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Abstract

Non-visual photosensation enables animals to sense light without sight. However, the cellular and 

molecular mechanisms of non-visual photobehaviors are poorly understood, especially in 

vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible 

series of motor behaviors in zebrafish that is elicited by visual wavelengths of light, but does not 

require the eyes, pineal gland or other canonical deep-brain photoreceptive organs. Unlike the 

relatively slow effects of canonical non-visual pathways, motor circuits are strongly and quickly 

(seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and 

sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of 

neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological 

inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors 

control this behavior. These data represent the first known light-sensing circuit in the vertebrate 

hindbrain.

Introduction

How the nervous system senses and responds to light is a fundamental question in 

neuroscience. Photobiology has traditionally focused on visual pathways (Ridge et al., 
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2003). However, non-visual photo-sensation also plays an important role in animal 

physiology and behavior (Lucas et al., 1999; Berson et al., 2002; Hattar et al., 2003; Zaidi et 

al., 2007; Noseda et al., 2010). The majority of research on non-visual photic behaviors has 

been dedicated to understanding circadian rhythms, which are controlled via hormones over 

relatively long timescales (hours to days) (Reppert and Weaver, 2001). Beyond circadian 

rhythms, non-visual pathways can also control motor behaviors on a short time scale 

(seconds) (Becker and Cone, 1966; Harth and Heaton, 1973; Heaton and Harth, 1974; 

Peirson et al., 2009). For example, it has been recently shown that deep brain photoreceptors 

control light-seeking behaviors in zebrafish larvae (Fernandes et al., 2012). Such behaviors 

are a fundamental aspect of how the vertebrate nervous system responds to light, but remain 

poorly understood at the cellular and molecular level.

The retina is the only known light-detecting organ in mammals. However, some birds and 

reptiles express specialized extraocular photoreceptors in various organs including the pineal 

complex, deep brain, and skin (Yoshikawa et al., 1998; Vigh et al., 2002). A number of 

photopigments have been identified in these extra ocular tissues, including pinopsin (Okano 

et al., 1994; Max et al., 1995), melanopsin (Provencio et al., 1998), parapinopsin 

(Blackshaw and Snyder, 1997), exo-rhodopsin (Mano et al., 1999), vertebrate-ancient opsin 

(Val-opsin) (Kojima et al., 2000) and neuropsin (Nakane et al., 2010). These opsins are 

thought to enable non-visual photodetection (Vigh et al., 2002). However, their precise roles 

in physiology and behavior are poorly understood. Here, we have investigated the 

phenotypic, cellular and molecular mechanisms of the zebrafish photomotor response 

behavior using a combination of genetic, behavioral, electrophysiological and calcium 

imaging techniques. We find an unexpected circuit in the zebrafish hindbrain that is required 

for non-visual light-driven motor behaviors. These data implicate a new locus of 

photosensitive hindbrain neurons controlling non-visual light detection and motor behaviors 

in vertebrates.

METHODS

Fish maintenance and aquaculture

Zebrafish embryos were collected from group mating wild type zebrafish (Ekkwill). 

Embryos, of either sex, were raised in HEPES (10 mM) buffered E3 media in a dark 

incubator at 28 °C.

Behavioral recordings and data analysis

Grouped—The PMR assay was performed as described (Kokel et al., 2010). Briefly, 

groups of 8–10 embryos were distributed into the wells of flat bottom black 96 well plates. 

1000 frames of digital video were recorded at 30 fps. The motion index was calculated by 

frame differencing. ‘Excitation scores’ are calculated by taking the 75th percentile of the 

motion index during indicated phases of the PMR behavior. Measurements and analysis 

were performed using the Metamorph and Matlab software packages.

Individual—To quantify individual zebrafish movements, we developed an image-

processing pipeline with the following steps: Gaussian Deblurring was used to reduce 
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camera noise. Hough Circle Detection was used to identify a region of interest (ROI) around 

the chorion surrounding each embryo. The ROI for each animal is dynamically tracked 

through all video frames. Movement is quantified by frame differencing and normalized 

relative to the ROI intensity. Manual inspection the movies revealed that high magnitude, 

low frequency peaks in the motion index correlated with coiling events in the movies, so 

these peaks were defined as coiling events by the algorithm. Similarly, low magnitude high 

frequency peaks correlated with swimming events, so these peaks were defined as 

swimming by the algorithm. Coiling events within swimming events were also detected. 

Videos were processed using the MATLAB software package and the open source 

MATLAB Toolbox Gait-CAD (Mikut, 2008). The total calculation time of the whole 

processing pipeline including fish finding, tracking and classification does not exceed 1.5 

minutes for each movie on a usual desktop computer. We also developed a standalone 

graphical user interface providing easy application, batch processing of the video data as 

well as automated report generation. The software is available from the authors upon 

request.

Statistical analysis—We used one-way ANOVA and the Tukey HSD post hoc test to test 

for significant differences between groups, generate 95% confidence intervals and identify 

groups with significantly different means. For groups with significant differences, we used 

the two-tailed t-test to test the null hypothesis and calculate the p value. Statistical analyses 

were performed using the anova1, multcompare and ttest2 functions provided by the 

MATLAB statistics toolbox. All error bars represent standard deviations, unless otherwise 

noted.

Morpholino gene knockdown

All MOs in this study were obtained from GeneTools LLC (Corvallis, OR). Morpholinos 

used for this study were: valA(5′-TTTGT GAAGA CCTTT CTGAG TTTGC-3′), valB(5′-

TATAT GACTA ACCTT TCTGA GCTTC-3′), valB2(5′-GAGTG TTCGA TACCT 

ATTAA GCATA-3′), exorho(5′-CGGTGTTGTAGTGTGCTCACCGCCG-3′), opn4.1 

(CTCTCCATGAAGAGTGATGGCTCAT), opn4b 

(CAGCCCTGTCCATACACAACACACA) and opn4xb 

(ACATCCTGAAAACACACACAGAGAA). Morpholino efficacy was verified by PCR 

identification of splicing defects in the targeted genes, except for the opn4.1 morpholino, 

which targets the opn4.1 ATG translations start site. The yolks of single cell stage fertilized 

embryos were injected with 1nL of the 0.5mM morpholino solutions (5 ng per animal) or as 

noted.

Confocal analysis

Live imaging of embryonic zebrafish brain was performed as previously described (Lowery 

and Sive, 2005). Briefly, zebrafish embryos were embedded in 0.7% low melting agarose. 

The agarose enabled movements to be visualized in digital videos while preventing animals 

from swimming away. Images were captured on an inverted microscope (AxioObserver Z1; 

Zeiss) using the LSM700 scanning system (Zeiss, 488-nm laser lines) and a 20x objective 

(Zeiss). Embryos globally expressed a GFP transgene (Krovel and Olsen, 2002) to enable 

their visualization under the 488-nm laser stimulus illumination.
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Photic stimuli

Light stimuli were generated with a 300-watt xenon bulb housed in a Sutter Lambda LS 

illuminator and delivered to the well 10s and 20s (or 13s and 23s) after the start of each 

video. A cold mirror (reflectance between 300 nm and 700 nm) on the Sutter illuminator 

was used to block wavelengths outside of this range. Stimulus wavelengths were restricted 

using a quadband beamsplitter (Semrock; DA/FI/TR/Cy5-4X4M-B-ZHE ) and four single 

band exciters (center wavelength/bandwidth): 387/11, 485/20, 560/25 and 650/13 (Semrock, 

Brightline FF01). Light intensity was measured using a PM100D power meter attached to a 

S120VC photodiode power sensor (Thorlabs). Intensity of the full strength white light 

stimulus on the embryos was 67 μW/mm2. The intensities of violet (387nm) and red 

(650nm) wavelengths were 3 μW/mm2. The intensities of blue (485nm) and green (560nm) 

wavelengths were 15 μW/mm2. High intensity violet (405nm; 600 μW/mm2) and red 

(650nm; 23 μW/mm2) stimuli were generated with pen style laser pointers (<5mW), and 

their intensities were reduced using neutral density filters. For comparison, ambient light in 

the laboratory was ~ 1 μW/mm2 and direct sunlight on rare sunny day in Boston was 667 

μW/mm2.

Dissections and spinalized preparations

Dissections were performed under the same general conditions as described (Downes and 

Granato, 2006). To remove the eyes and pineal gland, the zebrafish hindbrain was severed 

between the anterior hindbrain ventricle and the otic vesicle, at approximately the level of 

rhombomere 3–4, completely removing all midbrain and forebrain structures including the 

eyes and pineal complex (Asaoka et al., 2002). Data were collected 1hr-3hr post surgery, 

however the decapitated preparations were surprisingly robust, responding to stimuli for >12 

hours post transection. Surgeries were performed under the microscope with forceps and a 

sharp razor blade following brief ice anesthesia. Dissected preparations were prepared and 

maintained in 1X Ringer’s solution (116 NaCl, 2.9 KCl, 1.8 CaCl2, 5 HEPES, pH 7.2; in 

mM).

Electrophysiology

We devised a 14-minute recording protocol in which we recorded from a muscle cell in 

partially paralyzed embryos aged 32 to 36 hpf. Lights were turned off at the beginning of the 

recording and the responsiveness of the embryos to photo and tactile stimuli was assessed. 

Most of the embryos also showed spontaneous fictive motor activity during the period of 

dark adaptation (11/15).

Myocyte recordings were obtained from embryos aged 32–36 hours at room temperature 

using methods previously described (Hamill et al., 1981; Ribera and Nusslein-Volhard, 

1998; Drapeau et al., 1999). Embryos were anesthetized by adding Tricaine (0.02% w/v) to 

our Evans extracellular recording solution (mM): 134 NaCl, 2.9 KCl,2.1 CaCl2, 1.2 MgCl2, 

10 glucose, 10 HEPES, adjusted to pH 7.8 with NaOH. The embryos were pinned to a 

35mm Sylgard coated dish and the skin overlying several somites was removed. The 

solution was replaced by gravity perfusion (1–2 mls/sec) of anesthetic-free Evans which 

contained 6μM d-tubocurarine in order to partially paralyze the preparation and enable 

recording from muscle cells under the whole cell patch clamp configuration. The internal 
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recording solution contained (in mM): 116 K-gluconate, 16 KCl, 2 MgCl2, 10 HEPES, 10 

EGTA, at pH 7.2 with KOH to which we added 0.1% SulforhodamineB for cell 

identification. Borosilicate glass electrodes had resistances of 4–6 MΩ when filled with 

internal recording solution. Recordings were made with an Axopatch 200B amplifier (Axon 

Instruments, Union City, CA) low pass filtered at 2 kHz and sampled at 10kHz. The 

microscope used was a Zeiss examiner A1 and fine pipette movement was controlled with a 

Sutter MPC-200 manipulator system. Tactile stimuli were delivered by ejecting solution 

from a pipette with a 25 micron opening where the pressure and duration were set via a 

picospritzer III (Parker). Photo stimuli were delivered using the built in illumination from 

the microscope (100W) where the duration was limited at 1 second using a uniblitz shutter 

(Optikon) triggered by a TTL pulse, this illumination was enhanced with a camera flash 

(Vivitar, 600 CR) occurring at the beginning of the 1 second TTL triggered time period. 

Data acquisition and TTL triggering of stimuli were achieved with pClamp 10 software 

using a Digidata 1440A interface. The initial data analysis was done with Clampfit 10, and 

figures were prepared using Adobe Illustrator.

Calcium imaging

A custom built two-photon microscope (Denk et al., 1990) was used to monitor neuronal 

activity in the hindbrain of 32–38 hpf zebrafish. The embryos expressed the genetically 

encoded calcium indicator GCaMP2 under the pan-neuronal HuC promoter, and were 

homozygous nacre in a WIK wild type background. Embryos were treated in phenylthiourea 

(PTU) in order to remove pigmentation and were pre-screened before imaging for robust 

responses to photic stimuli. Embryos were then dechorionated and paralyzed by bathing 

them in 1 mg/ml bungarotoxin (Invitrogen) solution and creating a small lesion at the tip of 

the tail with a forceps for better access to the internal tissues. Paralyzed embryos were side-

mounted in 2% agarose and covered in standard E3 fish water in preparation for imaging. 

During imaging experiments, one second of blue light was delivered by an LED (Thorlabs) 

3 times at 30s intervals. This was repeated for the next imaging plane with a 12 minute delay 

in order to allow the PMR to recover. Because of leakage of the blue light to the 

photomultiplier tube (PMT), the PMT was switched off during blue light stimulation, so that 

measurement of GCaMP2 fluorescence commenced upon offset of the stimulus.

Fluorescence movies were analyzed with custom written Matlab software as described 

(Ahrens et al., 2012). First, a square ROI, half the size of a neuron, is swept over all 

locations of the imaging plane. At each location, a fluorescence time-series, averaged over 

the ROI, is extracted and converted to a statistic for the ‘peaky-ness’ of the fluorescence 

signal at that point. If f(x,y,t) is the fluorescence of the pixel at x, y at time t, and fsqu(x,y,t) 

is the average fluorescence of the box centered at pixel x, y, and favg is the average 

fluorescence over space and time for the entire image sequence, then the statistic was 

defined to be
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where <…> denotes the average over t. This measure was chosen because it bears 

resemblance to the usual dF/F but contains an offset to counteract the undesired 

amplification of noise; the third power was chosen because it nonlinearly converts peaks in 

the fluorescence signal to larger values of the statistic. This measure — one of several tested 

— yielded spatial signal maps m(x,y) which tended to be at least as sensitive as sets of ROIs 

selected manually from observation of the raw and dF/F movies. These signal maps were 

thresholded and points of interest were found at the approximate centers of the peaks of 

m(x,y) by first smoothing with a two-dimensional Gaussian and then finding the local 

maxima of the smoothed map. These formed the centers of the final ROIs (see Fig. 5E). 

These ROIs were then checked manually for any obvious artifacts. For the representative 

slice shown in Fig. 5B, automatically detected ROIs were hand segmented to match the 

shape of each neuron associated with a given ROI. The regions indicated by dotted red lines 

contain many detected ROIs that were associated with fiber tracts rather than individual 

somata. For constructing the standardized ROI spatial distribution map, automatically 

detected ROIs from 4 fish with complete image stacks through at least one half of the brain 

were assigned coordinates relative to the location of the first occipital nerve in rhombomere 

8. In this three dimensional coordinate system, each ROI was assigned a rostrocaudal 

distance along the ventral surface of the brain relative to the nerve, a dorsoventral distance 

along the line normal to its position on the previously defined rostrocaudal axis, and a 

mediolateral distance from the lateral edge of the brain. Each ROI was then plotted onto an 

average intensity projection of a standard 36 hpf brain. The density metric used in 5D was 

calculated by averaging ROI densities across all sampled imaging planes from three 

additional fish that were exposed to all three conditions. For each plane, ROI density was 

calculated by dividing the number of detected ROIs by the volume of labeled neurons in the 

plane (area of labeled neurons x 1 μm).

RESULTS

The PMR is a stereotyped behavior of reproducible kinematic events

Recently, we discovered the photomotor response (PMR) — a robust series of motor 

behaviors triggered by photic stimuli in embryonic zebrafish (Kokel et al., 2010). In the 

PMR behavior, dark-adapted zebrafish embryos (30 hours post fertilization (hpf)) respond to 

a bright pulse of light with a striking series of stereotyped motor behaviors within the 

chorion (Fig. 1a). The PMR can be divided into different phases including background, 

excitation and inactive/refractory phases (Fig. 1a,b). Before the stimulus, individual animals 

move infrequently with spontaneous coiling movements (Fig. 1a,b). Then, the stimulus 

elicits vigorous motor excitation lasting for approximately 5–7s. Following excitation, the 

animals enter an inactive/refractory phase, characterized by less than background levels of 

activity and unresponsiveness to a second pulse of light (Fig. 1a, b). Interestingly, it takes 

approximately 10 minutes of dark re-adaptation between stimuli for animals to respond to a 

second pulse of light (Fig. 1b).

We find that individual animals undergoing the PMR exhibit at least two types of motor 

events — coiling and swimming — that can be discriminated based on visual inspection of 

behavioral recordings. Coiling describes large alternating contractions that are likely to be 
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analogous to turning events in older animals. By contrast, swimming describes high 

frequency contractions that serve to propel the animal in the forward direction. Using a 

custom image-processing algorithm to analyze the behavior of individual animals, we find 

that swimming and coiling events can be discriminated via the amplitude and duration of 

peaks in the motion.. Coiling events correspond to large-magnitude low-frequency peaks, 

whereas swimming events correspond to low-magnitude high-frequency peaks (Fig. 1c).

Overall, we identified 1,540 coiling events and 19,775 swimming events in an analysis of 

425 animals during the PMR behavior. The distribution of these events shows that motor 

activity increases dramatically following stimulus presentation (Fig. 1d). After a median of 

2.2s following the start of the stimulus presentation, coiling frequency increases 

approximately 10-fold, from 0.07 coils/s to 0.82 coils/s, for a median duration of 0.8s. 

Swimming behaviors, which are only rarely observed prior to the stimulus in only 0.5% of 

animals, are observed in 38% of animals following the stimulus and last for a median 

duration of 3.3s (Fig. 1e,f). Interestingly, the peak of swimming behaviors occurs 1.75s after 

the peak of coiling behaviors, indicating the PMR excitation phase can be subdivided into an 

early period of rapid coiling, followed by a later period of prolonged swimming, although 

coils are not always followed by swimming (Fig. 1e,f). By the end of this excitation phase, 

coiling behaviors decrease to 0.02 coils/s, approximately 3-fold lower than background 

levels, and animals do not respond to a second pulse of light (Fig. 1b–d). These results 

indicate that the PMR behavior is a stereotyped series of reproducible coiling and swimming 

events followed by a long period of inactivity.

Motor circuits are strongly recruited during PMR excitation

To understand the mechanism underlying the series of coiling and swimming events that 

occur during the PMR, we devised a 14 minute electrophysiological recording protocol in 

which we recorded responses from a muscle cell in partially paralyzed embryos aged 32 to 

36 hpf. Lights were turned off at the beginning of the recording and the responsiveness of 

the embryos to photo and tactile stimuli (tail or head) was assessed. Embryos were dark 

adapted for 10 minutes and then tested again with photo and tactile stimuli (Fig. 2). 

Consistent with our video analysis, we find two types of electrophysiological events during 

head-touch, tail touch and PMR assays–low frequency large amplitude events and high 

frequency low amplitude events—consistent with fictive coiling and swimming respectively 

(Fig. 2a). None of the embryos responded to the light stimuli before dark adaptation (n=15), 

whereas they all responded to tactile stimulation. Most of the embryos showed spontaneous 

fictive motor excitation during the period of dark adaptation (11/15). The mean latency to 

tail and head tactile stimulus responses were significantly different from each other at 27 +/− 

2 ms (n=18) and 38 +/− 4 ms (n=16) respectively (p<0.01) while the mean latency of 

responses to photo stimulation in the same animals was a full two orders of magnitude 

greater than either head or tail latencies at 3,988 +/− 612 ms (n=14, p<0.001) (Fig. 2b). This 

massive increase in latency suggests that the recruitment of the motor system by light 

stimulation may be dependent on a very slow cellular and/or molecular mechanism that is 

different from the mechanisms controlling the touch response. The photomotor response 

included a high percentage of fictive coils (92%, n=18), whereas spontaneous motor output 

consisted of 82% (n=11) fictive coils; head touch elicited fictive coils in 72% (n= 18) of 
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trials, and tail touch only 11% (n= 18) (Fig. 2d). The mean duration of fictive photomotor 

events at 4,907 +/−337 milliseconds was significantly longer than all other forms of motor 

activity with 675 +/−179, 818 +/− 64 and 1301 +/− 168 milliseconds respectively for head, 

tail and spontaneous motor events (p<0.001) (Fig. 2c). These long duration activity patterns, 

which consistently include struggling coils, suggest a very strong recruitment of the motor 

circuits during PMR excitation.

The PMR is a non-visual motor behavior

The developmental timecourse of several motor behaviors in the zebrafish embryo have 

been well characterized. For example, spontaneous contractions develop at 17 hours post 

fertilization (Saint-Amant and Drapeau, 1998). In de-chorionated animals, the touch 

response develops at 21 hpf and touch evoked swimming develops at 26 hpf (Saint-Amant 

and Drapeau, 1998). Zebrafish embryos hatch between 48–60 hpf and develop their first 

visual behaviors, including the optokinetic reflex (OKR) and the visual startle response, 

between 68–79 hpf (Easter and Nicola, 1996, 1997).

To determine the time course of PMR development, we examined zebrafish behavior 

between 21 hpf and 50 hpf. We find that the magnitude of PMR excitation develops rapidly 

between 28–30 hpf—after the start of touch evoked coiling and before the OKR (Fig. 3a). 

The PMR excitation phase lasts for approximately 10 hours between 30–40 hpf. At 40 hpf, 

the magnitude of PMR excitation begins a gradual decline and eventually disappears by 50 

hpf (Fig. 3a). Interestingly, we find evidence of photo-sensation even prior to 30hpf. 

Although light does not trigger PMR excitation at 27 hpf, it does trigger the PMR inactive 

phase (Fig. 3a,b). For example, even in the absence of PMR excitation, light significantly 

reduces motor activity (Fig. 3b). These are the earliest reported behavioral responses to light 

in the zebrafish. Because zebrafish develop their first signs of vision at 73 hpf (Easter and 

Nicola, 1997), these data suggest that the PMR behavior is a non-visual response to light.

The PMR develops >40 hours prior to the first functional visual pathways (Brockerhoff et 

al., 1995; Schmitt and Dowling, 1999; Morris and Fadool, 2005). To determine if the PMR 

requires visual photoreceptors, we analyzed the behavior of zebrafish preparations with and 

without their eyes at 30 hpf. Remarkably, blinded preparations — also lacking the pineal 

organs and other canonical deep brain photosensitive tissues — continued to exhibit robust 

PMR excitation for many hours following transection (Fig. 3c). Thus, the PMR is a non-

visual photic behavior.

Because the PMR does not require canonical photoreceptive organs like the eyes and pineal, 

we sought to determine where PMR photoreceptors are located anatomically. Dermal 

melanocytes are intrinsically photosensitive in some amphibians and fish (Wakamatsu et al., 

1980). To determine if melanocytes are necessary to trigger the PMR, we analyzed the 

behavior of casper mutant zebrafish that fail to develop all melanocytes and iridophores 

(White et al., 2008). We find that casper mutant embryos exhibit a robust PMR (data not 

shown) indicating that dermal melanophores are not necessary for the PMR.

Previous reports suggest that non-visual photic behaviors in lampreys and snakes are 

triggered by cutaneous photoreceptors in the tail (Young, 1935; Zimmerman, 1990). To 
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determine if tail photoreceptors are necessary for the zebrafish PMR, we analyzed the PMR 

in animals lacking the caudal half of their bodies. Tailless animals exhibit a robust PMR, 

indicating that the tail is not necessary for PMR photo-sensation, and that PMR 

photoreceptors are not located exclusively in the tail (Fig. 3c).

Supraspinal input from the brain is not necessary for spontaneous coiling or touch evoked 

coiling behaviors in the zebrafish (Downes and Granato, 2006). To determine if the 

hindbrain is required for the PMR, we analyzed the behavior of spinalized animals. We find 

that spinalized preparations lacking the hindbrain, did not respond to photic stimuli (Fig. 

3c). Thus, unlike the touch response, supraspinal input from the hindbrain is necessary for 

the PMR.

Because the hindbrain is necessary for the PMR, we wondered if it might also be sufficient 

for sensing photic stimuli. To test this hypothesis, we used confocal microscopy to restrict 

photic stimulation to the column of cells above and below the eye, hindbrain, trunk or tail. 

We find that motor activity is not elicited by photic stimuli restricted to the eye, trunk or tail 

(Fig. 3d). By contrast, PMR excitation is strongly and reproducibly elicited by photic stimuli 

directed at the hindbrain (Fig. 3d). Together, these data suggest that hindbrain neurons are 

both necessary and sufficient to elicit PMR behaviors.

The PMR is a response to visible light

To determine the relationship between stimulus intensity and response magnitude, we 

exposed dark-adapted animals to white light stimuli (300–700nm) from a xenon lamp at 

various intensities. Whereas 1 μW/mm2 is too dim to trigger PMR excitation, a 13 μW/mm2 

stimulus elicits a significant increase in motor activity, p<0.001 (Fig. 4a). Thus, the 

minimum intensity needed to trigger PMR excitation is between 1–13 μW/mm2. Stimulus 

intensities greater than or equal to 33 μW/mm2 trigger significantly more excitation than the 

minimum effective intensity, p<0.005 (Fig. 4a). These data indicate that PMR behaviors are 

triggered by stimuli approximately 50X less intense than direct sunlight (667 μW/mm2). 

Furthermore, these data suggest that PMR behaviors could be triggered by natural stimuli 

outside the laboratory.

To determine which wavelengths of light are sufficient to trigger the PMR, we exposed 

animals to violet (387nm), blue (480nm), green (560nm) and red (650nm) stimluli. We find 

that blue and green wavelengths (both approximately 15 μW/mm2) reproducibly trigger 

robust PMR excitation (Fig. 4b). By contrast, neither violet (405nm) nor red (650nm) 

stimuli (15 μW/mm2 and 23 μW/mm2 respectively) trigger PMR excitation (Fig. 4b). These 

data suggest that the PMR is triggered by blue and green light stimuli, but not by shorter or 

longer wavelenghts..

To determine the duration of light necessary to trigger PMR excitation we analyzed the 

behavior of animals exposed to blue light stimuli (480nm, 15 μW/mm2) for various 

durations. We find that the response magnitudes are the same for stimuli lasting 1s or 20s 

(Fig. 4c). Similarly, the maximum response duration is 5–7s, for stimuli lasting either 1s or 

20s. A 5–7s response duration is also observed for bright (67μW/mm2) white stimuli lasting 

1s or 20s (data not shown). These data indicate that PMR excitation has a finite magnitude 
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and duration, and does not continue under constant light. (Fig. 4d). Together, these data 

suggest that the minimum stimulus duration for maximum effect is approximately 1s.

In larval zebrafish, visual phototaxis behavior is triggered by changes in the relative 

intensities of field and target stimuli (Burgess et al., 2010). To determine if PMR behaviors 

are also triggered by relative changes in light intensity, we pre-adapted zebrafish embryos to 

low levels of ambient light (1 μW/mm2) for 10 min prior to PMR analysis. Next, we 

exposed these light-adapted animals to a large relative increase in brightness. Surprisingly, 

even very intense stimuli (67 μW/mm2) do not trigger PMR excitation in light adapted 

animals (Fig. 4a). Thus, unlike visual phototaxis, the PMR depends on dark adaptation, 

rather than relative changes in light intensity.

A discrete set of hindbrain neurons drive PMR behaviors

To understand which neurons in the brain may be activated during the PMR, we measured 

neuronal activity in transgenic zebrafish expressing the genetically encoded fluorescent 

calcium indicator GCaMP2 (Diez-Garcia et al., 2007) under the pan-neuronal HuC promoter 

(Park et al., 2000). By monitoring the neuronal fluorescence changes elicited by photic 

stimuli with two-photon laser scanning microscopy, we were able to identify the specific 

location of neurons involved in the PMR (Fig. 5a). In 7 responsive 32–38 hpf fish, neurons 

in the caudal hindbrain, but not in the forebrain or midbrain, showed robust excitation to the 

photic stimulus, consistent with the hypothesis that supraspinal input is necessary to drive 

PMR behaviors. Figure 5b shows that in one representative animal, 21 neurons and 2 

distinct fiber tracts fire synchronously during the PMR, illustrating the common pattern of 

excitation in response to the photic stimulus (Fig. 5b). By pooling the normalized positions 

of identified regions of interest (ROIs) across responsive fish, we show that active neurons 

are distributed throughout the caudal hindbrain (Fig. 5E), with the highest frequency of 

active neurons in Ro8, ~45μm caudal to the first occipital nerve (Fig. 5f, bottom, blue). 

ROIs also cluster with greatest frequency 35μm from the ventral surface on the brain (Fig. 

5f, top right, orange) and 10μm from the lateral surface of the brain (Fig. 5f, top left, cyan). 

Some PMR-correlated neuronal activity was also observed in the anterior spinal cord 

(dashed line in Fig. 5e). All observed neuronal responses are likely to correspond to the 

PMR because activity is consistently locked to stimulus onset with a fixed latency and can 

only be observed following the first stimulus after a long refractory period. Across all 

identified ROIs, the median time to fluorescence onset was 2.5s, and the median duration of 

the calcium response was 6s (Fig. 5c), in close agreement with the latencies and durations of 

the coiling and swimming events that occur during PMR excitation (Fig. 1 and 2). When 

hindbrain activity is compared with forebrain activity during stimulus trials, a pronounced 

difference in both the density of identified ROIs and the amplitude of detected responses 

emerges (Fig. 5d). These data support the conclusion that the PMR stimulus specifically 

recruits neurons in the hindbrain. Furthermore, the density of responsive ROIs in the 

hindbrain during stimulus trials is significantly different from the density during no stimulus 

trials. These data reiterate that hindbrain responses during stimulus presentation are 

stimulus-evoked and not artifacts of the experimental preparation (e.g. two-photon 

scanning). The few hindbrain responses detected during no stimulus trials most likely reflect 

baseline spontaneous activity in hindbrain circuits. Note that due to limitations of the 
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calcium sensor, it remains possible that we are underestimating the number and distribution 

of responsive neurons. Nonetheless, the anatomical clustering of identified ROIs, coupled 

with the similarity of neuronal response and behavioral response parameters, suggests that a 

discrete set of hindbrain neurons drive PMR motor activity.

Opsins are necessary for the PMR

Vertebrate photosensation requires the opsins, a large family of retinal-based G protein 

coupled receptors (Peirson et al., 2009). To determine if neurons in the zebrafish hindbrain 

sense photic stimuli via opsin-based phototransduction, we analyzed the effects on opsin 

impairment on PMR behavior. The zebrafish genome encodes >10 extra-retinal opsins with 

different expression patterns and functions including at least 5 melanopsin isoforms (Matos-

Cruz et al., 2011). We chose 3 candidate opsin genes for further analysis including exo-

rhodopsin, valopsinA and valopsinB (Kojima et al., 2008). To determine if these candidate 

opsins are necessary for the PMR, we used anti-sense morpholinos to knock-down their 

expression. We find that PMR excitation is not reduced in the morphant animals, suggesting 

that these opsins are not necessary for PMR excitation (Fig 6a).

The visual retinoid cycle, depends on 11-cis retinal (Burns and Baylor 2001). To determine 

if the visual cycle is necessary for the PMR, we treated animals with the small molecule Ret-

NH2, which inhibits synthesis of 11-cis-retinal in the zebrafish (Schonthaler et al., 2007). 

We find that Ret-NH2-treated animals fail to exhibit PMR behaviors including the PMR 

excitation and inactive phases (Fig 6b–d). Importantly, Ret-NH2–treated animals appear 

otherwise normal, showing normal background motion and touch response. Melanopsin-

based photoreception is independent of the visual retinoid cycle (Tu et al., 2006), suggesting 

that melanopsin is not necessary for PMR excitation. Because PMR excitation appears to 

depend on the visual cycle, these data suggest that the PMR is mediated by one or more 

opsins in the nervous system.

DISCUSSION

Here, we have described the molecular, cellular and behavioral mechanisms of the zebrafish 

photomotor response. The PMR behavior is the first photic behavior linked to light-sensitive 

neurons in the vertebrate hindbrain and the earliest known photic behavior to develop in the 

zebrafish. At least three attributes distinguish the PMR from other previously reported 

behaviors in the zebrafish. First, the PMR latency and refractory phases are orders of 

magnitude longer than those observed for other stimuli. For example, the previously 

reported latency and refractory periods for responses to acoustic, tactile and photic stimuli 

are milliseconds in duration (Saint-Amant and Drapeau, 1998; Burgess and Granato, 2007a, 

b; Best et al., 2008), whereas the PMR latency and refractory phases last for seconds and 

minutes, respectively. Second, the neuroanatomical requirements of the PMR are distinct 

from other behaviors that occur at this time in development. For example, supraspinal input 

is necessary for the PMR, unlike spontaneous coiling, touch evoked coiling, and touch 

evoked swimming (Downes and Granato, 2006). Finally, the PMR depends on non-ocular 

photoreceptors, unlike other photic behaviors such as the light adaptation response (Burgess 
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and Granato, 2007a), optokinetic response (Rick et al., 2000) and the visual-motor response 

(Emran et al., 2007).

It appears that the early zebrafish embryo has a limited repertoire of motor responses 

consisting of coils and swims, and that these motor responses can be differentially recruited 

by specific upstream circuits (Saint-Amant and Drapeau, 1998, 2000; Brustein et al., 2003). 

Whereas touch stimuli elicit brief coiling and swimming events, the PMR evokes coils and 

swims with long latency and long duration. Because hindbrain neurons link sensory input to 

motor output, they provide an excellent starting point for studying the underlying circuitry 

of this complex series of behaviors.

Most behavioral reflexes in the zebrafish have very short refractory periods (ms). By 

contrast, the minimum inter-stimulus-interval for maximum PMR excitation is several 

orders of magnitude longer (10 min). One possible explanation for this long refractory phase 

is opsin photobleaching. Most opsins utilize cis-to-trans isomerization of the retinaldehyde 

chromophore as the primary photoreceptive event and must regenerate the cis chromophore 

to regain photosensitivity. Recovery from photobleaching occurs over a similar timescale as 

the PMR refractory phase (10 min) (Sexton et al., 2012), suggesting that photobleaching 

may explain the 10 minute inter-stimulus interval between PMR excitation phases.

Different mechanisms may control the PMR excitation and inactive/refractory phases. We 

show that light stimuli inhibit spontaneous coiling activity at 27 hpf without eliciting PMR 

excitation. At 27 hpf, spontaneous coils are generated and propagated by an extensive 

network of neurons interconnected in the spinal cord by gap junctions (Saint-Amant and 

Drapeau, 2001). Spontaneous coils are independent of chemical synaptic transmission and 

are dependent on electrical coupling of the neuronal network within the spinal cord (Saint-

Amant and Drapeau, 2001). At 27 hpf, inhibitory signals from the photomotor response cells 

may be sufficient to block spontaneous coiling. By 32 hpf, the nervous system may develop 

additional synaptic inputs that drive the PMR excitation phase. One possibility is that each 

phase may be controlled by independent photoreceptors..

Opsin-based phototransduction is based on photoisomerization of the chromophore 11-cis-

retinal to all-trans-retinal. Chromophore regeneration, via the retinoid cycle, is necessary to 

restore photoreceptors to their dark-adapted state. The small molecule Ret-NH2 is a potent 

and selective inhibitor of chromophore regeneration (Golczak et al., 2005) that reduces 

levels of 11-cis-retinal in wild-type zebrafish (Schonthaler et al., 2007). We find that Ret-

NH2 blocks PMR behaviors, suggesting that opsin-based phototransduction is necessary for 

these non-visual photic responses. However, exactly which opsin or opsins are necessary for 

PMR behaviors remains unclear. Morpholino knockdown of six candidate genes did not 

block the PMR, suggesting that an untested opsin or multiple redundant opsins may control 

PMR behaviors.

What adaptive purpose might the PMR serve for fish in the wild? Similar non-visual photic 

behaviors have been previously described in lampreys (Young, 1935), C. elegans (Edwards 

et al., 2008; Liu et al., 2010), and Drosophila (Xiang et al., 2010). In these animals, non-

visual light-induced motor behaviors appear to function as an escape response, to keep 
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animals hidden from dangerous UV radiation or predators (Xiang et al., 2010). The PMR is 

likely to serve a different purpose in zebrafish, because it only occurs prior to hatching, 

when the chorion prevents animals from swimming away. One possibility is that the PMR is 

a consequence of irradiance detection mechanisms with alternative primary functions. For 

example, it may be useful for animals to modulate neuronal excitability based on 

environmental light levels. Alternatively, the PMR may be an evolutionarily vestige with 

important ancestral functions in other organisms. Overall, the PMR presents new 

opportunities to understand the development and function of vertebrate non-visual 

photobiology and may improve our understanding of how the nervous system responds to 

light.
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Figure 1. 
Light stimuli elicit stereotyped photomotor behaviors in zebrafish embryos. Plots showing 

the combined motor activity of 10 dark-adapted zebrafish embryos in response to one (a) or 

two (b) light stimuli (red bars). (c) Plot showing the motor activity of an individual zebrafish 

during the PMR assay. High-magnitude-low-frequency peaks represent coiling events (filled 

circle), whereas low-magnitude-high-frequency peaks represent swim events (gray bar). 

Paired vertical lines at 10s and 23s are stimulus artifacts that indicate the start and end of 

each 1s stimulus. (d) Image showing the motor activity matrix of 479 individual animals. 

Matrix rows represent individual animals and columns represent time. Arrowheads indicate 

the timing of two 1s stimuli. (e) Smoothed histograms showing the probability of coiling 

(black) and swimming (gray) events for 479 individual animals during the PMR assay. (f) 

Barplot showing the percentage of animals exhibiting coiling and swimming behaviors (y-

axis) during the indicated PMR phase (x-axis). The differences between the percentages of 

animals coiling during each phase are significant (p<0.001). The percentage of animals 

swimming during the excitation phase is significantly more than during the background and 

refractory phases (p<0.001).
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Figure 2. 
Motor circuits are strongly recruited during PMR excitation. Muscle cells were recorded in 

paralyzed embryos to assay fictive motor output. (a) The top diagram shows the 

experimental procedure while the lines below show representative traces that begin upon 

stimulus triggering. Embryos are photostimulated at the beginning of the experiment (PS0), 

followed by 10 minutes of dark adaptation with occasional spontaneous events (SE), at the 

eleventh minute the embryos receive a tactile stimulus (TS1), followed by a photostimulus 

(PS1), another tactile stimulus (TS2) and a final photostimulus (PS2). (b) Latency graph for 

tail and head tactile stimuli and photo stimuli (PS). Note the 100-fold change in the grey 

axis. (c) Box-plot showing event duration for spontaneous, tactile and photo stimuli evoked 

events. (d) Percentage of events exhibiting large struggling coils in spontaneous, tactile and 

photo evoked events. The numbers in parentheses represent the total number of motor events 

analyzed.
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Figure 3. 
The PMR is a non-visual photic behavior. (a) Lineplot showing behavioral excitation scores 

of animals tested at the indicated developmental ages (n= 10 wells). (b) The barplot 

quantifies average coils per second in 27 hpf animals before (pre) and after (post) 

stimulation (n= 9 animals per group). The difference between pre- and post-stimulation in 

light-treated animals is significant, p<0.01(*). The inset shows an example plot of reduced 

motor activity post- stimulation in a 27 hpf animal. (c) Images showing example 

preparations; upper panel. Preparation I is an intact animal. Solid, dashed and dotted lines 

indicate the locations of transections in panels II, III and IV. Preparation II lacks all 

forebrain and midbrain structures, but retains the posterior hindbrain. Preparation III lacks 

all supraspinal input but remains touch sensitive, and IV lacks a portion of the tail. Barplot 

showing behavioral excitation scores for the indicated preparations (n= 5 wells). Group III is 

significantly different from all other groups, p>0.001. Note that reduced excitation score in 

tailless fish (type IV) is due to fewer moving pixels in these truncated animals. (d) Drawing 

of 30hpf zebrafish embryo showing stimulus locations (red boxes); upper panel. Barplot 

showing the behavioral excitation scores of animals stimulated at the indicated locations (n= 

3 animals, each animal stimulated in every condition); lower panel. The difference between 

the group receiving hindbrain stimulation all other groups is significant, p<0.001. All values 

are the mean and standard deviations.
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Figure 4. 
The PMR is a response to visible light. (a) Barplot showing behavioral excitation scores in 

response to white light stimuli (1s) at the indicated intensity (n=10). The difference between 

the groups treated with 1 and 13 μW*mm−2 is significant, p<0.001. Significantly more 

activity is elicited by 33 μW*mm−2 than 13 μW*mm−2, p<0.005. “1, 67” indicates that these 

animals were pre-exposed to low levels of ambient light (1 μW/mm2) for 10min prior to 

PMR analysis with a 67 μW/mm2 stimulus. (b) Table showing the effects of stimuli at the 

indicated wavelengths and intensities. Stimuli that trigger PMR excitation are indicated by 

(+), stimuli that did not are indicated by (−). (c) Barplot showing behavioral excitation 

scores in response to white light stimuli for the indicated stimulus duration (n= 5). An 

analysis of variance showed that the differences between groups exposed to 0.5s or less are 

not statistically significant. There is a statistically significant difference between the 0.5s 

treatment group and the 1s, 10s and 20s treatment groups p<0.05. The difference between 

0.7s and 10s is also significant, p<0.05 (d) Barplot showing the duration of behavioral 

excitation in response to stimuli of the indicated duration (n= 5). The difference between the 

0.1s and 20s treatment groups are significant, p<0.001. All values are mean and standard 

deviations.
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Figure 5. 
A discrete set of neurons is activated during the PMR. (a) Left, three-dimensional projection 

of a typical 36 hpf embryonic zebrafish brain expressing GCaMP2 under the pan-neuronal 

HuC promoter. The orange outline denotes the anatomical border of the embryo. Right, 13 

representative optical slices separated by 3 μm in the hindbrain region outlined in red. 

Neuronal responses to blue light stimulation (bars) are shown beside each slice. Red traces 

show the change in average fluorescence for the entire slice, black traces show the smoothed 

change in fluorescence for all active regions in the slice. (b) Activated neurons (green) and 

corresponding smoothed fluorescence changes from a single slice in the same embryo as (a). 

Traces 1 and 2 (red) show representative neuropil responses from the regions outlined by the 

dashed red lines. The image in (b) corresponds to the plane labeled with (*) in (a). (c) 

Boxplots showing the distribution of hindbrain neuronal response latencies, durations, and 

amplitudes during the PMR. (n=318–328 ROIs, 7 embryos). (d) Mean detected neuronal 

ROI densities (ROIs/1000 μm3, white) and response amplitudes (black) in the hindbrain 

(HB, 369 ROIs, 132 volumes) and forebrain (FB, 56 ROIs, 153 volumes) of three 36 hpf 

embryos. The same quantities are plotted for the hindbrain during trials without stimulus 

presentation (HB–NS, 11 ROIs, 132 volumes). Error bars depict standard error of the 

mean** denotes p<0.001, Student’s t-test. (e) Top left, normalized spatial distribution of 

detected ROIs (n=273, green) from 4 fish overlaid on an average intensity projection of the 

hindbrain in a typical side-mounted 36 hpf HuC::GCamP2 fish. Bottom left, the same spatial 

distribution of neurons as viewed from a top-down image reslice. (f) Top right, orange, 

histogram quantifying the spatial distribution of identified ROIs along the D-V axis. Top 

left, cyan, histogram quantification of M-L axis. Bottom, blue, R-C axis. Solid lines in (e) 

represent the axes used to construct corresponding histograms in (f). Arrows denote the 

starting positions along each axis used for histogram construction. Dotted white lines denote 

the hindbrain-spinal cord boundary. For reference, the dotted red line in (e) delineates the 

rostral extent of the image in (b).
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Figure 6. 
Opsin phototransduction is necessary for photomotor excitation

(a) Barplot showing behavioral excitation scores of uninjected controls (None), and animals 

injected with morpholinos targeting exorhodopsin (exRho), valopsin A and valopsin B 

(valopA,B) and the three opsins together (exoRho + valopA,B) (n= 5 wells, 10 animals per 

well). Morphant scores are not significantly less than the controls. (b–d) Gel images 

showing the efficacy of the splice blocking morpholinos tested in (a). (e) Barplot showing 

number of motion index spikes per second of animals treated with DMSO, or the opsin 

inhibitor retNH2 (n= 5). For DMSO treated control animals, spike rate is significantly 

greater during the excitation phase (Exc) and significantly lower during the inactive phase 

(Inactive) as compared to background (Bkgrnd), p<0.01. For retNH2 treated animals, spike 

rate is not significantly different during any of the phases. Examples from animals treated 

with DMSO (f), or retNH2 (g) are shown.
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