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Supplementary Figure 1.
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Supplementary Figure 1. Whole-animal Ca?*-imaging of C. elegans.

(a) Maximum intensity projection (MIP) of light field deconvolved image (15 iterations)
of the whole worm shown in Fig. 2d, containing 14 distinct z- planes. Neurons contained
in red boxes were further analyzed in (b-f). NeuronIDs of z-stack in b match with
heatmap plot of neuronal activity in fand show neurons identified in the head using an
automated segmentation algorithm, while ¢ shows neuronIDs along the ventral cord
with corresponding heatplot map shown in e. Scale bar 50 um.



Supplementary Figure 2. High-resolution images of Fig. 2e and Fig. 2f indicating Neuron ID numbers.
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Supplementary Figure 2. High-resolution images of Fig. 2e and Fig. 2f indicating
Neuron ID numbers in z-planes in (a) and heatmap plot of neuronal activity of all
neurons in (b).



Supplementary Figure 3. Identification of neuron classes in C. elegans during chemosensory stimulation.
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Supplementary Figure 3. [dentification of neuron classes in C. elegans during
chemosensory stimulation.

Whole brain LFDM recording at 5 Hz of C. elegans under consecutively changing O
concentrations (30 seconds time-shifts). (a) Maximum intensity projection (MIP) of light
field deconvolved image (8 iterations) of the worm'’s head region, containing 7 distinct z-
planes. Neuron classes were identified based on location and typical Ca%*-signals, whose
individual traces are shown in b. (c) Individual z-plane containing the oxygen-downshift
sensing neuron BAG at various time-points before, during and after stimulus,
respectively. (d) Fluorescence traces of oxygen sensory neurons BAG and URX, with
varying Oz concentrations indicated by shading. Scale bar is 20 ym in a and c.



Supplementary Figure 4. High-speed Ca?*-imaging of unrestrained C. elegans at 50 Hz.
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Supplementary Figure 4. High-speed Ca2*-imaging of unrestrained C. elegans at 50 Hz.
Selected time-series of the LFDM recording of freely-moving worms at 50 Hz shown in
Supplementary Video 4. (a) Overlay of 10 consecutive frames, with colors coding for
different time-points. This is equivalent to an effective frame-rate of 5 Hz. At this speed,
motion blur would lead to ambiguous discrimination of individual neurons, as is clearly
visible in the inset. In contrast, in (b) we show the individual frames of the same time-
series as recorded with 50 Hz (20 ms exposure time). At this speed, motion blur is
almost non-existent. This demonstrates that 50 Hz are sufficient to follow the activity of
unrestrained worms, especially if additional worm tracking would be employed. Scale
bar is 50 um in a and b. Also see Supplementary Video 3.



Supplementary Note 1 General principle, optical design choices and their effect on
resolution in 3D deconvolution light field microscopy.

Generally speaking, a conventional 2-D microscope captures a high-resolution image of a
specimen that is in focus. For volumetric specimens, the same image, however, also
contains blurred contributions of areas that are optically out of focus. Unmixing them in
post-processing is an ill-posed problem and usually not possible. Scanning microscopes
solve this problem by measuring each point in the 3-D volume sequentially. While this is
an effective process, it is time-consuming and not always applicable to capturing
dynamic events or moving specimens. Light field microscopes change the optical
acquisition setup to capture different primitives: instead of recording individual points
sequentially, light field microscopes capture “rays” of light, that their summed emission
through the 3-D volume. Instead of recording them in sequence, a set of “rays” - the light
field - is multiplexed into a single 2-D sensor image. This spatial, rather than temporal,
approach to multiplexing drastically improves acquisition speed at the cost of reduced
resolution. To recover the 3-D volume from measured emission, a computed
tomography problem has to be solved. Following Ref. 1, we implement this
reconstruction step as a deconvolution. Please note that while the light field is
conceptually comprised of geometric rays, in practice the image formation and inversion
also considers diffraction, as discussed in the primary text.

Light field microscopes support all objective magnifications, but usually benefit from a
high numerical aperture (NA) and microlenses that are matched with the NA of the
employed objective. The choice of objective and microlens array determines the spatial
resolution and field-of-view in all three dimensions. The pitch, i.e. the distance between
the microlenses, in combination with the sensor’s pixel size and objective magnification
controls trade-off between spatial resolution vs. field-of-view while the objective’s
magnification and numerical aperture control axial resolution vs. axial range.
Furthermore, the field-number of the microlenses needs to match that of the objective in
order to preserve the maximum angular information in the light fields 2.

Due to the variation in sampling density, reconstructed volumes have a lateral
resolution that varies along the optical axis. On the focal plane, achievable resolution is
equivalent to conventional LFM, i.e. the size of each microlens divided by the
magnification of the objective lens (150 um / 40x = 3.75 um in our system). The
resolution increases for lateral sections close to the focal plane, ~1.5um laterally in our
implementation, but drops at larger distances, e.g. to ~3 um laterally at -25 um, in
accordance with Ref. 1. We find similar behavior with the 20x 0.5NA lens used in our
zebrafish recordings. Here we find a maximum resolution of ~3.4 ym (~11 um) laterally
(axially) based on a reconstructed point spread function (see also Fig. 3a).

It is also possible and straightforward to design microlens arrays for higher
magnification objectives in order to look at smaller samples. Following the criteria
outlined in Ref. 2, microlenses can be designed taking into account the trade-offs
between lateral and axial resolution. For instance we have performed simulations for a
100x 1.4NA oil objective and a f-number matched microlens of 100 ym pitch, and found
that our LFDM should have a resolution of ~0.27 um (1 um) laterally (axially). The
lateral field of view would be 140 ym with a sSCMOS camera similar to the one used in
this work and we would expect a useful axial range of 10-15 ym.



Supplementary Note 2 Volume reconstruction for 3D-deconvolution light field
microscopy and computing requirements.

The software for 3D reconstruction was written in MATLAB (Mathworks) using its
parallel computing toolbox to enable multi-core processing, and allows choosing
between CPU- and GPU-based executions of the algorithm. The software consists of
three different parts: point spread function (PSF) computation, image rectification /
calibration, and 3D volume reconstruction. To generate PSFs, we compute the wavefront
imaged through the microlens array for multiple points in the volume using scalar
diffraction theory 3. We also exploit the circular symmetry of PSF for its computation,
which results in a boost in computational speed. To faithfully represent the high spatial
frequency component of the wavefront, computations are performed with a spatial
oversampling factor of 3x compared to the size of the virtual pixels that correspond to
the resampled image.

For the image rectification and calibration, the size and location of each microlens with
respect to the sensor pixels are estimated using calibration images showing a
fluorescent slide and a collimated beam. An open source software named LFDisplay
[http://graphics.stanford.edu/software/LFDisplay/], for example, can be used to locate
the microlenses with respect to the pixels. Once the size and the location of each
microlens is determined, captured images are resampled to contain 15x 15 (11 x 11)
angular light field samples under each microlens. The target axial resolution of
reconstructed volumes is 2 (4) um, which requires 12-16 (51) z-slices for worm
(zebrafish) samples.

The essential operations for volume reconstruction are based on computing large
number of 2-dimensional convolutions. Therefore reconstruction speed depends heavily
on the implementation of the convolution operation and its speed. Using the convolution
theorem, this problem can be accelerated by computing on graphical processor units
(GPUs) in the Fourier domain. The underlying fast Fourier Transform (FFT) can be
computed in O(nlogn) operations whereas conventional convolution requires 0O(n?)
operations. Furthermore, the FFT is well suited for GPU computing, and we found this to
result in significant (up to 20x) reduction in computing time compared to 12-core CPU
based execution. With GPU computing method, reconstructing individual frames of
recorded image sequences using Richardson-Lucy deconvolution method took between
2 and 6 min, depending on the size of the image, on a workstation with one Nvidia Tesla
K40c GPU and 128GB of RAM. Specifically, the reconstruction of only the head ganglia
region of C. elegans (Fig. 2c-e) took about 2 minutes where the reconstruction of the
whole C. elegans took about 6 minutes with 8 iterations of the deconvolution algorithm.
Similar times were measured for zebrafish volume reconstructions.

In comparison, CPU based computing on 12 parallel cores required between 5 and 30
min. However, by parallelizing the reconstruction on a medium sized cluster employing
~40 nodes, we found that a typical 1000 frame movie of whole C.elegans (such as in
Supplementary Video 1) could be reconstructed within ~12 hours. Cloud based
computing options, e.g. through Amazon Web Services and other competing online tools,
might also provide efficient means for large-scale volume reconstruction.



Reconstruction times of image sequences could be further optimized by using the
reconstructed volume of one frame as the initial guess for the next. This removes the
need for multiple algorithmic iterations at each frame and is well-justified because the
imaging speed was sufficiently faster than both neuronal activity and movement of the
worm.

Supplementary References

1. Broxton, M. et al., Optics Express 21, 25418 (2013).

2. M. Levoy, M. et al.,, ACM Trans. Graph. 25,924 (2006).

3. Gu, M. Advanced Optical Imaging Theory, Springer ISBN-10: 981402130X
(1999).



