized model 

residuals of the Life Events and CES-D scores; the LS means were back-transformed for 

presentation in the tables. A priori comparisons included differences in mean dependent 

variables among the 4/5, 5/5 or combined 4/5+5/5 genotypes compared to the 4/4 genotype. 

In separate analyses, differences in LS mean cortisol measures among the PER3 genotypes 

were stratified by shift status (night+afternoon vs. day shifts) or cumulative shift changes (a 

median split of <17 vs. >17). Individuals with 4/5 or 5/5 genotypes were similar with respect 

to all covariate and exposure variables, and were therefore combined in stratified analyses 

(Zhu et al. 2005; Dai et al. 2010). Ancillary logistic regression analyses indicated that 

participants with missing data did not differ with respect to the PER3 VNTR, shiftwork, 

CES-D, IES, Life Events Scale, or any covariate data, and were thus considered missing at 

random. Additional adjustment for time of awakening (first saliva collection) did not alter 

the interpretation of the results presented below.

RESULTS

Complete waking cortisol data were available for 57 officers (32 missing waking cortisol 

samples, 11 missing PER3 VNTR) and diurnal cortisol data were available for 54 

participants (37 missing diurnal cortisol, 9 missing PER3 VNTR). The distribution of PER3 

VNTR genotypes among participants was in Hardy-Weinberg Equilibrium (χ2=0, p-

value=1.0). The average number of years of police work in this population (± standard 

deviation) was 14±9 years (range: 1-33 years). The mean age was 43±8 years (range: 29-63 

years). Males comprised 60% of the study group and European Americans 75%. There were 

no statistically significant differences in age, gender, race, education, marital status, rank, 

years worked, or cumulative shift changes among the 4/5, 5/5, or 4/5+5/5 genotypes 

compared to the 4/4 group (Table 1). Similarly, there we no statistically significant 

differences in the mean time of first saliva sample collection among participants with the 

Wirth et al. Page 6

Neuro Endocrinol Lett. Author manuscript; available in PMC 2013 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4/4, 4/5 or 5/5 genotypes (08:16±112, 07:45±94, and 07:12±129 minutes, respectively) on 

the day of study participation.

Mean waking cortisol AUCG levels were greater among those with the 4/5+5/5 genotype 

(775 vs. 448 nmol/L-minute, p<0.01) compared to the 4/4 group. The 4/5 and 5/5 groups 

showed a tendency for higher waking AUCI values compared to the 4/4 group, although the 

differences were not statistically significant. The 4/5+5/5 group (7201 vs. 4996 nmol/L-

minute, p<0.01) and those with the 5/5 genotype (7279 vs. 4996 nmol/L-minute, p=0.02) 

had greater mean diurnal AUCG values compared to the 4/4 group (Table 2). Note that there 

were no differences between the 5/5 and 4/5 groups for any of the cortisol measures 

evaluated, which provides a reasonable rationale for combining 4/5 and 5/5 groups in the 

analysis. Only those with both a diurnal AUCG value and a diurnal slope were included in 

the analyses. A post-hoc analysis of all individuals with a diurnal slope value (n=76) did not 

change the interpretation of the results.

Regardless of shiftwork status, officers with the 4/5 or 5/5 genotype had greater mean 

diurnal AUCG values than officers with a 4/4 genotype (Table 3). After stratification by shift 

status, those participating in afternoon or night shiftwork who also possessed the 4/5+5/5 

genotype had elevated mean waking AUCI (202 vs. −8 nmol/L-minute, respectively, 

p=0.03) and mean waking AUCG values (791 vs. 361 nmol/L-minute, respectively, p=0.01) 

relative to shiftworkers with the 4/4 genotype (Table 3). However, these values did not 

differ by genotype among day workers. When cumulative shift changes were examined, 

officers with the 4/5 or 5/5 genotype tended to have greater mean waking AUCI, waking 

AUCG, or diurnal AUCG values compared to those with the 4/4 genotype, regardless of 

whether they were above or below the median number of cumulative shift changes (Table 

4). There were no statistically significant differences in the mean diurnal cortisol slopes 

(Tables 2-4) or mean scores for IES, Life Events Scale, or CES-D among those with 

different PER3 VNTR genotypes (Table 2).

DISCUSSION

The role of the PER3 length polymorphism in the regulation of sleep and circadian 

processes in human populations has not been fully elucidated. The extra copy of the 5-repeat 

PER3 VNTR sequence contains several potential casein kinase Iε (CKIε) phosphorylation 

motifs (Archer et al. 2003). Phosphorylation of Period clock genes by CKIε is required for 

translocation of the period and cryptochrome protein complex into the cell nucleus so that it 

can exert its influence on the negative arm of the clock gene transcriptional-translational 

feedback loop. CKIε also facilitates metabolic degradation of this complex (Nader et al. 

2010). In the PERIOD 2 clock gene, a CKIε binding site mutation has been associated with 

gene hypophosporylation and familial advanced sleep phase syndrome (Toh et al. 2001). 

Polymorphic variation in the PER3 gene has been associated with differences in the 

homeostatic regulation of sleep and the timing of circadian hormone secretion (Archer et al. 

2008; Dijk & Archer 2010). When participants with different PER3 VNTR genotypes were 

subjected to a 40-hour sleep deprivation protocol, those with the 5/5 genotype experienced 

greater changes in EEG activity and REM sleep, and increased sleep pressure compared to 

those with the 4/4 genotype (Cajochen et al. 1995; Dijk et al. 1997; Viola et al. 2007). 
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Individuals with this genotype also performed poorly (relative to baseline) on a waking 

performance test after sleep deprivation, whereas impacts among those with the 4/4 

genotype were much less apparent (Viola et al. 2007). Other studies suggest that PER3 may 

only have a minimal role in regulating circadian processes (Shearman et al. 2000; Bae et al. 

2001; Costa et al. 2011), and that the influence of the PER3 VNTR on sleep homeostasis 

may vary depending on the duration of sleep deprivation, or the strategy used to adjust to 

sleep loss (Goel et al. 2009; Gamble et al. 2011). Whether the PER3 VNTR evokes 

differences in circadian endocrine secretion, for example among shift workers or those with 

altered sleep-wake timing, remains to be determined. Positive correlations between PER3 

expression and the timing of peak melatonin or cortisol secretion (but not amplitude) were 

previously observed among those with the 5/5 genotype, whereas these measures were not 

well correlated among subjects with the 4/4 genotype (Archer et al. 2008) . Although no 

cause-effect relationship was established in that study, the results suggest that the 5/5 variant 

may facilitate coupling of cortisol secretion to the circadian system through PER3 

expression. In addition to its influence on the timing of cortisol secretion (Archer et al. 

2008), the PER3 VNTR has been associated with adverse health outcomes that might 

overlap with cortisol dysregulation, including delayed sleep phase syndrome (Ebisawa et al. 

2001), bipolar disorder (Dallaspezia et al. 2011), and increased cancer risk (Zhu et al. 2009; 

Dai et al. 2010). However, the functional consequences of this relationship remain to be 

determined.

Salivary cortisol values among officers participating in the present study were generally 

representative of those observed in other populations, with higher levels in the morning and 

declining values throughout the day (Kudielka et al. 2007; Griefahn & Robens 2008). 

Consistent with the hypothesis that the 5/5 genotype may be linked with circadian cortisol 

secretion, officers with a 4/5 or 5/5 genotype had an adjusted mean waking AUCI that was 

106% greater, a waking mean AUCG that was 73% greater, and mean cortisol output across 

the day that was 44% greater than those with a 4/4 genotype (Table 2). The reason that no 

difference in the mean diurnal cortisol slope was observed among those with different PER3 

genotypes is uncertain, but suggests that the PER3 VNTR had a stronger influence on 

morning cortisol secretion than secretion occurring throughout the day. The primary 

mechanism for cortisol’s robust circadian rhythm may be an increase in morning secretion 

due to enhanced light sensitivity occurring at that time of day (Clow et al. 2004). If so, then 

individuals with a morning circadian preference who typically exhibit earlier wake times 

would be expected to have an increased cortisol secretion due to an increased probability of 

elevated light exposure after awakening. This is consistent with studies that observed 

elevated cortisol levels among morning types compared to evening types (Bailey & 

Heitkemper 2001; Kudielka et al. 2006). Because the 5/5 PER3 genotype tends to be more 

frequently associated with morningness (Archer et al. 2003; Ellis et al. 2009), our findings 

are consistent with these observations. However, diurnal preference has not always been 

associated with the PER3 VNTR (Barclay et al. 2011; Osland et al. 2011), and chronotype 

was not characterized in this study. Nonetheless, we found that collection of the first saliva 

sample occurred about one hour earlier, on average, among those with the 5/5 genotype 

compared to the 4/4 genotype (08:16±112, 07:45±94, and 07:12±129 minutes for the 4/4, 

4/5 and 5/5 genotypes, respectively). Although these differences were not statistically 
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significant, it is possible that they contributed to the salivary cortisol measures that were 

observed.

The SCN synchronizes the circadian rhythms of ACTH and cortisol secretion, as well as 

clock gene expression within the pituitary gland and adrenal cortex (Dickmeis 2009; Girotti 

et al. 2009; Nader et al. 2010; Tonsfeldt & Chappell 2012). There are currently several 

models describing pathways whereby light-entrained SCN activity, in conjunction with 

neural and endocrine effectors of the HPA axis, regulate diurnal cortisol secretion. 

Although, the role of PER3 in these processes remains to be determined, one possibility is 

that PER3 may influence sensitivity of the circadian system to ambient light exposure. A 

genetic predisposition to light-induced suppression of melatonin, another hormone with a 

robust circadian rhythm, was recently observed among individuals with the 5/5 PER3 VNTR 

genotype, whereas 4/4 homozygotes were less responsive (Chellappa et al. 2012). Based on 

these observations, we speculate that light-induced morning cortisol secretion may occur in 

a similar, PER3 genotype-dependent manner.

Examination of cortisol and psychometric measures in conjunction with the PER3 VNTR 

among police officers in this study provided an opportunity to evaluate the influence of 

genotype and shiftwork on these parameters in a real-world setting. A strength of the 

BCOPS cohort is that long term shiftwork histories were quantified among participants via 

reconstruction of payroll records. We previously reported that officers working short-term 

night or afternoon shifts (3-14 days prior to saliva collection) had reduced waking cortisol 

AUCI or AUCG compared to day workers, consistent with several other studies among 

shiftworkers (Zuzewicz et al. 2000; Kudielka et al. 2007; Griefahn & Robens 2008). In 

addition, officers with more cumulative shift changes over periods of years also had reduced 

waking AUCI values (Wirth et al. 2011). Thus, we hypothesized that shiftwork may modify 

the relationship between the PER3 VNTR and cortisol secretion. When stratified by shift 

status, those with a 4/5 or 5/5 genotype who were working night or afternoon shifts had the 

highest waking AUCI values, more than double what was observed among day workers with 

the 4/5 or 5/5 genotype, which suggests a possible gene-environment interaction. Caution in 

the interpretation of these findings is warranted given the relatively limited sample size 

among strata of shiftwork and genotype. Also, results obtained for waking or diurnal AUCG 

indicated that, regardless of shift status, those with a 4/5 or 5/5 genotype had cortisol 

secretion patterns that were elevated compared to those with the 4/4 genotype. Overall, the 

results support the possibility that an extra PER3 VNTR copy enhances cortisol secretion. If 

this effect is modified by shiftwork, it most likely influences the absolute increase in cortisol 

after awakening (AUCI) rather than the total amount secreted after awakening (AUCG), or 

cortisol secretion throughout the day.

In the present study, the PER3 VNTR was not associated with stress-related psychological 

symptoms including depression or life events, in contrast with previous studies (Guess et al. 

2009; Dallaspezia et al. 2011). Only about 6% of officers were depressed based on the CES-

D definition (score ≥16), thus there may not have been enough variation in CES-D scores to 

determine differences between the PER3 VNTR genotypes. Stress or depressive symptoms 

were also a potential source of bias related to cortisol in this study since these symptoms can 

be associated with both cortisol secretion and the PER3 genotype (Chida & Steptoe 2009). 
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However, there was no change in the interpretation of the results when the cortisol analyses 

were adjusted for the effects of the Life Events Scale, CES-D, or IES. Although we adjusted 

for these and other important confounding factors, information on other covariates was 

unavailable, for example ambient light exposures (Sephton & Spiegel 2003; Clow et al. 

2004). Similarly, poor sleep or diets high in fat and low in fruit and vegetable intake may be 

associated with disrupted or flattened diurnal cortisol slopes (Kumari et al. 2011; Heaney et 

al. 2012). Thus, the possibility of residual confounding by these or other factors cannot be 

entirely eliminated.

In conclusion, the cross-sectional nature of this study precludes the ability to infer causation, 

although the results suggest that the 5-repeat sequence of the PER3 VNTR may facilitate 

increased cortisol secretion, particularly in the morning. Individuals with this genotype may 

be more susceptible to factors that can cause circadian rhythm disruption, such as shiftwork, 

poorly timed light exposures, or changes in sleep-wake timing. However, only modest 

evidence for a PER3-related influence of shiftwork on cortisol secretion was obtained in the 

present study. Cortisol dysregulation may have long-term health implications. Reduced 

cortisol secretion or a flattened slope has been associated with poor sleep quality (Backhaus 

et al. 2004), chronic fatigue syndrome and symptoms of burnout (Roberts et al. 2004), 

PTSD (Rohleder et al. 2004), depression (Stetler & Miller 2005), adverse cardiovascular 

health and mortality (Hurwitz Eller et al. 2001; Kumari et al. 2011), increased all-cause 

mortality (Kumari et al. 2011), and decreased breast or lung cancer survival (Sephton et al. 

2000; Sephton et al. 2012). Although linkages between circadian clock gene expression and 

the HPA axis have been identified, the pathological implications of dysregulation of these 

processes await further characterization (Nader et al. 2010; Mavroudis et al. 2012).
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SCN suprachiasmatic nuclei

VNTR variable number tandem repeat

PER3 Period 3 gene

HPA hypothalamic-pituitary-adrenal

ACTH adrenocorticotropic hormone

CVD cardiovascular disease

BCOPS Buffalo Cardio-Metabolic Occupational Police Stress

Wirth et al. Page 10

Neuro Endocrinol Lett. Author manuscript; available in PMC 2013 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AUCI area under the curve with respect to increase

AUCG area under the curve with respect to ground

CES-D Center for Epidemiologic Studies Depression scale

IES Impact of Events Scale

LS least squares

CKIε casein kinase I epsilon

EEG electroencephalography

REM rapid eye movement

PTSD post-traumatic stress disorder
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Tab. 3

Mean Waking and Diurnal Cortisol (95% Confidence Intervals) by Shift Type and PER3 VNTR Genotype, 

BCOPS Study, Buffalo, NY, USA, 2001–2003.

Risk Factor 4/4 4/5 + 5/5 p-value 4/4 vs. 4/5 + 5/5

Waking AUCI

Shift Type

Day 126 (−14–267)
n=10

61 (−43–166)
n=18

0.46

Night + Afternoon –8 (–164–148)
n=9

202 (93–311)
n=17

0.03

p-value Day vs. Night + Afternoon 0.20 0.07

Waking AUCG

Shift Type

Day 512 (261–762)
n=10

736 (544–928)
n=18

0.16

Night + Afternoon 361 (52–670)
n=9

791 (573–1009)
n=17

0.01

p-value Day vs. Night + Afternoon 0.44 0.69

Diurnal AUCG

Shift Type

Day 4965 (3177–6753)
n=9

7120 (5900–8340)
n=17

0.04

Night + Afternoon 5003 (3222-6783)
n=9

7347 (6078-8615)
n=16

0.03

p-value Day vs. Night + Afternoon 0.98 0.79

Diurnal Slope

Shift Type

Day −0.0033 (−0.0044–−0.0021)
n=9

−0.0024 (−0.0032–−0.0015)
n=17

0.22

Night + Afternoon −0.0021 (−0.0034–−0.0007)
n=9

−0.0032 (−0.0041–−0.0023)
n=16

0.12

p-value Day vs. Night + Afternoon 0.21 0.19

Units for AUCI and AUCG are nmol/L-minutes. Abbreviations: AUCG – Area Under the Curve (Ground); AUCI – Area Under the Curve 

(Increase). Adjustments: Waking AUCG adjusted for rank; Waking AUCi adjusted for gender; Diurnal AUCG adjusted for education and age; 

Diurnal Slope adjusted for gender and age group.
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Tab. 4

Mean Waking and Diurnal Cortisol (95% Confidence Intervals) by Shift changes and PER3 VNTR Genotype, 

BCOPS Study, Buffalo, NY, USA, 2001–2003.

Risk Factor 4/4 4/5 + 5/5 p-value 4/4 vs. 4/5 + 5/5

Waking AUCI

Cumulative Shift Changes

<17 60 (−79–199)
n=12

123 (2–244)
n=15

0.50

≥17 68 (−110–247)
n=7

134 (28–241)
n=20

0.52

p-value <17 vs. ≥17 0.94 0.89

Waking AUCG

Cumulative Shift Changes

<17 430 (192–667)
n=12

877 (651–1104)
n=15

<0.01

≥17 494 (189–800)
n=7

708 (527–888)
n=20

0.22

p-value <17 vs. ≥17 0.73 0.22

Diurnal AUCG

Cumulative Shift Changes

<17 5,040 (3490–6590)
n=11

7,290 (5975–8604)
n=14

0.03

≥17 4,911 (3078–6745)
n=7

7,181 (6027–8335)
n=19

0.03

p-value <17 vs. ≥17 0.91 0.90

Diurnal Slope

Cumulative Shift Changes

<17 −0.0022 (−0.0033–−0.0011)
n=11

−0.0031 (−0.0041−–0.0021)
n=14

0.24

≥17 −0.0033 (−0.0046–−0.0019)
n=7

−0.0026 (−0.0034–−0.0017)
n=19

0.35

p-value <17 vs. ≥17 0.22 0.38

Shift change (from 1994 or initiation of employment until clinic examination in 2001), categories were based on a median split. Units for AUCI 
and AUCG are nmol/L-minutes. Abbreviations: AUCG – Area Under the Curve (Ground); AUCI – Area Under the Curve (Increase). Adjustments: 

Waking AUCG adjusted for rank; Waking AUCi adjusted for gender; Diurnal AUCG adjusted for education and age; Diurnal slope adjusted for 

gender and age group.
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