Prediabetes, Elevated Iron, and All-Cause Mortality: A Cohort Study

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>bmjopen-2014-006491</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Research</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>28-Aug-2014</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Mainous III, Arch; University of Florida, Health Services Research, Management, and Policy</td>
</tr>
<tr>
<td></td>
<td>Tanner, Rebecca; University of Florida, Health Services Research, Management, and Policy</td>
</tr>
<tr>
<td></td>
<td>Coates, Thomas; Keck School of Medicine, Baker, Richard; University of Leicester, Health Sciences</td>
</tr>
<tr>
<td>Primary Subject Heading:</td>
<td>Diabetes and endocrinology</td>
</tr>
<tr>
<td>Secondary Subject Heading:</td>
<td>Haematology (incl blood transfusion)</td>
</tr>
<tr>
<td>Keywords:</td>
<td>General diabetes < DIABETES & ENDOCRINOLOGY, HAEMATOLOGY, DIABETES & ENDOCRINOLOGY</td>
</tr>
</tbody>
</table>
Prediabetes, Elevated Iron, and All-Cause Mortality: A Cohort Study

Running Title: Prediabetes, Elevated Iron, and All-Cause Mortality

Arch G. Mainous III, Rebecca J. Tanner, Thomas D. Coates, Richard Baker

Author Affiliations and Addresses

Department of Health Services Research, Management and Policy, University of Florida.
P.O. Box 100195, Gainesville, FL 32610-0195 (AGM, RJT)

Department of Community Health and Family Medicine, University of Florida, P.O. Box
100237, Gainesville, FL 32610-0237 (AGM).

Department of Pediatrics and Pathology, University of Southern California Keck School
of Medicine (TDC)

Department of Health Sciences, University of Leicester, 22-28 Princess Rd West,
Leicester LE1 6TP, United Kingdom (RB)

Financial Support: Funded in part by cooperative agreement 1U01DD000754-01 from
the Centers for Disease Control and Prevention.

Corresponding Author:
Arch G. Mainous III, PhD
Department of Health Services Research, Management and Policy
University of Florida
P.O. Box 100195
Gainesville, FL 32610-0195
Phone: 352-273-6073
Fax: 352-273-6075
Email: arch.mainous@ufl.edu

Main Text Word Count: 2460

Abstract Word Count: 212

Key Words: prediabetes, transferrin saturation, NHANES, Mortality
ABSTRACT

Objectives: Data have indicated low to nonexistent increased mortality risk for individuals with prediabetes, but it is unclear if the risk is increased when the patient has elevated iron markers. Our purpose was to examine the mortality risk among adults with prediabetes in the context of co-existing elevated transferrin saturation (TS).

Participants: Individuals age 0 and older who participated in the NHANES and provided a blood sample.

Primary Outcome Variable: Mortality was measured as all-cause mortality.

Results: Adjusted analyses show that prediabetes has a small increased mortality risk (HR =1.04; 95% CI, 1.00-1.09). Among persons with prediabetes who had elevated TS, they had an increased mortality risk (HR=1.56; 95% CI, 1.12-2.17) compared with those with normal TS levels and normal glucose. Persons who had prediabetes and elevated iron on two markers (TS/ferritin) had an even higher increased hazard ratio for death (2.28; 95% CI, 1.25-4.14) compared with those who had normal iron markers and normal glucose.

Conclusion: The mortality risk of prediabetes is low. However, among individuals who have co-existing elevated iron markers, the risk rises substantially.
STRENGTHS AND LIMITATIONS OF STUDY

- This study utilizes a nationally representative population-based cohort that allows generalization of results to the population of the United States.
- Mortality was left-censored to control for the potential misclassification of people who were very ill at baseline.
- Biomarkers for elevated iron and prediabetes were available only at baseline.
- We were able to only observe individuals for 12 years, which may be insufficient to adequately see an effect on mortality for prediabetes.
INTRODUCTION

Prediabetes is defined by blood glucose concentrations that are higher than normal, but lower than established thresholds for diabetes.\(^1\) Prediabetes is a high risk state for the development of not only diabetes, but also associated complications. Recent data have shown that in developed countries such as the United States and the United Kingdom more than a third of adults have prediabetes but the vast majority of these do not realize it.\(^2-4\)

Several studies have shown that prediabetes is a mortality risk.\(^5,6\) On the other hand, other studies have found that prediabetes is not a mortality risk.\(^7-10\) Still other studies showed that the relationship was not very robust and was dependent on the measure of prediabetes.\(^11\)

Three different meta-analyses of observational studies have concluded that elevated iron indices like serum ferritin and transferrin saturation (TS) are strongly associated with increased risk for developing diabetes.\(^12-14\) In addition to increased risk of diabetes, elevated TS or elevated ferritin is associated with increased mortality in the general population.\(^15-20\) Further, recent evidence suggests that among patients with diabetes, mortality risk increases in the presence of elevated ferritin or elevated TS.\(^21,22\) We therefore hypothesize that the mortality risk of individuals with prediabetes will be increased in the presence of elevated iron markers.

Considering that only about 10% of the US population with prediabetes realize that they have prediabetes, a better understanding of the potential mortality risk is warranted. Consequently, the purpose of this study was to evaluate the association
between prediabetes, elevated serum TS, elevated TS and elevated ferritin combined, and mortality in a large, nationally representative cohort.

METHODS

We conducted longitudinal analyses of the third National Health and Nutrition Examination Survey, 1988-1994 (NHANES III) linked to mortality data collected through the National Death Index. Mortality data were available through December 31, 2006. The NHANES III survey provides population estimates of the United States and was conducted from October, 1988 through October, 1994. The NHANES III used complex, multi-stage, stratified, clustered samples of civilian, noninstitutionalized population. A total of 30,818 persons were examined in their homes or in mobile examination centers (MEC) which visited 89 communities across the United States. The health examination included collection of blood and urine specimens for the conduct of various laboratory analyses.

The NHANES III data merged with the National Death Index is a prospective cohort study that passively followed up on the participants in the NHANES III. The linked mortality file uses a probabilistic matching method.23 We limited our study to individuals 40 years old and older at baseline, the time of their NHANES III interview. The National Death Index involves searching national databases containing information about mortality and causes of death. Mortality status was ascertained by computerized matching to national databases and evaluation of the resulting matches. Persons not found to be deceased were assumed alive for analytic purposes. All living survey participants had been observed for at least 146 months, and our survival analysis was carried out to December 31, 2006.

Previously Diagnosed Diabetes
The NHANES III assessed participants for diagnosed diabetes using the questions, “Have you ever been told by a doctor that you have diabetes or sugar diabetes?”, “Were you pregnant when you were told that you had diabetes?” and “Other than during pregnancy, has a doctor ever told you that you have diabetes or sugar diabetes?” We defined participants as having diagnosed diabetes if they answered “yes” to ever having been told they had diabetes, excluding pregnancy. Individuals with previously diagnosed diabetes were removed from the analysis. We also removed individuals with an HbA1c of 6.5% or greater, to account for undiagnosed diabetes.

Prediabetes

We defined prediabetes among individuals without previously diagnosed diabetes using HbA1c ranges as specified by the American Diabetes Association, 5.7%–6.4% (39-46 mmol/mol). This range has been shown in a meta-analysis to be predictive of progression to diabetes. We excluded individuals with previously diagnosed diabetes because the current glycemic status of those patients may simply represent diabetes control. Prediabetes status was missing for 1,123 of the NHANES respondents over the age of 40.

Transferrin Saturation

Serum iron and total iron-binding capacity (TIBC) were measured in serum, and calculated by dividing serum iron by TIBC and multiplying by 100. For the analyses, TS was categorized as: <50% and ≥50%. Despite the lack of universal agreement on the upper and lower limits of normal TS, this cut point has been used in several studies evaluating diabetes, TS and mortality. Data was missing for transferrin saturation level for 1,288 of the NHANES respondents over the age of 40.
Serum Ferritin

Serum ferritin was used as a measure of body iron stores and was measured using the QuantImune Ferritin IRMA kit. Serum ferritin was categorized for the analyses as <898.80 SI units and ≥898.80 SI units (400 ng/mL). Data was missing for serum ferritin level for 1,288 of the NHANES respondents over the age of 40.

Elevated Iron

Individuals with both elevated serum ferritin and TS levels were considered to have elevated iron. Data was missing for elevated iron for 1,288 of the NHANES respondents over the age of 40.

Mortality

Mortality was measured as all-cause mortality. Mortality status was ascertained solely by computerized matching to national databases and evaluation of the resulting matches. Mortality status was missing for 15 of the NHANES respondents over the age of 40.

Covariates

Covariates used in our analyses included: age at baseline in the NHANES III, gender, race/ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, and other race), health insurance status, obesity (Body Mass Index computed in the exam of ≥30), previous diagnosis of a heart attack, previous diagnosis of a stroke, previous diagnosis of hypertension, previous diagnosis of hypercholesterolemia, previous diagnosis of cancer, family history of diabetes, family history of myocardial infarction before age 50, and current smoking status. Respondents were considered non-smokers if they reported...
smoking at least 100 cigarettes in their life or if they had smoked more than 100 cigarettes and were not currently smoking.

Analysis

In an effort to control for potential misclassification of persons who were very ill at baseline thereby affecting mortality risk of prediabetes, we left-censored the analysis to exclude any mortality events that occurred in the first three years following the individuals examination for the first three years of the cohort. For the analyses of mortality, we used sampling weights (specifically, the total MEC and Home examined weight) to calculate prevalence estimates for the civilian noninstitutionalized US population. Because of the complex sampling design of the survey, we performed statistical analyses using the statistical software package SUDAAN (Research Triangle Institute, Raleigh, NC), as recommended by the National Center for Health Statistics. Using SAS (Cary, NC), we computed Kaplan-Meier plots to show graphically the unadjusted relationship between all-cause mortality and prediabetes.

To accomplish our goals of examining a possible synergistic effect of having elevated iron with prediabetes we classified the population into 4 groups based upon prediabetes or normoglycemia and normal and elevated TS. We also classified the population into 4 groups based upon prediabetes or normoglycemia and normal and elevated iron based on levels of TS and ferritin.

We performed Cox proportional hazards analyses to measure the associations between all-cause mortality and prediabetes alone and for prediabetes controlling for all of the studied covariates using listwise deletion to account for missing data. In these
models, survival time was a continuous variable measured in 1-month increments from the date of the exam.

We also performed unadjusted Cox proportional hazards analysis with all-cause mortality for prediabetes in the 4 part variables with TS, ferritin and iron overload. We then conducted analyses adjusting for the aforementioned covariates.

We evaluated the proportionality of the hazards through examination of the Schoenfeld residuals.

RESULTS

A total of 8,041 (unweighted) individuals were over 40 years old and had HbA1c levels under 6.4%. Baseline characteristics for the sample are shown in Table 1. Table 1 indicates that 23.0% of the weighted sample had prediabetes, less than 7.0% of the sample exhibited elevated serum ferritin, and less than 4.0% had elevated TS. Elevated iron was indicated in 1.4% of the sample.

Table 2 shows the results of unadjusted and adjusted Cox proportional hazards models for prediabetes. The Kaplan Meier curve of the survival and prediabetes over the length of the time under observation is shown in Fig 1.

Table 3 presents results of the analyses combining prediabetes with iron markers. In models that examined the impact of a prediabetes state combined with markers of low iron, the hazard ratios were similar to that of prediabetes alone. However, when combined with prediabetes, there was an increased mortality risk among individuals with TS ≥50%, and even higher when individuals had TS >50% and serum ferritin >898.80 SI units (400 ng/mL). Figure 2 represents the relationship of survival of the four groups over the 12 years under observation. Individuals with prediabetes in the presence of elevated
iron have lower survival probabilities than other groups. An examination of the Schoenfeld residuals suggested proportionality of hazards and appropriateness of the statistical model for these analyses.

DISCUSSION

The results of this study in a nationally representative cohort that followed individuals for 12 years confirm that the mortality risk of prediabetes is probably low. This is not unexpected based on the mixed results from previous studies, several of which found either no future mortality risk or risk that was not robust across measures. However, we found that the presence of markers of elevated iron is associated with increased mortality risk of individuals with prediabetes. Among individuals with normal iron levels, those with prediabetes had low mortality risk levels similar to the adjusted risk of prediabetes alone. On the other hand, in adjusted survival analyses, individuals with prediabetes who also had elevated iron levels had more than twice the mortality risk. These findings extend previous work on iron markers and diabetes to the previously uninvestigated area of prediabetes.

These results suggest that additional stratification of individuals with prediabetes on the basis of iron markers would be useful to identify those with higher risk and who might benefit from iron lowering therapies. Previous data has indicated that elevated iron markers are associated with the development of diabetes and that among individuals with diabetes the co-occurrence of elevated TS increases those patients’ mortality risk. Early identification of individuals with both conditions (prediabetes, elevated iron) may help in both slowing the development of diabetes as well as decreasing mortality risk. It is important for early identification of these individuals because much like individuals with
prediabetes, the vast majority of individuals with elevated iron do not know it.\(^{25}\) These individuals need to be identified to mitigate the increased risk posed by elevated iron in combination with prediabetes. Such individuals would be targets for intensive interventions to reduce risk, including typical lifestyle interventions shown to help avoid the onset of diabetes in people at high risk.\(^{26}\) Although more research is needed into the ability of interventions on iron in prediabetes to affect development of diabetes and mortality risk, some data suggest that reduction of TS improves HbA1c and glucose control.\(^{27}\)

These associations of TS and ferritin with mortality in the context of prediabetes are not surprising especially if elevations of these parameters are interpreted in light of current understanding of iron toxicity.\(^{28}\) Iron, whether absorbed as iron salts or in dietary heme is processed by enterocytes and released into the plasma where it is transported in a non-reactive state bound to transferrin. Iron that is bound to transferrin is in the Fe\(^{3+}\) state and is not reactive and, therefore, not toxic. However, when TS is above 40 to 50%, free iron or so-called non-transferrin-bound iron (NTBI) is released into the plasma as the buffering ability of transferrin is exceeded.\(^{29}\) Labile plasma iron (LPI) is a highly reactive subspecies of NTBI that interacts with hydrogen peroxide through Fenton chemistry to form the extremely powerful oxidants, hydroxyl radical and singlet oxygen. These are the free radicals that ultimately directly damage protein and DNA. Perhaps more importantly, NTBI/LPI species are able to enter cells via ion channels. These channels, unlike the transferrin receptor, are not regulated so this reactive iron freely enters the cytoplasm of the pancreas, pituitary, and heart.
The current results suggest that exposure to excessive free iron is dangerous in the context of prediabetes. Furthermore, elevated ferritin and TS predict poor diabetes control and phlebotomy to reduce iron even over short periods of time improve HbA1c in parallel with changes in TS, even though ferritin is not changed, putting further emphasis on the fact that NTBI/LPI reflected by TS is the proximal cause of the toxicity. Reduction in TS by phlebotomy has been shown to improve measures of diabetic control. Furthermore, correction of severe iron overload can significantly improve glucose tolerance. Thus, the finding that a baseline measure of high TS as point measure of toxic free iron plus elevation of ferritin, evidence of elevated cytosolic iron over a longer period of time, predicts increased risk of mortality among individuals with prediabetes supports the premise that toxic free iron is a health risk.

This study has several limitations. First, although we have a nationally representative, population-based cohort followed through the National Death Index, the biomarkers are measured only at baseline. There is the possibility that either the hyperglycemia or elevated iron measures were identified and interventions were implemented to lower these biomarkers. If that were the case and a substantial number of individuals did drop their levels due to interventions thereby decreasing the potential mortality risk, the observed adjusted risk of 2.28 for individuals elevated at baseline is even more concerning. Second, we were only able to follow these individuals for a little more than 12 years. It is possible that this time frame may have been too short to adequately see an effect for a biomarker like prediabetes. However, we did censor the first three years of mortality so that any deaths in that time frame would not be attributed
to prediabetes. The model still found a substantial mortality risk for the prediabetes plus iron markers in this length of time.

In conclusion, this study representative of the population of the United States helps to clarify the current evidence on the mortality risk of prediabetes and provides further support for the role of elevated iron markers in health risk. Future screening and intervention programs for prediabetes may benefit from additional strategies to recognize and treat iron elevations.
ACKNOWLEDGEMENTS

Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

FUNDING

Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

CONTRIBUTION STATEMENT

AGM: conception, design, analysis, and drafting of manuscript
RJT: design, analysis, and drafting of manuscript
TDC: conception, design, and drafting of manuscript
RB: design and analysis

COMPETING INTERESTS

The authors report no competing interests.

DATA SHARING STATEMENT

Data from this study are publicly available on the Internet through the National Center for Health Statistics.
REFERENCES

16. Kim KS, Son HG, Hong NS, Lee DH. Associations of serum ferritin and transferrin % saturation with all-cause, cancer, and cardiovascular disease mortality: Third National

Table 1: Baseline Characteristics of the Cohort

<table>
<thead>
<tr>
<th></th>
<th>All Respondents (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted Sample Size</td>
<td>8,041</td>
</tr>
<tr>
<td>Weighted Sample Size</td>
<td>81,152,997</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
</tr>
<tr>
<td>40-54</td>
<td>49.7</td>
</tr>
<tr>
<td>55-69</td>
<td>31.2</td>
</tr>
<tr>
<td>70+</td>
<td>19.2</td>
</tr>
<tr>
<td>Sex, male</td>
<td>46.3</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>82.1</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>8.3</td>
</tr>
<tr>
<td>Hispanic</td>
<td>6.6</td>
</tr>
<tr>
<td>Asian/Other</td>
<td>2.9</td>
</tr>
<tr>
<td>Has health insurance</td>
<td>93.5</td>
</tr>
<tr>
<td>Obese</td>
<td>23.5</td>
</tr>
<tr>
<td>Current Smoker, %</td>
<td>23.5</td>
</tr>
<tr>
<td>Has diagnosed hypertension, %</td>
<td>31.3</td>
</tr>
<tr>
<td>Ever had heart attack, %</td>
<td>2.8</td>
</tr>
<tr>
<td>Ever had stroke, %</td>
<td>5.3</td>
</tr>
<tr>
<td>Ever had cancer, %</td>
<td>12.3</td>
</tr>
<tr>
<td>Relative with diabetes, %</td>
<td>41.0</td>
</tr>
<tr>
<td>Relative with heart attack before age 50, %</td>
<td>15.4</td>
</tr>
<tr>
<td>High Transferrin Saturation, %</td>
<td>3.9</td>
</tr>
<tr>
<td>High Serum Ferritin, %</td>
<td>6.6</td>
</tr>
<tr>
<td>Elevated Iron, %</td>
<td>1.4</td>
</tr>
<tr>
<td>Prediabetes, %</td>
<td>23.0</td>
</tr>
<tr>
<td>Assumed deceased, %</td>
<td>30.7</td>
</tr>
</tbody>
</table>
Table 2: Unadjusted and Adjusted Hazard Ratios from Cox Regression for Mortality Risk of Individuals with Prediabetes

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediabetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prediabetes</td>
<td>1.14</td>
<td>1.10-1.18</td>
</tr>
<tr>
<td>Normoglycemia</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Adjusted Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prediabetes</td>
<td>1.04</td>
<td>1.00-1.09</td>
</tr>
<tr>
<td>Normoglycemia</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

aAdjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, and family history of early heart attack.
Table 3: Unadjusted and Adjusted Hazard Ratios from Cox Regression for Mortality Risk of Individuals with Prediabetes and Iron Markers

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal TS/Normoglycemia</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Normal TS/Prediabetes</td>
<td>1.14</td>
<td>1.10-1.18</td>
</tr>
<tr>
<td>High TS/Normoglycemia</td>
<td>1.01</td>
<td>0.94-1.09</td>
</tr>
<tr>
<td>High TS/Prediabetes</td>
<td>1.39</td>
<td>1.09-1.77</td>
</tr>
<tr>
<td>Adjusted Model<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal TS/Normoglycemia</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Normal TS/Prediabetes</td>
<td>1.04</td>
<td>1.00-1.08</td>
</tr>
<tr>
<td>High TS/Normoglycemia</td>
<td>1.05</td>
<td>0.93-1.18</td>
</tr>
<tr>
<td>High TS/Prediabetes</td>
<td>1.56</td>
<td>1.12-2.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal TS+Ferritin/Normoglycemia</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Normal TS+Ferritin Iron/Prediabetes</td>
<td>1.14</td>
<td>1.10-1.18</td>
</tr>
<tr>
<td>Elevated TS+Ferritin/Normoglycemia</td>
<td>1.1</td>
<td>0.93-1.29</td>
</tr>
<tr>
<td>Elevated TS+Ferritin/Prediabetes</td>
<td>1.87</td>
<td>1.18-2.95</td>
</tr>
<tr>
<td>Adjusted Model<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal TS+Ferritin/Normoglycemia</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Normal TS+Ferritin Iron/Prediabetes</td>
<td>1.04</td>
<td>1.00-1.08</td>
</tr>
<tr>
<td>Elevated TS+Ferritin/Normoglycemia</td>
<td>1.20</td>
<td>0.94-1.53</td>
</tr>
<tr>
<td>Elevated TS+Ferritin/Prediabetes</td>
<td>2.28</td>
<td>1.25-4.14</td>
</tr>
</tbody>
</table>

^aAdjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension,
diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, and family
history of early heart attack.
Figure 1. Kaplan Meier curve of survival among individuals with prediabetes or normal glycemic levels.

--- Normoglycemia

--- Prediabetes

+ Censored

Figure 2. Kaplan Meier curve of survival among individuals with prediabetes and elevated transferrin saturation and elevated ferritin

--- Normoglycemia and Elevated Iron

--- Normoglycemia and Normal Iron

···· Prediabetes and Elevated Iron

····· Prediabetes and Normal Iron

+ Censored
Figure 2. Kaplan Meier curve of survival among individuals with prediabetes and elevated transferrin saturation and elevated ferritin

- - - - - Normoglycemia and Elevated Iron
--- Normoglycemia and Normal Iron
••• Prediabetes and Elevated Iron
••••• Prediabetes and Normal Iron
+ Censored

267x350mm (300 x 300 DPI)
Figure 1. Kaplan Meier curve of survival among individuals with prediabetes or normal glycemic levels.

--- Normoglycemia

--- Prediabetes

+ Censored

267x350mm (300 x 300 DPI)
STROBE Statement—checklist of items that should be included in reports of observational studies

<table>
<thead>
<tr>
<th>Item No</th>
<th>Recommendation</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title and abstract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(a) Indicate the study’s design with a commonly used term in the title or the abstract.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(b) Provide in the abstract an informative and balanced summary of what was done and what was found.</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Explain the scientific background and rationale for the investigation being reported.</td>
<td>4</td>
</tr>
<tr>
<td>Objectives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>State specific objectives, including any prespecified hypotheses.</td>
<td>4-5</td>
</tr>
<tr>
<td>Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Present key elements of study design early in the paper.</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection.</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up. Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls. Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed. Case-control study—For matched studies, give matching criteria and the number of controls per case.</td>
<td>NA</td>
</tr>
<tr>
<td>7</td>
<td>Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable.</td>
<td>6-8</td>
</tr>
<tr>
<td>8*</td>
<td>For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group.</td>
<td>6-8</td>
</tr>
<tr>
<td>9</td>
<td>Describe any efforts to address potential sources of bias.</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>Explain how the study size was arrived at.</td>
<td>5-8</td>
</tr>
<tr>
<td>11</td>
<td>Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why.</td>
<td>5-8</td>
</tr>
<tr>
<td>12</td>
<td>(a) Describe all statistical methods, including those used to control for confounding.</td>
<td>8-9</td>
</tr>
<tr>
<td></td>
<td>(b) Describe any methods used to examine subgroups and interactions.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(c) Explain how missing data were addressed.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(d) Cohort study—If applicable, explain how loss to follow-up was addressed. Case-control study—If applicable, explain how matching of cases and controls was addressed. Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy.</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(e) Describe any sensitivity analyses.</td>
<td>NA</td>
</tr>
</tbody>
</table>

Continued on next page
Results

Participants 13*
(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed
(b) Give reasons for non-participation at each stage
(c) Consider use of a flow diagram

<table>
<thead>
<tr>
<th>Descriptive data</th>
<th>14*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders</td>
<td>9, 19</td>
</tr>
<tr>
<td>(b) Indicate number of participants with missing data for each variable of interest</td>
<td>6-7</td>
</tr>
<tr>
<td>(c) Cohort study—Summarise follow-up time (eg, average and total amount)</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome data</th>
<th>15*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort study—Report numbers of outcome events or summary measures over time</td>
<td>19</td>
</tr>
<tr>
<td>Case-control study—Report numbers in each exposure category, or summary measures of exposure</td>
<td></td>
</tr>
<tr>
<td>Cross-sectional study—Report numbers of outcome events or summary measures</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main results</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included</td>
<td>9-10</td>
</tr>
<tr>
<td>(b) Report category boundaries when continuous variables were categorized</td>
<td>NA</td>
</tr>
<tr>
<td>(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other analyses</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses</td>
<td>10</td>
</tr>
</tbody>
</table>

Discussion

<table>
<thead>
<tr>
<th>Key results</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summarise key results with reference to study objectives</td>
<td>10-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limitations</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias</td>
<td>12-13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interpretation</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generalisability</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discuss the generalisability (external validity) of the study results</td>
<td>13</td>
</tr>
</tbody>
</table>

Other information

<table>
<thead>
<tr>
<th>Funding</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based</td>
<td>14</td>
</tr>
</tbody>
</table>

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Prediabetes, Elevated Iron, and All-Cause Mortality: A Cohort Study

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>bmjopen-2014-006491.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Research</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>03-Oct-2014</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Mainous III, Arch; University of Florida, Health Services Research, Management, and Policy
Tanner, Rebecca; University of Florida, Health Services Research, Management, and Policy
Coates, Thomas; Keck School of Medicine, Baker, Richard; University of Leicester, Health Sciences |
| Primary Subject Heading: | Diabetes and endocrinology |
| Secondary Subject Heading: | Haematology (incl blood transfusion) |
| Keywords: | General diabetes < DIABETES & ENDOCRINOLOGY, HAEMATOLOGY, DIABETES & ENDOCRINOLOGY |
Prediabetes, Elevated Iron, and All-Cause Mortality: A Cohort Study

Running Title: Prediabetes, Elevated Iron, and All-Cause Mortality

Arch G. Mainous III, Rebecca J. Tanner, Thomas D. Coates, Richard Baker

Author Affiliations and Addresses

Department of Health Services Research, Management and Policy, University of Florida.
P.O. Box 100195, Gainesville, FL 32610-0195 (AGM, RJT)

Department of Community Health and Family Medicine, University of Florida, P.O. Box 100237, Gainesville, FL 32610-0237 (AGM).

Department of Pediatrics and Pathology, University of Southern California Keck School of Medicine (TDC)

Department of Health Sciences, University of Leicester, 22-28 Princess Rd West, Leicester LE1 6TP, United Kingdom (RB)

Financial Support: Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

Corresponding Author:
Arch G. Mainous III, PhD
Department of Health Services Research, Management and Policy
University of Florida
P.O. Box 100195
Gainesville, FL 32610-0195
Phone: 352-273-6073
Fax: 352-273-6075
Email: arch.mainous@ufl.edu

Main Text Word Count: 2927

Abstract Word Count: 211

Key Words: prediabetes, transferrin saturation, ferritin, NHANES, Mortality
ABSTRACT

Objectives: Data have indicated low to nonexistent increased mortality risk for individuals with prediabetes, but it is unclear if the risk is increased when the patient has elevated iron markers. Our purpose was to examine the mortality risk among adults with prediabetes in the context of co-existing elevated transferrin saturation (TS) or serum ferritin.

Participants: Individuals age 40 and older who participated in the NHANES and provided a blood sample.

Primary Outcome Variable: Mortality was measured as all-cause mortality.

Results: Adjusted analyses show that prediabetes has a small increased mortality risk (HR =1.04; 95% CI, 1.00-1.08). Persons who had prediabetes and elevated serum ferritin had an increased hazard ratio for death (HR=1.14; 95% CI, 1.04-1.24) compared with those who had normal ferritin and normal glucose. Among persons with prediabetes who had elevated TS, they had an increased mortality risk (HR=1.86; 95% CI, 1.05-3.29) compared with those with normal TS levels and normal glucose. Conclusion: The mortality risk of prediabetes is low. However, among individuals who have co-existing elevated iron markers, particularly transferrin saturation, the risk rises substantially.
STRENGTHS AND LIMITATIONS OF STUDY

- This study utilizes a nationally representative population-based cohort that allows generalization of results to the population of the United States.

- Mortality was left-censored to control for the potential misclassification of people who were very ill at baseline.

- Biomarkers for elevated iron and prediabetes were available only at baseline.

- We were able to only observe individuals for 12 years, which may be insufficient to adequately see an effect on mortality for prediabetes.
INTRODUCTION

Prediabetes is defined by blood glucose concentrations that are higher than normal, but lower than established thresholds for diabetes.¹ Prediabetes is a high risk state for the development of not only diabetes, but also associated complications. Recent data have shown that in developed countries such as the United States and the United Kingdom more than a third of adults have prediabetes but the vast majority of these do not realize it.²⁻⁴

Several studies have shown that prediabetes is a mortality risk.⁵,⁶ On the other hand, other studies have found that prediabetes is not a mortality risk.⁷⁻¹⁰ Still other studies showed that the relationship was not very robust and was dependent on the measure of prediabetes.¹¹

Three different meta-analyses of observational studies have concluded that elevated iron indices like serum ferritin and transferrin saturation (TS) are strongly associated with increased risk for developing diabetes.¹²⁻¹⁴ Some evidence exists to indicate that pancreatic beta cells are killed in the presence of iron.¹⁵ In addition to increased risk of diabetes, elevated TS or elevated ferritin is associated with increased mortality in the general population.¹⁶⁻²² Further, recent evidence suggests that among patients with diabetes, mortality risk increases in the presence of elevated ferritin or elevated TS.²³,²⁴ We therefore hypothesize that the mortality risk of individuals with prediabetes will be increased in the presence of elevated iron markers.

Considering that only about 10% of the US population with prediabetes realize that they have prediabetes, a better understanding of the potential mortality risk is warranted. Consequently, the purpose of this study was to evaluate the association
between prediabetes, elevated serum ferritin, elevated TS and mortality in a large, nationally representative cohort.

METHODS

We conducted longitudinal analyses of the third National Health and Nutrition Examination Survey, 1988-1994 (NHANES III) linked to mortality data collected through the National Death Index. Mortality data were available through December 31, 2006. The NHANES III survey provides population estimates of the United States and was conducted from October, 1988 through October, 1994. The NHANES III used complex, multi-stage, stratified, clustered samples of civilian, noninstitutionalized population. Of the 39,695 individuals eligible to participate, a total of 30,818 persons were examined in their homes or in mobile examination centers (MEC) which visited 89 communities across the United States (a participation rate of 77.6%). The health examination included collection of blood and urine specimens for the conduct of various laboratory analyses. The NHANES provides preexisting de-identified public use data which do not need specific approval from the National Center for Health Statistics.

The NHANES III data merged with the National Death Index is a prospective cohort study that passively followed up on the participants in the NHANES III. The linked mortality file uses a probabilistic matching method. We limited our study to individuals 40 years old and older at baseline, the time of their NHANES III interview. The National Death Index involves searching national databases containing information about mortality and causes of death. Mortality status was ascertained by computerized matching to national databases and evaluation of the resulting matches. Persons not found to be deceased were assumed alive for analytic purposes. All living survey participants
had been observed for 146 months, and our survival analysis was carried out to December 31, 2006.

Previously Diagnosed Diabetes

The NHANES III assessed participants for diagnosed diabetes using the questions, “Have you ever been told by a doctor that you have diabetes or sugar diabetes?”,” Were you pregnant when you were told that you had diabetes?” and “Other than during pregnancy, has a doctor ever told you that you have diabetes or sugar diabetes?” We defined participants as having diagnosed diabetes if they answered “yes” to ever having been told they had diabetes, excluding pregnancy. Individuals with previously diagnosed diabetes were removed from the analysis. We also removed individuals with an HbA1c of 6.5% or greater, to account for undiagnosed diabetes.

Normoglycemia & Prediabetes

We defined normoglycemia as an Hba1c level between 4.0%--5.6% (20-38 mmol/mol). To control for any potential effect of low HbA1c, we also removed individuals with an HbA1c below 4.0% (20 mmol/mol), a level associated with increased all-cause mortality in adults without diabetes.\(^1\)

We defined prediabetes among individuals without previously diagnosed diabetes using HbA1c ranges as specified by the American Diabetes Association, 5.7%–6.4% (39-46 mmol/mol).\(^1\) This range has been shown in a meta-analysis to be predictive of progression to diabetes.\(^19\) We excluded individuals with previously diagnosed diabetes because the current glycemic status of those patients may simply represent diabetes control. Prediabetes status was missing for 1,637 of the NHANES respondents over the age of 40.
Transferrin Saturation

Serum iron and total iron-binding capacity (TIBC) were measured in serum, and calculated by dividing serum iron by TIBC and multiplying by 100. For the analyses, elevated transferrin saturation was categorized as TS ≥50%. Individuals with TS below 25% were removed from the analysis, as low TS has been linked to increased risk of mortality.23 Despite the lack of universal agreement on the upper and lower limits of normal TS, these cut points has been used in several studies evaluating diabetes, TS and mortality.23,27 Data were missing for transferrin saturation level for 536 of the NHANES respondents over the age of 40.

Serum Ferritin

Serum ferritin was used as a measure of body iron stores and was measured using the QuantImune Ferritin IRMA kit. Serum ferritin was categorized for the analyses as elevated if it was ≥674.1 pmol/l (300 ng/mL) for males and ≥449.4 pmol/l (200 ng/mL) for females.28 Individuals with serum ferritin below 56.175 pmol/l (25 ng/mL) were removed from the analysis, as low ferritin has been linked to an increased risk of mortality.23 Data were missing for serum ferritin level for 539 of the NHANES respondents over the age of 40.

Mortality

Mortality was measured as all-cause mortality. Mortality status was ascertained solely by computerized matching to national databases and evaluation of the resulting matches.

Covariates
Covariates used in our analyses included: age at baseline in the NHANES III, gender, race/ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, and other race), health insurance status, obesity (Body Mass Index computed in the exam of ≥30), previous diagnosis of a heart attack, previous diagnosis of a stroke, previous diagnosis of hypertension, previous diagnosis of hypercholesterolemia, previous diagnosis of cancer, family history of diabetes, family history of myocardial infarction before age 50, and current smoking status. Respondents were considered non-smokers if they reported smoking at least 100 cigarettes in their life or if they had smoked more than 100 cigarettes and were not currently smoking.

In the analysis of serum ferritin, we also controlled for C-reactive protein. Ferritin is an acute phase reactant as well as an indicator of iron stores and as such may indicate inflammation. Consequently, we controlled for inflammation by adjusting for C-reactive protein. C-reactive protein was considered elevated at levels above 3.0 mg/l.

Analysis

In an effort to control for potential misclassification of persons who were very ill at baseline thereby affecting mortality risk of prediabetes, we left-censored the analysis to exclude any mortality events that occurred in the first three years following the individuals examination for the first three years of the cohort. For the analyses of mortality, we used sampling weights (specifically, the total MEC and Home examined weight) to calculate prevalence estimates for the civilian noninstitutionalized US population. This strategy of basing the analyses on population estimates is a characteristic that makes the NHANES different from many other cohort designs that do not use weighted population estimates. However, this strategy does provide national
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

generalizability. Because of the complex sampling design of the survey, we performed statistical analyses using the statistical software package SUDAAN (Research Triangle Institute, Raleigh, NC), as recommended by the National Center for Health Statistics (NCHS). Using SAS (Cary, NC), we computed Kaplan-Meier plots to show graphically the unadjusted relationship between all-cause mortality and prediabetes.

All analyses were based on the population estimates and we followed the NCHS recommendations for assessing the reliability of estimates in the context of a limited sample size. If the standard error of an estimate was greater than 30% of an estimate it would be considered unreliable. All estimates met the criteria for reliability.

To accomplish our goals of examining a possible synergistic effect of having elevated iron with prediabetes we classified the population into 4 groups based upon prediabetes or normoglycemia and normal and elevated TS. We also classified the population into 4 groups based upon prediabetes or normoglycemia and normal and elevated iron based on levels of TS and ferritin.

We performed Cox proportional hazards analyses to measure the associations between all-cause mortality and prediabetes controlling for all of the studied covariates using listwise deletion to account for missing data. In these models, survival time was a continuous variable measured in 1-month increments from the date of the exam.

We also performed adjusted Cox proportional hazards analysis with all-cause mortality for prediabetes in the 4 part variables with TS adjusting for the aforementioned covariates. For the adjusted Cox proportional hazards analysis with ferritin we adjusted for the aforementioned covariates and also C-reactive protein.
We evaluated the proportionality of the hazards through examination of the Schoenfeld residuals.

RESULTS

A total of 8,003 (unweighted) individuals were over 40 years old and had HbA1c levels between 4.0 and 6.4%. Baseline characteristics for the sample are shown in Table 1. Table 1 indicates that 23.2% of the weighted sample had prediabetes, 15.6% of the sample exhibited elevated serum ferritin, and 3.3% had elevated TS.

Of the respondents that had prediabetes, 38.8% died within 12 years, compared to 23.4% of respondents with normal HbA1c levels. Among individuals with normal TS and normoglycemia, 23.1% died, compared to 23.7% of those with elevated TS, 37.5% of those with normal TS and prediabetes, and 44.7% of those with elevated TS and prediabetes. Among individuals with normal ferritin and normoglycemia, 34.3% died, compared with 38.8% of those with normal ferritin and prediabetes, 29.2% of those with elevated ferritin and normoglycemia, and 38.8% of those with elevated ferritin and prediabetes.

Table 2 shows the results the adjusted Cox proportional hazards model for prediabetes. Table 2 indicates prediabetes alone has a small increased mortality risk. The Kaplan Meier curve of the survival and prediabetes over the length of the time under observation is shown in Fig 1.

Table 3 presents results of the analyses combining prediabetes with iron markers. In models that examined the impact of a prediabetes state combined with markers of low iron, the hazard ratios were similar to that of prediabetes alone. However, when combined with prediabetes, there was an increased mortality risk among individuals with
TS ≥50, as well as with individuals who had increased ferritin. The risk was most increased when individuals had elevated ferritin and elevated transferrin saturation together. Figure 2 represents the relationship of survival of the four groups over the 12 years under observation. Individuals with prediabetes in the presence of elevated iron have lower survival probabilities than other groups. An examination of the Schoenfeld residuals suggested proportionality of hazards and appropriateness of the statistical model for these analyses.

DISCUSSION

The results of this study in a nationally representative cohort that followed individuals for 12 years confirm that the mortality risk of prediabetes is probably low. This is not unexpected based on the mixed results from previous studies, several of which found either no future mortality risk or risk that was not robust across measures. However, we found that the presence of transferrin saturation and serum ferritin is associated with increased mortality risk of individuals with prediabetes. Among individuals with normal iron levels, those with prediabetes had low mortality risk levels similar to the adjusted risk of prediabetes alone. On the other hand, in adjusted survival analyses, individuals with prediabetes who also had elevated transferrin saturation had substantially increased mortality risk. These findings extend previous work on iron markers and diabetes to the previously uninvestigated area of prediabetes.

These results suggest that additional stratification of individuals with prediabetes on the basis of iron markers would be useful to identify those with higher risk and who might benefit from iron lowering therapies. Previous data has indicated that elevated iron markers are associated with the development of diabetes and that among individuals with
diabetes the co-occurrence of elevated TS increases those patients’ mortality risk. Early identification of individuals with both conditions (prediabetes, elevated iron) may help in both slowing the development of diabetes as well as decreasing mortality risk. It is important for early identification of these individuals because much like individuals with prediabetes, the vast majority of individuals with elevated iron do not know it. These individuals need to be identified to mitigate the increased risk posed by elevated iron in combination with prediabetes. Such individuals would be targets for intensive interventions to reduce risk, including typical lifestyle interventions shown to help avoid the onset of diabetes in people at high risk. Although more research is needed into the ability of interventions on iron in prediabetes to affect development of diabetes and mortality risk, some data suggest that reduction of TS improves HbA1c and glucose control.

These associations of TS and ferritin with mortality in the context of prediabetes are not surprising especially if elevations of these parameters are interpreted in light of current understanding of iron toxicity. Iron, whether absorbed as iron salts or in dietary heme is processed by enterocytes and released into the plasma where it is transported in a non-reactive state bound to transferrin. Iron that is bound to transferrin is in the Fe³⁺ state and is not reactive and, therefore, not toxic. However, when TS is above 40 to 50%, free iron or so-called non-transferrin-bound iron (NTBI) is released into the plasma as the buffering ability of transferrin is exceeded. Labile plasma iron (LPI) is a highly reactive subspecies of NTBI that interacts with hydrogen peroxide through Fenton chemistry to form the extremely powerful oxidants, hydroxyl radical and singlet oxygen. These are the free radicals that ultimately directly damage protein and DNA. Perhaps
more importantly, NTBI/LPI species are able to enter cells via ion channels. These channels, unlike the transferrin receptor, are not regulated so this reactive iron freely enters the cytoplasm of the pancreas, pituitary, and heart.

The current results suggest that exposure to excessive free iron is dangerous in the context of prediabetes. Furthermore, elevated ferritin and TS predict poor diabetes control and phlebotomy to reduce iron even over short periods of time improve HbA1c in parallel with changes in TS, even though ferritin is not changed, putting further emphasis on the fact that NTBI/LPI reflected by TS is the proximal cause of the toxicity. Several strategies are available to decrease iron, including chelation therapy and phlebotomy. Phlebotomy is an easy, inexpensive, and well-tolerated intervention. Reduction in TS by phlebotomy has been shown to improve measures of diabetic control. Furthermore, correction of severe iron overload can significantly improve glucose tolerance. Thus, the finding that a baseline measure of high TS as point measure of toxic free iron plus elevation of ferritin, evidence of elevated cytosolic iron over a longer period of time, predicts increased risk of mortality among individuals with prediabetes supports the premise that toxic free iron is a health risk.

The normoglycemic group with elevated iron markers did not show increased mortality risk in comparison to the reference group of normoglycemic and normal iron marker levels. This may seem inconsistent with other data on the increased mortality risk due to elevated TS by itself. However, there is the potential that the effect of TS on mortality is modified by the presence of other variables. This effect has been shown in the past. Rather than being inconsistent with the TS alone and mortality findings, these new findings enhance our understanding of elevated iron markers and morbidity and
mortality and allow us to consider the more complex, but real, situation of patients by considering multiple variables together rather than independently.

This study has several limitations. First, although we have a nationally representative, population-based cohort followed through the National Death Index, the biomarkers are measured only at baseline. There is the possibility that either the hyperglycemia or elevated iron measures were identified and interventions were implemented to lower these biomarkers. If that were the case and a substantial number of individuals did drop their levels due to interventions thereby decreasing the potential mortality risk, the observed adjusted risk individuals elevated at baseline is even more concerning. Second, we were only able to follow these individuals for 12 years. It is possible that this time frame may have been too short to adequately see an effect for a biomarker like prediabetes. However, we did censor the first three years of mortality so that any deaths in that time frame would not be attributed to prediabetes. The model still found a substantial mortality risk for the prediabetes plus iron markers in this length of time. Third, we were unable to evaluate the relationship between being elevated on both transferrin saturation and serum ferritin with prediabetes on the risk of mortality. We attempted such an analysis but the number of individuals in the group with prediabetes and elevation on both iron markers was small and the population estimates were deemed unreliable.

In conclusion, this study representative of the population of the United States helps to clarify the current evidence on the mortality risk of prediabetes and provides further support for the role of elevated iron markers in health risk. Future screening and
intervention programs for prediabetes may benefit from additional strategies to recognize and treat iron elevations, particularly transferrin saturation.
ACKNOWLEDGEMENTS

Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

FUNDING

Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

CONTRIBUTION STATEMENT

AGM: conception, design, analysis, and drafting of manuscript
RJT: design, analysis, and drafting of manuscript
TDC: conception, design, and drafting of manuscript
RB: design and analysis

COMPETING INTERESTS

The authors report no competing interests.

DATA SHARING STATEMENT

Data from this study are publicly available on the Internet through the National Center for Health Statistics.

FIGURE LEGENDS

Figure 1. Kaplan Meier curve of survival among individuals with prediabetes or normal glycemic levels.

---Normoglycemia

---Prediabetes
Figure 2. Kaplan Meier curve of survival among individuals with prediabetes and elevated transferrin saturation

- --- Normoglycemia and Normal Transferrin Saturation
- --- Normoglycemia and Elevated Transferrin Saturation
- --- Prediabetes and Normal Transferrin Saturation
- --- Prediabetes and Elevated Transferrin Saturation
REFERENCES

Table 1: Baseline Characteristics of the Sample

<table>
<thead>
<tr>
<th>Study Sample (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted Sample Size</td>
<td>8,003</td>
</tr>
<tr>
<td>Population Estimate</td>
<td>80,653,788</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
</tr>
<tr>
<td>40-54</td>
<td>49.6</td>
</tr>
<tr>
<td>55-69</td>
<td>31.2</td>
</tr>
<tr>
<td>70+</td>
<td>19.2</td>
</tr>
<tr>
<td>Sex, male</td>
<td>46.1</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>82.2</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>8.3</td>
</tr>
<tr>
<td>Hispanic</td>
<td>6.7</td>
</tr>
<tr>
<td>Asian/Other</td>
<td>2.9</td>
</tr>
<tr>
<td>Has health insurance</td>
<td>93.6</td>
</tr>
<tr>
<td>Obese</td>
<td>23.3</td>
</tr>
<tr>
<td>Current Smoker</td>
<td>23.6</td>
</tr>
<tr>
<td>Has diagnosed high cholesterol</td>
<td>40.1</td>
</tr>
<tr>
<td>Has diagnosed hypertension</td>
<td>31.3</td>
</tr>
<tr>
<td>Ever diagnosed with heart attack</td>
<td>5.3</td>
</tr>
<tr>
<td>Ever diagnosed with stroke</td>
<td>2.8</td>
</tr>
<tr>
<td>Ever diagnosed with cancer</td>
<td>12.3</td>
</tr>
<tr>
<td>Relative with diabetes</td>
<td>41.2</td>
</tr>
<tr>
<td>Relative with heart attack before age 50</td>
<td>15.4</td>
</tr>
<tr>
<td>Elevated C-reactive protein</td>
<td>1.2</td>
</tr>
<tr>
<td>Elevated Transferrin Saturation</td>
<td>3.3</td>
</tr>
<tr>
<td>Elevated Ferritin</td>
<td>15.6</td>
</tr>
<tr>
<td>Prediabetes</td>
<td>23.2</td>
</tr>
<tr>
<td>Assumed deceased</td>
<td>27.0</td>
</tr>
</tbody>
</table>
Table 2: Adjusted Hazard Ratios from Cox Regression for Mortality Risk of Individuals with Prediabetes

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prediabetes</td>
<td>1.04</td>
<td>1.00-1.08</td>
</tr>
<tr>
<td>Normoglycemia</td>
<td>1.0</td>
<td>--</td>
</tr>
</tbody>
</table>

Adjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, and family history of early heart attack.
Table 3: Adjusted Hazard Ratios from Cox Regression for Mortality Risk of Individuals with Prediabetes and Iron Markers

<table>
<thead>
<tr>
<th>Adjusted Model</th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Model^a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Transferrin Saturation/ Normoglycemia</td>
<td>1.00</td>
<td>--</td>
</tr>
<tr>
<td>Normal Transferrin Saturation/ Prediabetes</td>
<td>1.13</td>
<td>1.09-1.18</td>
</tr>
<tr>
<td>Elevated Transferrin Saturation/ Normoglycemia</td>
<td>0.99</td>
<td>0.90-1.08</td>
</tr>
<tr>
<td>Elevated Transferrin Saturation/ Prediabetes</td>
<td>1.86</td>
<td>1.05-3.29</td>
</tr>
<tr>
<td>Adjusted Model^b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Ferritin/ Normoglycemia</td>
<td>1.00</td>
<td>--</td>
</tr>
<tr>
<td>Normal Ferritin/ Prediabetes</td>
<td>1.15</td>
<td>1.09-1.20</td>
</tr>
<tr>
<td>Elevated Ferritin/ Normoglycemia</td>
<td>1.05</td>
<td>1.00-1.12</td>
</tr>
<tr>
<td>Elevated Ferritin/ Prediabetes</td>
<td>1.14</td>
<td>1.04-1.24</td>
</tr>
</tbody>
</table>

^a Adjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, and family history of early heart attack.

^b Adjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, family history of early heart attack, and elevated C-reactive protein.
Prediabetes, Elevated Iron, and All-Cause Mortality: A Cohort Study

Running Title: Prediabetes, Elevated Iron, and All-Cause Mortality

Arch G. Mainous III, Rebecca J. Tanner, Thomas D. Coates, Richard Baker

Author Affiliations and Addresses

Department of Health Services Research, Management and Policy, University of Florida.
P.O. Box 100195, Gainesville, FL 32610-0195 (AGM, RJT)

Department of Community Health and Family Medicine, University of Florida, P.O. Box 100237, Gainesville, FL 32610-0237 (AGM).

Department of Pediatrics and Pathology, University of Southern California Keck School of Medicine (TDC)

Department of Health Sciences, University of Leicester, 22-28 Princess Rd West, Leicester LE1 6TP, United Kingdom (RB)

Financial Support: Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

Corresponding Author:
Arch G. Mainous III, PhD
Department of Health Services Research, Management and Policy
University of Florida
P.O. Box 100195
Gainesville, FL 32610-0195
Phone: 352-273-6073
Fax: 352-273-6075
Email: arch.mainous@ufl.edu

Main Text Word Count: 2927
Abstract Word Count: 211

Key Words: prediabetes, transferrin saturation, ferritin, NHANES, Mortality
ABSTRACT

Objectives: Data have indicated low to nonexistent increased mortality risk for individuals with prediabetes, but it is unclear if the risk is increased when the patient has elevated iron markers. Our purpose was to examine the mortality risk among adults with prediabetes in the context of co-existing elevated transferrin saturation (TS) or serum ferritin.

Participants: Individuals age 40 and older who participated in the NHANES and provided a blood sample.

Primary Outcome Variable: Mortality was measured as all-cause mortality.

Results: Adjusted analyses show that prediabetes has a small increased mortality risk (HR = 1.04; 95% CI, 1.00-1.08). Persons who had prediabetes and elevated serum ferritin had an increased hazard ratio for death (HR = 1.14; 95% CI, 1.04-1.24) compared with those who had normal ferritin and normal glucose. Among persons with prediabetes who had elevated TS, they had an increased mortality risk (HR = 1.86; 95% CI, 1.05-3.29) compared with those with normal TS levels and normal glucose. Conclusion: The mortality risk of prediabetes is low. However, among individuals who have co-existing elevated iron markers, particularly transferrin saturation, the risk rises substantially.
STRENGTHS AND LIMITATIONS OF STUDY

• This study utilizes a nationally representative population-based cohort that allows generalization of results to the population of the United States.
• Mortality was left-censored to control for the potential misclassification of people who were very ill at baseline.
• Biomarkers for elevated iron and prediabetes were available only at baseline.
• We were able to only observe individuals for 12 years, which may be insufficient to adequately see an effect on mortality for prediabetes.
INTRODUCTION

Prediabetes is defined by blood glucose concentrations that are higher than normal, but lower than established thresholds for diabetes.1 Prediabetes is a high risk state for the development of not only diabetes, but also associated complications. Recent data have shown that in developed countries such as the United States and the United Kingdom more than a third of adults have prediabetes but the vast majority of these do not realize it.2-4

Several studies have shown that prediabetes is a mortality risk.5,6 On the other hand, other studies have found that prediabetes is not a mortality risk.7-10 Still other studies showed that the relationship was not very robust and was dependent on the measure of prediabetes.11

Three different meta-analyses of observational studies have concluded that elevated iron indices like serum ferritin and transferrin saturation (TS) are strongly associated with increased risk for developing diabetes.12-14 Some evidence exists to indicate that pancreatic beta cells are killed in the presence of iron.15 In addition to increased risk of diabetes, elevated TS or elevated ferritin is associated with increased mortality in the general population.16-22 Further, recent evidence suggests that among patients with diabetes, mortality risk increases in the presence of elevated ferritin or elevated TS.23,24 We therefore hypothesize that the mortality risk of individuals with prediabetes will be increased in the presence of elevated iron markers.

Considering that only about 10% of the US population with prediabetes realize that they have prediabetes, a better understanding of the potential mortality risk is warranted. Consequently, the purpose of this study was to evaluate the association
between prediabetes, elevated serum ferritin, elevated TS and mortality in a large, nationally representative cohort.

METHODS

We conducted longitudinal analyses of the third National Health and Nutrition Examination Survey, 1988-1994 (NHANES III) linked to mortality data collected through the National Death Index. Mortality data were available through December 31, 2006. The NHANES III survey provides population estimates of the United States and was conducted from October, 1988 through October, 1994. The NHANES III used complex, multi-stage, stratified, clustered samples of civilian, noninstitutionalized population. Of the 39,695 individuals eligible to participate, a total of 30,818 persons were examined in their homes or in mobile examination centers (MEC) which visited 89 communities across the United States (a participation rate of 77.6%). The health examination included collection of blood and urine specimens for the conduct of various laboratory analyses. The NHANES provides preexisting de-identified public use data which do not need specific approval from the National Center for Health Statistics.

The NHANES III data merged with the National Death Index is a prospective cohort study that passively followed up on the participants in the NHANES III. The linked mortality file uses a probabilistic matching method. We limited our study to individuals 40 years old and older at baseline, the time of their NHANES III interview. The National Death Index involves searching national databases containing information about mortality and causes of death. Mortality status was ascertained by computerized matching to national databases and evaluation of the resulting matches. Persons not found to be deceased were assumed alive for analytic purposes. All living survey participants
had been observed for 146 months, and our survival analysis was carried out to December 31, 2006.

Previously Diagnosed Diabetes

The NHANES III assessed participants for diagnosed diabetes using the questions, “Have you ever been told by a doctor that you have diabetes or sugar diabetes?” “Were you pregnant when you were told that you had diabetes?” and “Other than during pregnancy, has a doctor ever told you that you have diabetes or sugar diabetes?” We defined participants as having diagnosed diabetes if they answered “yes” to ever having been told they had diabetes, excluding pregnancy. Individuals with previously diagnosed diabetes were removed from the analysis. We also removed individuals with an HbA1c of 6.5% or greater, to account for undiagnosed diabetes.

Normoglycemia & Prediabetes

We defined normoglycemia as an Hba1c level between 4.0%–5.6% (20-38 mmol/mol). To control for any potential effect of low HbA1c, we also removed individuals with an HbA1c below 4.0% (20 mmol/mol), a level associated with increased all-cause mortality in adults without diabetes.²⁶

We defined prediabetes among individuals without previously diagnosed diabetes using HbA1c ranges as specified by the American Diabetes Association, 5.7%–6.4% (39-46 mmol/mol).¹ This range has been shown in a meta-analysis to be predictive of progression to diabetes.¹⁹ We excluded individuals with previously diagnosed diabetes because the current glycemic status of those patients may simply represent diabetes control. Prediabetes status was missing for 1,637 of the NHANES respondents over the age of 40.
Transferrin Saturation

Serum iron and total iron-binding capacity (TIBC) were measured in serum, and calculated by dividing serum iron by TIBC and multiplying by 100. For the analyses, elevated transferrin saturation was categorized as TS ≥50%. Individuals with TS below 25% were removed from the analysis, as low TS has been linked to increased risk of mortality.23 Despite the lack of universal agreement on the upper and lower limits of normal TS, these cut points has been used in several studies evaluating diabetes, TS and mortality.23,27 Data were missing for transferrin saturation level for 536 of the NHANES respondents over the age of 40.

Serum Ferritin

Serum ferritin was used as a measure of body iron stores and was measured using the QuantImune Ferritin IRMA kit. Serum ferritin was categorized for the analyses as elevated if it was ≥674.1 pmol/l (300 ng/mL) for males and ≥449.4 pmol/l (200 ng/mL) for females.28 Individuals with serum ferritin below 56.175 pmol/l (25 ng/mL) were removed from the analysis, as low ferritin has been linked to an increased risk of mortality.23 Data were missing for serum ferritin level for 539 of the NHANES respondents over the age of 40.

Mortality

Mortality was measured as all-cause mortality. Mortality status was ascertained solely by computerized matching to national databases and evaluation of the resulting matches.

Covariates
Covariates used in our analyses included: age at baseline in the NHANES III, gender, race/ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, and other race), health insurance status, obesity (Body Mass Index computed in the exam of \(\geq 30 \)), previous diagnosis of a heart attack, previous diagnosis of a stroke, previous diagnosis of hypertension, previous diagnosis of hypercholesterolemia, previous diagnosis of cancer, family history of diabetes, family history of myocardial infarction before age 50, and current smoking status. Respondents were considered non-smokers if they reported smoking at least 100 cigarettes in their life or if they had smoked more than 100 cigarettes and were not currently smoking.

In the analysis of serum ferritin, we also controlled for C-reactive protein. Ferritin is an acute phase reactant as well as an indicator of iron stores and as such may indicate inflammation. Consequently, we controlled for inflammation by adjusting for C-reactive protein. C-reactive protein was considered elevated at levels above 3.0 mg/l.\(^{29}\)

Analysis

In an effort to control for potential misclassification of persons who were very ill at baseline thereby affecting mortality risk of prediabetes, we left-censored the analysis to exclude any mortality events that occurred in the first three years following the individuals examination for the first three years of the cohort. For the analyses of mortality, we used sampling weights (specifically, the total MEC and Home examined weight) to calculate prevalence estimates for the civilian noninstitutionalized US population. This strategy of basing the analyses on population estimates is a characteristic that makes the NHANES different from many other cohort designs that do not use weighted population estimates. However, this strategy does provide national
generalizability. Because of the complex sampling design of the survey, we performed statistical analyses using the statistical software package SUDAAN (Research Triangle Institute, Raleigh, NC), as recommended by the National Center for Health Statistics (NCHS). Using SAS (Cary, NC), we computed Kaplan-Meier plots to show graphically the unadjusted relationship between all-cause mortality and prediabetes.

All analyses were based on the population estimates and we followed the NCHS recommendations for assessing the reliability of estimates in the context of a limited sample size. If the standard error of an estimate was greater than 30% of an estimate it would be considered unreliable All estimates met the criteria for reliability.

To accomplish our goals of examining a possible synergistic effect of having elevated iron with prediabetes we classified the population into 4 groups based upon prediabetes or normoglycemia and normal and elevated TS. We also classified the population into 4 groups based upon prediabetes or normoglycemia and normal and elevated iron based on levels of TS and ferritin.

We performed Cox proportional hazards analyses to measure the associations between all-cause mortality and prediabetes controlling for all of the studied covariates using listwise deletion to account for missing data. In these models, survival time was a continuous variable measured in 1-month increments from the date of the exam.

We also performed adjusted Cox proportional hazards analysis with all-cause mortality for prediabetes in the 4 part variables with TS adjusting for the aforementioned covariates. For the adjusted Cox proportional hazards analysis with ferritin we adjusted for the aforementioned covariates and also C-reactive protein.
We evaluated the proportionality of the hazards through examination of the Schoenfeld residuals.

RESULTS

A total of 8,003 (unweighted) individuals were over 40 years old and had HbA1c levels between 4.0 and 6.4%. Baseline characteristics for the sample are shown in Table 1. Table 1 indicates that 23.2% of the weighted sample had prediabetes, 15.6% of the sample exhibited elevated serum ferritin, and 3.3% had elevated TS.

Of the respondents that had prediabetes, 38.8% died within 12 years, compared to 23.4% of respondents with normal HbA1c levels. Among individuals with normal TS and normoglycemia, 23.1% died, compared to 23.7% of those with elevated TS, 37.5% of those with normal TS and prediabetes, and 44.7% of those with elevated TS and prediabetes. Among individuals with normal ferritin and normoglycemia, 34.3% died, compared with 38.8% of those with normal ferritin and prediabetes, 29.2% of those with elevated ferritin and normoglycemia, and 38.8% of those with elevated ferritin and prediabetes.

Table 2 shows the results the adjusted Cox proportional hazards model for prediabetes. Table 2 indicates prediabetes alone has a small increased mortality risk. The Kaplan Meier curve of the survival and prediabetes over the length of the time under observation is shown in Fig 1.

Table 3 presents results of the analyses combining prediabetes with iron markers. In models that examined the impact of a prediabetes state combined with markers of low iron, the hazard ratios were similar to that of prediabetes alone. However, when combined with prediabetes, there was an increased mortality risk among individuals with
TS ≥50, as well as with individuals who had increased ferritin. The risk was most increased when individuals had elevated ferritin and elevated transferrin saturation together. Figure 2 represents the relationship of survival of the four groups over the 12 years under observation. Individuals with prediabetes in the presence of elevated iron have lower survival probabilities than other groups. An examination of the Schoenfeld residuals suggested proportionality of hazards and appropriateness of the statistical model for these analyses.

DISCUSSION

The results of this study in a nationally representative cohort that followed individuals for 12 years confirm that the mortality risk of prediabetes is probably low. This is not unexpected based on the mixed results from previous studies, several of which found either no future mortality risk or risk that was not robust across measures. However, we found that the presence of transferrin saturation and serum ferritin is associated with increased mortality risk of individuals with prediabetes. Among individuals with normal iron levels, those with prediabetes had low mortality risk levels similar to the adjusted risk of prediabetes alone. On the other hand, in adjusted survival analyses, individuals with prediabetes who also had elevated transferrin saturation had substantially increased mortality risk. These findings extend previous work on iron markers and diabetes to the previously uninvestigated area of prediabetes.

These results suggest that additional stratification of individuals with prediabetes on the basis of iron markers would be useful to identify those with higher risk and who might benefit from iron lowering therapies. Previous data has indicated that elevated iron markers are associated with the development of diabetes and that among individuals with
diabetes the co-occurrence of elevated TS increases those patients’ mortality risk. Early identification of individuals with both conditions (prediabetes, elevated iron) may help in both slowing the development of diabetes as well as decreasing mortality risk. It is important for early identification of these individuals because much like individuals with prediabetes, the vast majority of individuals with elevated iron do not know it. \(^{30}\) These individuals need to be identified to mitigate the increased risk posed by elevated iron in combination with prediabetes. Such individuals would be targets for intensive interventions to reduce risk, including typical lifestyle interventions shown to help avoid the onset of diabetes in people at high risk. \(^{31}\) Although more research is needed into the ability of interventions on iron in prediabetes to affect development of diabetes and mortality risk, some data suggest that reduction of TS improves HbA1c and glucose control. \(^{32}\)

These associations of TS and ferritin with mortality in the context of prediabetes are not surprising especially if elevations of these parameters are interpreted in light of current understanding of iron toxicity. \(^{33}\) Iron, whether absorbed as iron salts or in dietary heme is processed by enterocytes and released into the plasma where it is transported in a non-reactive state bound to transferrin. Iron that is bound to transferrin is in the Fe\(^{3+}\) state and is not reactive and, therefore, not toxic. However, when TS is above 40 to 50%, free iron or so-called non-transferrin-bound iron (NTBI) is released into the plasma as the buffering ability of transferrin is exceeded. \(^{34}\) Labile plasma iron (LPI) is a highly reactive subspecies of NTBI that interacts with hydrogen peroxide through Fenton chemistry to form the extremely powerful oxidants, hydroxyl radical and singlet oxygen. These are the free radicals that ultimately directly damage protein and DNA. Perhaps
more importantly, NTBI/LPI species are able to enter cells via ion channels. These channels, unlike the transferrin receptor, are not regulated so this reactive iron freely enters the cytoplasm of the pancreas, pituitary, and heart.

The current results suggest that exposure to excessive free iron is dangerous in the context of prediabetes. Furthermore, elevated ferritin and TS predict poor diabetes control and phlebotomy to reduce iron even over short periods of time improve HbA1c in parallel with changes in TS, even though ferritin is not changed, putting further emphasis on the fact that NTBI/LPI reflected by TS is the proximal cause of the toxicity. Several strategies are available to decrease iron, including chelation therapy and phlebotomy. Phlebotomy is an easy, inexpensive, and well-tolerated intervention. Reduction in TS by phlebotomy has been shown to improve measures of diabetic control. Furthermore, correction of severe iron overload can significantly improve glucose tolerance. Thus, the finding that a baseline measure of high TS as point measure of toxic free iron plus elevation of ferritin, evidence of elevated cytosolic iron over a longer period of time, predicts increased risk of mortality among individuals with prediabetes supports the premise that toxic free iron is a health risk.

The normoglycemic group with elevated iron markers did not show increased mortality risk in comparison to the reference group of normoglycemic and normal iron marker levels. This may seem inconsistent with other data on the increased mortality risk due to elevated TS by itself. However, there is the potential that the effect of TS on mortality is modified by the presence of other variables. This effect has been shown in the past. Rather than being inconsistent with the TS alone and mortality findings, these new findings enhance our understanding of elevated iron markers and morbidity and
mortality and allow us to consider the more complex, but real, situation of patients by considering multiple variables together rather than independently.

This study has several limitations. First, although we have a nationally representative, population-based cohort followed through the National Death Index, the biomarkers are measured only at baseline. There is the possibility that either the hyperglycemia or elevated iron measures were identified and interventions were implemented to lower these biomarkers. If that were the case and a substantial number of individuals did drop their levels due to interventions thereby decreasing the potential mortality risk, the observed adjusted risk individuals elevated at baseline is even more concerning. Second, we were only able to follow these individuals for 12 years. It is possible that this time frame may have been too short to adequately see an effect for a biomarker like prediabetes. However, we did censor the first three years of mortality so that any deaths in that time frame would not be attributed to prediabetes. The model still found a substantial mortality risk for the prediabetes plus iron markers in this length of time. Third, we were unable to evaluate the relationship between being elevated on both transferrin saturation and serum ferritin with prediabetes on the risk of mortality. We attempted such an analysis but the number of individuals in the group with prediabetes and elevation on both iron markers was small and the population estimates were deemed unreliable.

In conclusion, this study representative of the population of the United States helps to clarify the current evidence on the mortality risk of prediabetes and provides further support for the role of elevated iron markers in health risk. Future screening and
intervention programs for prediabetes may benefit from additional strategies to recognize and treat iron elevations, particularly transferrin saturation.
ACKNOWLEDGEMENTS

Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

FUNDING

Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

CONTRIBUTION STATEMENT

AGM: conception, design, analysis, and drafting of manuscript
RJT: design, analysis, and drafting of manuscript
TDC: conception, design, and drafting of manuscript
RB: design and analysis

COMPETING INTERESTS

The authors report no competing interests.
REFERENCES

 Diabetes Care 2012;35:S64–S71.

 prevalence defined by hemoglobin A1c and fasting plasma glucose: National Health and

5. de Vet F, Dekker JM, Ruhé HG, et al. Hyperglycaemia is associated with all-cause
 and cardiovascular mortality in the Hoorn population: the Hoorn Study. *Diabetologia*

7. Valdés S, Botas P, Delgado E, Cadórniaga FD. Mortality risk in Spanish adults with

 for incident heart failure, other cardiovascular events or mortality in older adults: findings

Table 1: Baseline Characteristics of the Sample

<table>
<thead>
<tr>
<th>Study Sample (%)</th>
<th>Study Sample (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted Sample Size</td>
<td>8,003</td>
</tr>
<tr>
<td>Population Estimate</td>
<td>80,653,788</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
</tr>
<tr>
<td>40-54</td>
<td>49.6</td>
</tr>
<tr>
<td>55-69</td>
<td>31.2</td>
</tr>
<tr>
<td>70+</td>
<td>19.2</td>
</tr>
<tr>
<td>Sex, male</td>
<td>46.1</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>82.2</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>8.3</td>
</tr>
<tr>
<td>Hispanic</td>
<td>6.7</td>
</tr>
<tr>
<td>Asian/Other</td>
<td>2.9</td>
</tr>
<tr>
<td>Has health insurance</td>
<td>93.6</td>
</tr>
<tr>
<td>Obese</td>
<td>23.3</td>
</tr>
<tr>
<td>Current Smoker</td>
<td>23.6</td>
</tr>
<tr>
<td>Has diagnosed high cholesterol</td>
<td>40.1</td>
</tr>
<tr>
<td>Has diagnosed hypertension</td>
<td>31.3</td>
</tr>
<tr>
<td>Ever diagnosed with heart attack</td>
<td>5.3</td>
</tr>
<tr>
<td>Ever diagnosed with stroke</td>
<td>2.8</td>
</tr>
<tr>
<td>Ever diagnosed with cancer</td>
<td>12.3</td>
</tr>
<tr>
<td>Relative with diabetes</td>
<td>41.2</td>
</tr>
<tr>
<td>Relative with heart attack before age 50</td>
<td>15.4</td>
</tr>
<tr>
<td>Elevated C-reactive protein</td>
<td>1.2</td>
</tr>
<tr>
<td>Elevated Transferrin Saturation</td>
<td>3.3</td>
</tr>
<tr>
<td>Elevated Ferritin</td>
<td>15.6</td>
</tr>
<tr>
<td>Prediabetes</td>
<td>23.2</td>
</tr>
<tr>
<td>Assumed deceased</td>
<td>27.0</td>
</tr>
</tbody>
</table>
Table 2: Adjusted Hazard Ratios from Cox Regression for Mortality Risk of Individuals with Prediabetes

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prediabetes</td>
<td>1.04</td>
<td>1.00-1.08</td>
</tr>
<tr>
<td>Normoglycemia</td>
<td>1.0</td>
<td>--</td>
</tr>
</tbody>
</table>

*Adjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, and family history of early heart attack.
Table 3: Adjusted Hazard Ratios from Cox Regression for Mortality Risk of Individuals with Prediabetes and Iron Markers

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Transferrin Saturation/ Normoglycemia</td>
<td>1.00</td>
<td>--</td>
</tr>
<tr>
<td>Normal Transferrin Saturation/ Prediabetes</td>
<td>1.13</td>
<td>1.09-1.18</td>
</tr>
<tr>
<td>Elevated Transferrin Saturation/ Normoglycemia</td>
<td>.99</td>
<td>.90-1.08</td>
</tr>
<tr>
<td>Elevated Transferrin Saturation/ Prediabetes</td>
<td>1.86</td>
<td>1.05-3.29</td>
</tr>
<tr>
<td>Adjusted Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Ferritin/ Normoglycemia</td>
<td>1.00</td>
<td>--</td>
</tr>
<tr>
<td>Normal Ferritin/ Prediabetes</td>
<td>1.15</td>
<td>1.09-1.20</td>
</tr>
<tr>
<td>Elevated Ferritin/ Normoglycemia</td>
<td>1.05</td>
<td>1.00-1.12</td>
</tr>
<tr>
<td>Elevated Ferritin/ Prediabetes</td>
<td>1.14</td>
<td>1.04-1.24</td>
</tr>
</tbody>
</table>

a Adjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, and family history of early heart attack.

b Adjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, family history of early heart attack, and elevated C-reactive protein.
Figure 1. Kaplan Meier curve of survival among individuals with prediabetes or normal glycemic levels.

——— Normoglycemia
—— Prediabetes

Figure 2. Kaplan Meier curve of survival among individuals with prediabetes and elevated transferrin saturation

---------- Normoglycemia and Normal Transferrin Saturation
—— Normoglycemia and Elevated Transferrin Saturation
——— Prediabetes and Normal Transferrin Saturation
-------------- Prediabetes and Elevated Transferrin Saturation
Figure 1. Kaplan Meier curve of survival among individuals with prediabetes or normal glycemic levels.

- blue line = Normoglycemia
- red line = Prediabetes

54x40mm (300 x 300 DPI)
Figure 2. Kaplan Meier curve of survival among individuals with prediabetes and elevated transferrin saturation

- black line = Normoglycemia and Normal Transferrin Saturation
- yellow line = Normoglycemia and Elevated Transferrin Saturation
- blue line = Prediabetes and Normal Transferrin Saturation
- red line = Prediabetes and Elevated Transferrin Saturation

54x40mm (300 x 300 DPI)
STROBE Statement—checklist of items that should be included in reports of observational studies

<table>
<thead>
<tr>
<th>Item No</th>
<th>Recommendation</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title and abstract</td>
<td>(a) Indicate the study’s design with a commonly used term in the title or the abstract</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(b) Provide in the abstract an informative and balanced summary of what was done and what was found</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>Explain the scientific background and rationale for the investigation being reported</td>
<td>4</td>
</tr>
<tr>
<td>Objectives</td>
<td>State specific objectives, including any prespecified hypotheses</td>
<td>4-5</td>
</tr>
<tr>
<td>Methods</td>
<td>Present key elements of study design early in the paper</td>
<td>5</td>
</tr>
<tr>
<td>Setting</td>
<td>Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection</td>
<td>5</td>
</tr>
<tr>
<td>Participants</td>
<td>(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(b) Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Case-control study—For matched studies, give matching criteria and the number of controls per case</td>
<td></td>
</tr>
<tr>
<td>Variables</td>
<td>Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable</td>
<td>6-8</td>
</tr>
<tr>
<td>Data sources/measurement</td>
<td>For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group</td>
<td>6-8</td>
</tr>
<tr>
<td>Bias</td>
<td>Describe any efforts to address potential sources of bias</td>
<td>9</td>
</tr>
<tr>
<td>Study size</td>
<td>Explain how the study size was arrived at</td>
<td>5-8</td>
</tr>
<tr>
<td>Quantitative variables</td>
<td>Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why</td>
<td>5-8</td>
</tr>
<tr>
<td>Statistical methods</td>
<td>(a) Describe all statistical methods, including those used to control for confounding</td>
<td>8-9</td>
</tr>
<tr>
<td></td>
<td>(b) Describe any methods used to examine subgroups and interactions</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(c) Explain how missing data were addressed</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(d) Cohort study—If applicable, explain how loss to follow-up was addressed</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Case-control study—If applicable, explain how matching of cases and controls was addressed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e) Describe any sensitivity analyses</td>
<td>NA</td>
</tr>
</tbody>
</table>

Continued on next page
Results

Participants 13*

(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed

(b) Give reasons for non-participation at each stage

(c) Consider use of a flow diagram

Descriptive data 14*

(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders

(b) Indicate number of participants with missing data for each variable of interest

(c) *Cohort study*—Summarise follow-up time (eg, average and total amount)

Outcome data 15*

Cohort study—Report numbers of outcome events or summary measures over time

Case-control study—Report numbers in each exposure category, or summary measures of exposure

Cross-sectional study—Report numbers of outcome events or summary measures

Main results 16

(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included

(b) Report category boundaries when continuous variables were categorized

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period

Other analyses 17

Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses

Discussion

Key results 18

Summarise key results with reference to study objectives

Limitations 19

Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias

Interpretation 20

Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence

Generalisability 21

Discuss the generalisability (external validity) of the study results

Other information

Funding 22

Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Prediabetes, Elevated Iron, and All-Cause Mortality: A Cohort Study

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>bmjopen-2014-006491.R2</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Research</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>16-Oct-2014</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Mainous III, Arch; University of Florida, Health Services Research, Management, and Policy
Tanner, Rebecca; University of Florida, Health Services Research, Management, and Policy
Coates, Thomas; Keck School of Medicine,
Baker, Richard; University of Leicester, Health Sciences |
| Primary Subject Heading: | Diabetes and endocrinology |
| Secondary Subject Heading: | Haematology (incl blood transfusion) |
| Keywords: | General diabetes < DIABETES & ENDOCRINOLOGY, HAEMATOLOGY, DIABETES & ENDOCRINOLOGY |
Prediabetes, Elevated Iron, and All-Cause Mortality: A Cohort Study

Running Title: Prediabetes, Elevated Iron, and All-Cause Mortality

Arch G. Mainous III, Rebecca J. Tanner, Thomas D. Coates, Richard Baker

Author Affiliations and Addresses

Department of Health Services Research, Management and Policy, University of Florida.
P.O. Box 100195, Gainesville, FL 32610-0195 (AGM, RJT)

Department of Community Health and Family Medicine, University of Florida, P.O. Box 100237, Gainesville, FL 32610-0237 (AGM).

Department of Pediatrics and Pathology, University of Southern California Keck School of Medicine (TDC)

Department of Health Sciences, University of Leicester, 22-28 Princess Rd West, Leicester LE1 6TP, United Kingdom (RB)

Financial Support: Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

Corresponding Author:
Arch G. Mainous III, PhD
Department of Health Services Research, Management and Policy
University of Florida
P.O. Box 100195
Gainesville, FL 32610-0195
Phone: 352-273-6073
Fax: 352-273-6075
Email: arch.mainous@ufl.edu

Main Text Word Count: 3114

Abstract Word Count: 211

Key Words: prediabetes, transferrin saturation, ferritin, NHANES, mortality
ABSTRACT

Objectives: Data have indicated low to nonexistent increased mortality risk for individuals with prediabetes, but it is unclear if the risk is increased when the patient has elevated iron markers. Our purpose was to examine the mortality risk among adults with prediabetes in the context of co-existing elevated transferrin saturation (TS) or serum ferritin.

Participants: Individuals age 40 and older who participated in the NHANES and provided a blood sample.

Primary Outcome Variable: Mortality was measured as all-cause mortality.

Results: Adjusted analyses show that prediabetes has a small increased mortality risk (HR =1.04; 95% CI, 1.00-1.08). Persons who had prediabetes and elevated serum ferritin had an increased hazard ratio for death (HR =1.14; 95% CI, 1.04-1.24) compared with those who had normal ferritin and normal glucose. Among persons with prediabetes who had elevated TS, they had an increased mortality risk (HR =1.88; 95% CI, 1.06-3.30) compared with those with normal TS levels and normal glucose.

Conclusion: The mortality risk of prediabetes is low. However, among individuals who have co-existing elevated iron markers, particularly transferrin saturation, the risk rises substantially.
STRENGTHS AND LIMITATIONS OF STUDY

- This study utilizes a nationally representative population-based cohort that allows generalization of results to the noninstitutionalized civilian population of the United States.

- Mortality was left-censored to control for the potential misclassification of people who were very ill at baseline.

- Biomarkers for elevated iron and prediabetes were available only at baseline.

- We were able to only observe individuals for 12 years, which may be insufficient to adequately see an effect on mortality for prediabetes.
INTRODUCTION

Prediabetes is defined by blood glucose concentrations that are higher than normal, but lower than established thresholds for diabetes.1 Prediabetes is a high risk state for the development of not only diabetes, but also associated complications. Recent data have shown that in developed countries such as the United States and the United Kingdom more than a third of adults have prediabetes but the vast majority of these do not realize it.2-4

Several studies have shown that prediabetes is a mortality risk.5,6 On the other hand, other studies have found that prediabetes is not a mortality risk.7–10 Still other studies showed that the relationship was not very robust and was dependent on the measure of prediabetes.11

Three different meta-analyses of observational studies have concluded that elevated iron indices like serum ferritin and transferrin saturation (TS) are strongly associated with increased risk for developing diabetes.12–14 Some evidence exists to indicate that pancreatic beta cells are killed in the presence of iron.15 In addition to increased risk of diabetes, elevated TS or elevated ferritin is associated with increased mortality in the general population.16–22 Further, recent evidence suggests that among patients with diabetes, mortality risk increases in the presence of elevated ferritin or elevated TS.23,24 We therefore hypothesize that the mortality risk of individuals with prediabetes will be increased in the presence of elevated iron markers.

Considering that only about 10\% of the US population with prediabetes realize that they have prediabetes, a better understanding of the potential mortality risk is warranted. Consequently, the purpose of this study was to evaluate the association
between prediabetes, elevated serum ferritin, elevated TS and mortality in a large, nationally representative cohort.

METHODS

We conducted longitudinal analyses of the third National Health and Nutrition Examination Survey, 1988-1994 (NHANES III) linked to mortality data collected through the National Death Index. Mortality data were available through December 31, 2006. The NHANES III survey provides population estimates of the United States and was conducted from October, 1988 through October, 1994.

The NHANES III used complex, multi-stage, stratified, clustered samples of civilian, noninstitutionalized population and is designed and conducted for the purpose of making health-related prevalence estimates that are nationally generalizable. To make accurate population estimates, analysis of the NHANES requires the use of weight and design variables that account for this complex design. The use of sampling weights is necessary to account for differences in probability of selection for each participant and also accounts for noncoverage and nonresponse. The NHANES III oversampled different groups, including older individuals, African Americans, and Mexican-Americans. The application of sampling weights allows us to conduct analyses on the individuals who were sampled in the NHANES and extrapolate those results to the population at large. According to the technical reports provided by the National Center for Health Statistics, without the use of sampling weights, misinterpretation of population estimates based on NHANES III is likely. This strategy of basing the analyses on population estimates is a characteristic that makes the NHANES different from many other cohort designs that do not use weighted population estimates, and provides national generalizability.
Of the 39,695 individuals eligible to participate, a total of 30,818 persons of all ages were examined in their homes or in mobile examination centers (MEC) which visited 89 communities across the United States (a participation rate of 77.6%). The health examination included collection of blood and urine specimens for the conduct of various laboratory analyses.

The NHANES III data merged with the National Death Index is a prospective cohort study that passively followed up on the participants in the NHANES III. The linked mortality file uses a probabilistic matching method. The National Death Index involves searching national databases containing information about mortality and causes of death. Mortality status was ascertained by computerized matching to national databases and evaluation of the resulting matches. Persons not found to be deceased were assumed alive for analytic purposes.

The NHANES III is preexisting de-identified public use data which do not need specific approval from the National Center for Health Statistics.

We limited our study to individuals 40 years old and older at baseline, the time of their NHANES III interview. All analyses were based on the population estimates generated by applying variables accounting for the design and sampling methodology of the NHANES. The results presented here are generalizable to the noninstitutionalized civilian population of the United States aged 40 and older from 1998-1994.

Previously Diagnosed Diabetes

The NHANES III assessed participants for diagnosed diabetes using the questions, “Have you ever been told by a doctor that you have diabetes or sugar diabetes?”, “Were you pregnant when you were told that you had diabetes?” and “Other
than during pregnancy, has a doctor ever told you that you have diabetes or sugar diabetes?” We defined participants as having diagnosed diabetes if they answered “yes” to ever having been told they had diabetes, excluding pregnancy. Individuals with previously diagnosed diabetes were removed from the analysis. We also removed individuals with an HbA1c of 6.5% or greater, to account for undiagnosed diabetes.

Normoglycemia & Prediabetes

We defined normoglycemia as an Hba1c level between 4.0%--5.6% (20-38 mmol/mol). To control for any potential effect of low HbA1c, we also removed individuals with an HbA1c below 4.0% (20 mmol/mol), a level associated with increased all-cause mortality in adults without diabetes.²⁷

We defined prediabetes among individuals without previously diagnosed diabetes using HbA1c ranges as specified by the American Diabetes Association, 5.7%–6.4% (39-46 mmol/mol).¹ This range has been shown in a meta-analysis to be predictive of progression to diabetes.¹⁹ We excluded individuals with previously diagnosed diabetes because the current glycemic status of those patients may simply represent diabetes control. Prediabetes status was missing for 1,637 of the NHANES respondents over the age of 40.

Transferrin Saturation

Serum iron and total iron-binding capacity (TIBC) were measured in serum, and calculated by dividing serum iron by TIBC and multiplying by 100. For the analyses, elevated transferrin saturation was categorized as TS ≥50%. Individuals with TS below 25% were removed from the analysis, as low TS has been linked to increased risk of mortality.²³ Despite the lack of universal agreement on the upper and lower limits of
normal TS, these cut points has been used in several studies evaluating diabetes, TS and mortality.23,28 Data were missing for transferrin saturation level for 536 of the NHANES respondents over the age of 40.

Serum Ferritin

Serum ferritin was used as a measure of body iron stores and was measured using the QuantImune Ferritin IRMA kit. Serum ferritin was categorized for the analyses as elevated if it was ≥ 674.1 pmol/l (300 ng/mL) for males and ≥ 449.4 pmol/l (200 ng/mL) for females.29 Individuals with serum ferritin below 56.175 pmol/l (25 ng/mL) were removed from the analysis, as low ferritin has been linked to an increased risk of mortality.23 Data were missing for serum ferritin level for 539 of the NHANES respondents over the age of 40.

Mortality

Mortality was measured as all-cause mortality. Mortality status was ascertained solely by computerized matching to national databases and evaluation of the resulting matches. All living survey participants examined in this study had been observed for 146 months, and our survival analysis was carried out to December 31, 2006.

Covariates

Covariates used in our analyses included: age at baseline in the NHANES III, gender, race/ethnicity (non-Hispanic white, non-Hispanic black, Mexican-American, and other), health insurance status, obesity (Body Mass Index computed in the exam of ≥ 30), previous diagnosis of a heart attack, previous diagnosis of a stroke, previous diagnosis of hypertension, previous diagnosis of hypercholesterolemia, previous diagnosis of cancer, family history of diabetes, family history of myocardial infarction before age 50, and
current smoking status. Respondents were considered non-smokers if they reported smoking less than 100 cigarettes in their life or if they had smoked more than 100 cigarettes and were not currently smoking.

In the analysis of serum ferritin, we also controlled for C-reactive protein. Ferritin is an acute phase reactant as well as an indicator of iron stores and as such may indicate inflammation. Consequently, we controlled for inflammation by adjusting for C-reactive protein. C-reactive protein was considered elevated at levels above 3.0 mg/l.30

Analysis

In an effort to control for potential misclassification of persons who were very ill at baseline thereby affecting mortality risk of prediabetes, we left-censored the analysis to exclude any mortality events that occurred in the first three years following the individuals examination for the first three years of the cohort. Because of the complex sampling design of the survey, we performed statistical analyses using the statistical software package SUDAAN (Research Triangle Institute, Raleigh, NC), as recommended by the National Center for Health Statistics (NCHS). Using SAS (Cary, NC), we computed Kaplan-Meier plots to show graphically the unadjusted relationship between all-cause mortality and prediabetes.

We followed the NCHS recommendations for assessing the reliability of estimates in the context of a limited sample size. If the standard error of an estimate was greater than 30% of an estimate it would be considered unreliable. All estimates met the criteria for reliability.

To accomplish our goals of examining a possible synergistic effect of having elevated iron with prediabetes we classified the population into 4 groups based upon
prediabetes or normoglycemia and normal or elevated TS. The population was also
classified into 4 groups based upon prediabetes or normoglycemia and normal or elevated
serum ferritin.

We performed Cox proportional hazards analyses to measure the associations
between all-cause mortality and prediabetes controlling for all of the studied covariates
using listwise deletion to account for missing data. In these models, survival time was a
continuous variable measured in 1-month increments from the date of the exam.

We also performed adjusted Cox proportional hazards analysis with all-cause
mortality for prediabetes in the 4 part variables with TS adjusting for the aforementioned
covariates. For the adjusted Cox proportional hazards analysis with ferritin we adjusted
for the aforementioned covariates and also C-reactive protein.

We evaluated the proportionality of the hazards through examination of the
Schoenfeld residuals.

RESULTS

A total of 8,003 (unweighted) individuals were over 40 years old and had HbA1c
levels between 4.0 and 6.4%, or 80,653,788 individuals nationally. Baseline
characteristics for the sample are shown in Table 1. Table 1 indicates that 23.2% of the
weighted sample had prediabetes, 15.6% of the sample exhibited elevated serum ferritin,
and 3.3% had elevated TS.

Of the respondents that had prediabetes, 38.8% died within 12 years (723,702
died; 11,431,597 survived), compared to 23.4% of respondents with normal HbA1c
levels (14,527,028 died; 47,458,061 survived). Among individuals with normal TS and
normoglycemia, 23.1% died (10,724,279 died; 35,649,283 survived), compared to 23.7%
of those with elevated TS and normoglycemia (412,237 died; 1,327,253 survived), 37.5% of those with normal TS and prediabetes (5,137,131 died; 8,572,762 survived), and 44.7% of those with elevated TS and prediabetes (126,633 died; 156,790 survived).

Among individuals with normal ferritin and normoglycemia, 24.3% died (10,967,486 died; 34,132,718 survived), compared with 38.8% of those with normal ferritin and prediabetes (5,465,483 died; 8,614,683 survived), 29.2% of those with elevated ferritin and normoglycemia (2,333,436 died; 5,662,576 survived), and 38.8% of those with elevated ferritin and prediabetes (1,150,647 died; 1,818,565 survived).

Table 2 shows the results the adjusted Cox proportional hazards model for prediabetes. Table 2 indicates prediabetes alone has a small increased mortality risk. The Kaplan Meier curve of the survival and prediabetes over the length of the time under observation is shown in Fig 1.

Table 3 presents results of the analyses combining prediabetes with iron markers. In models that examined the impact of a prediabetes state combined with markers of low iron, the hazard ratios were similar to that of prediabetes alone. However, when combined with prediabetes, there was an increased mortality risk among individuals with TS ≥50, as well as with individuals who had increased ferritin. The risk was most increased when individuals had elevated ferritin and elevated transferrin saturation together. Figure 2 represents the relationship of survival of the four groups over the 12 years under observation. Individuals with prediabetes in the presence of elevated iron have lower survival probabilities than other groups. An examination of the Schoenfeld residuals suggested proportionality of hazards and appropriateness of the statistical model for these analyses.
DISCUSSION

The results of this study in a nationally representative cohort that followed individuals for 12 years confirm that the mortality risk of prediabetes is probably low. This is not unexpected based on the mixed results from previous studies, several of which found either no future mortality risk or risk that was not robust across measures. However, we found that the presence of transferrin saturation and serum ferritin is associated with increased mortality risk of individuals with prediabetes. Among individuals with normal iron levels, those with prediabetes had low mortality risk levels similar to the adjusted risk of prediabetes alone. On the other hand, in adjusted survival analyses, individuals with prediabetes who also had elevated transferrin saturation had substantially increased mortality risk. These findings extend previous work on iron markers and diabetes to the previously uninvestigated area of prediabetes.

These results suggest that additional stratification of individuals with prediabetes on the basis of iron markers would be useful to identify those with higher risk and who might benefit from iron lowering therapies. Previous data has indicated that elevated iron markers are associated with the development of diabetes and that among individuals with diabetes the co-occurrence of elevated TS increases those patients’ mortality risk. Early identification of individuals with both conditions (prediabetes, elevated iron) may help in both slowing the development of diabetes as well as decreasing mortality risk. It is important for early identification of these individuals because much like individuals with prediabetes, the vast majority of individuals with elevated iron do not know it. These individuals need to be identified to mitigate the increased risk posed by elevated iron in combination with prediabetes. Such individuals would be targets for intensive
interventions to reduce risk, including typical lifestyle interventions shown to help avoid the onset of diabetes in people at high risk.32 Although more research is needed into the ability of interventions on iron in prediabetes to affect development of diabetes and mortality risk, some data suggest that reduction of TS improves HbA1c and glucose control.33

These associations of TS and ferritin with mortality in the context of prediabetes are not surprising especially if elevations of these parameters are interpreted in light of current understanding of iron toxicity.34 Iron, whether absorbed as iron salts or in dietary heme is processed by enterocytes and released into the plasma where it is transported in a non-reactive state bound to transferrin. Iron that is bound to transferrin is in the Fe3+ state and is not reactive and, therefore, not toxic. However, when TS is above 40 to 50\%, free iron or so-called non-transferrin-bound iron (NTBI) is released into the plasma as the buffering ability of transferrin is exceeded.35 Labile plasma iron (LPI) is a highly reactive subspecies of NTBI that interacts with hydrogen peroxide through Fenton chemistry to form the extremely powerful oxidants, hydroxyl radical and singlet oxygen. These are the free radicals that ultimately directly damage protein and DNA. Perhaps more importantly, NTBI/LPI species are able to enter cells via ion channels. These channels, unlike the transferrin receptor, are not regulated so this reactive iron freely enters the cytoplasm of the pancreas, pituitary, and heart.

The current results suggest that exposure to excessive free iron is dangerous in the context of prediabetes. Furthermore, elevated ferritin and TS predict poor diabetes control and phlebotomy to reduce iron even over short periods of time improve HbA1c in parallel with changes in TS, even though ferritin is not changed,33 putting further
emphasis on the fact that NTBI/LPI reflected by TS is the proximal cause of the toxicity. Several strategies are available to decrease iron, including chelation therapy and phlebotomy. Phlebotomy is an easy, inexpensive, and well-tolerated intervention. Reduction in TS by phlebotomy has been shown to improve measures of diabetic control.33 Furthermore, correction of severe iron overload can significantly improve glucose tolerance.36 Thus, the finding that a baseline measure of high TS as point measure of toxic free iron plus elevation of ferritin, evidence of elevated cytosolic iron over a longer period of time, predicts increased risk of mortality among individuals with prediabetes supports the premise that toxic free iron is a health risk.

The normoglycemic group with elevated iron markers did not show increased mortality risk in comparison to the reference group of normoglycemic and normal iron marker levels. This may seem inconsistent with other data on the increased mortality risk due to elevated TS by itself. However, there is the potential that the effect of TS on mortality is modified by the presence of other variables.37,38 This effect has been shown in the past. Rather than being inconsistent with the TS alone and mortality findings, these new findings enhance our understanding of elevated iron markers and morbidity and mortality and allow us to consider the more complex, but real, situation of patients by considering multiple variables together rather than independently.

This study has several limitations. First, although we have a nationally representative, population-based cohort followed through the National Death Index, the biomarkers are measured only at baseline. There is the possibility that either the hyperglycemia or elevated iron measures were identified and interventions were implemented to lower these biomarkers. If that were the case and a substantial number of
individuals did drop their levels due to interventions thereby decreasing the potential mortality risk, the observed adjusted risk individuals elevated at baseline is even more concerning. Second, we were only able to follow these individuals for 12 years. It is possible that this time frame may have been too short to adequately see an effect for a biomarker like prediabetes. However, we did censor the first three years of mortality so that any deaths in that time frame would not be attributed to prediabetes. The model still found a substantial mortality risk for the prediabetes plus iron markers in this length of time. Third, we were unable to evaluate the relationship between being elevated on both transferrin saturation and serum ferritin with prediabetes on the risk of mortality. We attempted such an analysis but the number of individuals in the group with prediabetes and elevation on both iron markers was small and the population estimates were deemed unreliable.

In conclusion, this study representative of the population of the United States helps to clarify the current evidence on the mortality risk of prediabetes and provides further support for the role of elevated iron markers in health risk. Future screening and intervention programs for prediabetes may benefit from additional strategies to recognize and treat iron elevations, particularly transferrin saturation.
ACKNOWLEDGEMENTS

Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

FUNDING

Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

CONTRIBUTION STATEMENT

AGM: conception, design, analysis, and drafting of manuscript
RJT: design, analysis, and drafting of manuscript
TDC: conception, design, and drafting of manuscript
RB: design and analysis

COMPETING INTERESTS

The authors report no competing interests.

DATA SHARING STATEMENT

Data from this study are publicly available on the Internet through the National Center for Health Statistics.
REFERENCES

Figure 1. Kaplan Meier curve of survival among individuals with prediabetes or normal glycemic levels.

- — Normoglycemia
- — Prediabetes

Figure 2. Kaplan Meier curve of survival among individuals with prediabetes and elevated transferrin saturation

- — Normoglycemia and Normal Transferrin Saturation
- — Normoglycemia and Elevated Transferrin Saturation
- — Prediabetes and Normal Transferrin Saturation
- — Prediabetes and Elevated Transferrin Saturation
Table 1: Baseline Characteristics of the Sample

<table>
<thead>
<tr>
<th>Study Sample (%)</th>
<th>Study Sample (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted Sample Size</td>
<td>8,003</td>
</tr>
<tr>
<td>Population Estimate</td>
<td>80,653,788</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
</tr>
<tr>
<td>40-54</td>
<td>49.6</td>
</tr>
<tr>
<td>55-69</td>
<td>31.2</td>
</tr>
<tr>
<td>70+</td>
<td>19.2</td>
</tr>
<tr>
<td>Sex, male</td>
<td>46.1</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>82.2</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>8.3</td>
</tr>
<tr>
<td>Mexican-American</td>
<td>3.2</td>
</tr>
<tr>
<td>Other</td>
<td>6.4</td>
</tr>
<tr>
<td>Has health insurance</td>
<td>93.6</td>
</tr>
<tr>
<td>Obese</td>
<td>23.3</td>
</tr>
<tr>
<td>Current Smoker</td>
<td>23.6</td>
</tr>
<tr>
<td>Has diagnosed high cholesterol</td>
<td>40.1</td>
</tr>
<tr>
<td>Has diagnosed hypertension</td>
<td>31.3</td>
</tr>
<tr>
<td>Ever diagnosed with heart attack</td>
<td>5.3</td>
</tr>
<tr>
<td>Ever diagnosed with stroke</td>
<td>2.8</td>
</tr>
<tr>
<td>Ever diagnosed with cancer</td>
<td>12.3</td>
</tr>
<tr>
<td>Relative with diabetes</td>
<td>41.2</td>
</tr>
<tr>
<td>Relative with heart attack before age 50</td>
<td>15.4</td>
</tr>
<tr>
<td>Elevated C-reactive protein</td>
<td>1.2</td>
</tr>
<tr>
<td>Elevated Transferrin Saturation</td>
<td>3.3</td>
</tr>
<tr>
<td>Elevated Ferritin</td>
<td>15.6</td>
</tr>
<tr>
<td>Prediabetes</td>
<td>23.2</td>
</tr>
<tr>
<td>Assumed deceased</td>
<td>27.0</td>
</tr>
</tbody>
</table>
Table 2: Adjusted Hazard Ratios from Cox Regression for Mortality Risk of Individuals with Prediabetes

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Modela</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prediabetes</td>
<td>1.04</td>
<td>1.00-1.08</td>
</tr>
<tr>
<td>Normoglycemia</td>
<td>1.0</td>
<td>--</td>
</tr>
</tbody>
</table>

aAdjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, and family history of early heart attack.
Table 3: Adjusted Hazard Ratios from Cox Regression for Mortality Risk of Individuals with Prediabetes and Iron Markers

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Transferrin Saturation/ Normoglycemia</td>
<td>1.00</td>
<td>--</td>
</tr>
<tr>
<td>Normal Transferrin Saturation/ Prediabetes</td>
<td>1.13</td>
<td>1.08-1.19</td>
</tr>
<tr>
<td>Elevated Transferrin Saturation/ Normoglycemia</td>
<td>.98</td>
<td>.90-1.07</td>
</tr>
<tr>
<td>Elevated Transferrin Saturation/ Prediabetes</td>
<td>1.88</td>
<td>1.06-3.30</td>
</tr>
<tr>
<td>Adjusted Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Ferritin/ Normoglycemia</td>
<td>1.00</td>
<td>--</td>
</tr>
<tr>
<td>Normal Ferritin/ Prediabetes</td>
<td>1.15</td>
<td>1.09-1.20</td>
</tr>
<tr>
<td>Elevated Ferritin/ Normoglycemia</td>
<td>1.05</td>
<td>1.00-1.12</td>
</tr>
<tr>
<td>Elevated Ferritin/ Prediabetes</td>
<td>1.14</td>
<td>1.04-1.24</td>
</tr>
</tbody>
</table>

a Adjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, and family history of early heart attack.

b Adjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, family history of early heart attack, and elevated C-reactive protein.
Prediabetes, Elevated Iron, and All-Cause Mortality: A Cohort Study

Running Title: Prediabetes, Elevated Iron, and All-Cause Mortality

Arch G. Mainous III, Rebecca J. Tanner, Thomas D. Coates, Richard Baker

Author Affiliations and Addresses

Department of Health Services Research, Management and Policy, University of Florida. P.O. Box 100195, Gainesville, FL 32610-0195 (AGM, RJT)

Department of Community Health and Family Medicine, University of Florida, P.O. Box 100237, Gainesville, FL 32610-0237 (AGM).

Department of Pediatrics and Pathology, University of Southern California Keck School of Medicine (TDC)

Department of Health Sciences, University of Leicester, 22-28 Princess Rd West, Leicester LE1 6TP, United Kingdom (RB)

Financial Support: Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

Corresponding Author:
Arch G. Mainous III, PhD
Department of Health Services Research, Management and Policy
University of Florida
P.O. Box 100195
Gainesville, FL 32610-0195
Phone: 352-273-6073
Fax: 352-273-6075
Email: arch.mainous@ufl.edu

Main Text Word Count: 3114

Abstract Word Count: 211

Key Words: prediabetes, transferrin saturation, ferritin, NHANES, mortality
ABSTRACT

Objectives: Data have indicated low to nonexistent increased mortality risk for individuals with prediabetes, but it is unclear if the risk is increased when the patient has elevated iron markers. Our purpose was to examine the mortality risk among adults with prediabetes in the context of co-existing elevated transferrin saturation (TS) or serum ferritin.

Participants: Individuals age 40 and older who participated in the NHANES and provided a blood sample.

Primary Outcome Variable: Mortality was measured as all-cause mortality.

Results: Adjusted analyses show that prediabetes has a small increased mortality risk (HR =1.04; 95% CI, 1.00-1.08). Persons who had prediabetes and elevated serum ferritin had an increased hazard ratio for death (HR=1.14; 95% CI, 1.04-1.24) compared with those who had normal ferritin and normal glucose. Among persons with prediabetes who had elevated TS, they had an increased mortality risk (HR=1.88; 95% CI, 1.06-3.30) compared with those with normal TS levels and normal glucose.

Conclusion: The mortality risk of prediabetes is low. However, among individuals who have co-existing elevated iron markers, particularly transferrin saturation, the risk rises substantially.
STRENGTHS AND LIMITATIONS OF STUDY

- This study utilizes a nationally representative population-based cohort that allows generalization of results to the noninstitutionalized civilian population of the United States.

- Mortality was left-censored to control for the potential misclassification of people who were very ill at baseline.

- Biomarkers for elevated iron and prediabetes were available only at baseline.

- We were able to only observe individuals for 12 years, which may be insufficient to adequately see an effect on mortality for prediabetes.
INTRODUCTION

Prediabetes is defined by blood glucose concentrations that are higher than normal, but lower than established thresholds for diabetes.\(^1\) Prediabetes is a high risk state for the development of not only diabetes, but also associated complications. Recent data have shown that in developed countries such as the United States and the United Kingdom more than a third of adults have prediabetes but the vast majority of these do not realize it.\(^2\)\(^-\)\(^4\)

Several studies have shown that prediabetes is a mortality risk.\(^5\)\(^,\)\(^6\) On the other hand, other studies have found that prediabetes is not a mortality risk.\(^7\)\(^-\)\(^10\) Still other studies showed that the relationship was not very robust and was dependent on the measure of prediabetes.\(^11\)

Three different meta-analyses of observational studies have concluded that elevated iron indices like serum ferritin and transferrin saturation (TS) are strongly associated with increased risk for developing diabetes.\(^12\)\(^-\)\(^14\) Some evidence exists to indicate that pancreatic beta cells are killed in the presence of iron.\(^15\) In addition to increased risk of diabetes, elevated TS or elevated ferritin is associated with increased mortality in the general population.\(^16\)\(^-\)\(^22\) Further, recent evidence suggests that among patients with diabetes, mortality risk increases in the presence of elevated ferritin or elevated TS.\(^23\)\(^,\)\(^24\) We therefore hypothesize that the mortality risk of individuals with prediabetes will be increased in the presence of elevated iron markers.

Considering that only about 10% of the US population with prediabetes realize that they have prediabetes, a better understanding of the potential mortality risk is warranted. Consequently, the purpose of this study was to evaluate the association
between prediabetes, elevated serum ferritin, elevated TS and mortality in a large, nationally representative cohort.

METHODS

We conducted longitudinal analyses of the third National Health and Nutrition Examination Survey, 1988-1994 (NHANES III) linked to mortality data collected through the National Death Index. Mortality data were available through December 31, 2006. The NHANES III survey provides population estimates of the United States and was conducted from October, 1988 through October, 1994.

The NHANES III used complex, multi-stage, stratified, clustered samples of civilian, noninstitutionalized population and is designed and conducted for the purpose of making health-related prevalence estimates that are nationally generalizable. To make accurate population estimates, analysis of the NHANES requires the use of weight and design variables that account for this complex design. The use of sampling weights is necessary to account for differences in probability of selection for each participant and also accounts for noncoverage and nonresponse. The NHANES III oversampled different groups, including older individuals, African Americans, and Mexican-Americans. The application of sampling weights allows us to conduct analyses on the individuals who were sampled in the NHANES and extrapolate those results to the population at large. According to the technical reports provided by the National Center for Health Statistics, without the use of sampling weights, misinterpretation of population estimates based on NHANES III is likely. This strategy of basing the analyses on population estimates is a characteristic that makes the NHANES different from many other cohort designs that do not use weighted population estimates, and provides national generalizability.
Of the 39,695 individuals eligible to participate, a total of 30,818 persons of all ages were examined in their homes or in mobile examination centers (MEC) which visited 89 communities across the United States (a participation rate of 77.6%). The health examination included collection of blood and urine specimens for the conduct of various laboratory analyses.

The NHANES III data merged with the National Death Index is a prospective cohort study that passively followed up on the participants in the NHANES III. The linked mortality file uses a probabilistic matching method. The National Death Index involves searching national databases containing information about mortality and causes of death. Mortality status was ascertained by computerized matching to national databases and evaluation of the resulting matches. Persons not found to be deceased were assumed alive for analytic purposes.

The NHANES III is preexisting de-identified public use data which do not need specific approval from the National Center for Health Statistics.

We limited our study to individuals 40 years old and older at baseline, the time of their NHANES III interview. All analyses were based on the population estimates generated by applying variables accounting for the design and sampling methodology of the NHANES. The results presented here are generalizable to the noninstitutionalized civilian population of the United States aged 40 and older from 1998-1994.

Previously Diagnosed Diabetes

The NHANES III assessed participants for diagnosed diabetes using the questions, “Have you ever been told by a doctor that you have diabetes or sugar diabetes?”, “Were you pregnant when you were told that you had diabetes?” and “Other
than during pregnancy, has a doctor ever told you that you have diabetes or sugar diabetes?” We defined participants as having diagnosed diabetes if they answered “yes” to ever having been told they had diabetes, excluding pregnancy. Individuals with previously diagnosed diabetes were removed from the analysis. We also removed individuals with an HbA1c of 6.5% or greater, to account for undiagnosed diabetes.

Normoglycemia & Prediabetes

We defined normoglycemia as an Hba1c level between 4.0%–5.6% (20–38 mmol/mol). To control for any potential effect of low HbA1c, we also removed individuals with an HbA1c below 4.0% (20 mmol/mol), a level associated with increased all-cause mortality in adults without diabetes.27

We defined prediabetes among individuals without previously diagnosed diabetes using HbA1c ranges as specified by the American Diabetes Association, 5.7%–6.4% (39-46 mmol/mol).1 This range has been shown in a meta-analysis to be predictive of progression to diabetes.19 We excluded individuals with previously diagnosed diabetes because the current glycemic status of those patients may simply represent diabetes control. Prediabetes status was missing for 1,637 of the NHANES respondents over the age of 40.

Transferrin Saturation

Serum iron and total iron-binding capacity (TIBC) were measured in serum, and calculated by dividing serum iron by TIBC and multiplying by 100. For the analyses, elevated transferrin saturation was categorized as TS ≥50%. Individuals with TS below 25% were removed from the analysis, as low TS has been linked to increased risk of mortality.23 Despite the lack of universal agreement on the upper and lower limits of
normal TS, these cut points has been used in several studies evaluating diabetes, TS and mortality.23,28 Data were missing for transferrin saturation level for 536 of the NHANES respondents over the age of 40.

\textit{Serum Ferritin}

Serum ferritin was used as a measure of body iron stores and was measured using the QuantImune Ferritin IRMA kit. Serum ferritin was categorized for the analyses as elevated if it was ≥ 674.1 pmol/l (300 ng/mL) for males and ≥ 449.4 pmol/l (200 ng/mL) for females.29 Individuals with serum ferritin below 56.175 pmol/l (25 ng/mL) were removed from the analysis, as low ferritin has been linked to an increased risk of mortality.23 Data were missing for serum ferritin level for 539 of the NHANES respondents over the age of 40.

\textit{Mortality}

Mortality was measured as all-cause mortality. Mortality status was ascertained solely by computerized matching to national databases and evaluation of the resulting matches. All living survey participants examined in this study had been observed for 146 months, and our survival analysis was carried out to December 31, 2006.

\textit{Covariates}

Covariates used in our analyses included: age at baseline in the NHANES III, gender, race/ethnicity (non-Hispanic white, non-Hispanic black, Mexican-American, and other), health insurance status, obesity (Body Mass Index computed in the exam of ≥ 30), previous diagnosis of a heart attack, previous diagnosis of a stroke, previous diagnosis of hypertension, previous diagnosis of hypercholesterolemia, previous diagnosis of cancer, family history of diabetes, family history of myocardial infarction before age 50, and
current smoking status. Respondents were considered non-smokers if they reported smoking less than 100 cigarettes in their life or if they had smoked more than 100 cigarettes and were not currently smoking.

In the analysis of serum ferritin, we also controlled for C-reactive protein. Ferritin is an acute phase reactant as well as an indicator of iron stores and as such may indicate inflammation. Consequently, we controlled for inflammation by adjusting for C-reactive protein. C-reactive protein was considered elevated at levels above 3.0 mg/l.30

Analysis

In an effort to control for potential misclassification of persons who were very ill at baseline thereby affecting mortality risk of prediabetes, we left-censored the analysis to exclude any mortality events that occurred in the first three years following the individuals examination for the first three years of the cohort. Because of the complex sampling design of the survey, we performed statistical analyses using the statistical software package SUDAAN (Research Triangle Institute, Raleigh, NC), as recommended by the National Center for Health Statistics (NCHS). Using SAS (Cary, NC), we computed Kaplan-Meier plots to show graphically the unadjusted relationship between all-cause mortality and prediabetes.

We followed the NCHS recommendations for assessing the reliability of estimates in the context of a limited sample size. If the standard error of an estimate was greater than 30\% of an estimate it would be considered unreliable All estimates met the criteria for reliability.

To accomplish our goals of examining a possible synergistic effect of having elevated iron with prediabetes we classified the population into 4 groups based upon
prediabetes or normoglycemia and normal or elevated TS. The population was also
classified into 4 groups based upon prediabetes or normoglycemia and normal or elevated
serum ferritin.

We performed Cox proportional hazards analyses to measure the associations
between all-cause mortality and prediabetes controlling for all of the studied covariates
using listwise deletion to account for missing data. In these models, survival time was a
continuous variable measured in 1-month increments from the date of the exam.

We also performed adjusted Cox proportional hazards analysis with all-cause
mortality for prediabetes in the 4 part variables with TS adjusting for the aforementioned
covariates. For the adjusted Cox proportional hazards analysis with ferritin we adjusted
for the aforementioned covariates and also C-reactive protein.

We evaluated the proportionality of the hazards through examination of the
Schoenfeld residuals.

RESULTS

A total of 8,003 (unweighted) individuals were over 40 years old and had HbA1c
levels between 4.0 and 6.4%, or 80,653,788 individuals nationally. Baseline
characteristics for the sample are shown in Table 1. Table 1 indicates that 23.2% of the
weighted sample had prediabetes, 15.6% of the sample exhibited elevated serum ferritin,
and 3.3% had elevated TS.

Of the respondents that had prediabetes, 38.8% died within 12 years (723,702
died; 11,431,597 survived), compared to 23.4% of respondents with normal HbA1c
levels (14,527,028 died; 47,458,061 survived). Among individuals with normal TS and
normoglycemia, 23.1% died (10,724,279 died; 35,649,283 survived), compared to 23.7%
of those with elevated TS and normoglycemia (412,237 died; 1,327,253 survived), 37.5%
of those with normal TS and prediabetes (5,137,131 died; 8,572,762 survived), and
44.7% of those with elevated TS and prediabetes (126,633 died; 156,790 survived).

Among individuals with normal ferritin and normoglycemia, 24.3% died (10,967,486
died; 34,132,718 survived), compared with 38.8% of those with normal ferritin and
prediabetes (5,465,483 died; 8,614,683 survived), 29.2% of those with elevated ferritin
and normoglycemia (2,333,436 died; 5,662,576 survived), and 38.8% of those with
elevated ferritin and prediabetes (1,150,647 died; 1,818,565 survived).

Table 2 shows the results the adjusted Cox proportional hazards model for
prediabetes. Table 2 indicates prediabetes alone has a small increased mortality risk. The
Kaplan Meier curve of the survival and prediabetes over the length of the time under
observation is shown in Fig 1.

Table 3 presents results of the analyses combining prediabetes with iron markers.
In models that examined the impact of a prediabetes state combined with markers of low
iron, the hazard ratios were similar to that of prediabetes alone. However, when
combined with prediabetes, there was an increased mortality risk among individuals with
TS ≥50, as well as with individuals who had increased ferritin. The risk was most
increased when individuals had elevated ferritin and elevated transferrin saturation
together. Figure 2 represents the relationship of survival of the four groups over the 12
years under observation. Individuals with prediabetes in the presence of elevated iron
have lower survival probabilities than other groups. An examination of the Schoenfeld
residuals suggested proportionality of hazards and appropriateness of the statistical model
for these analyses.
DISCUSSION

The results of this study in a nationally representative cohort that followed individuals for 12 years confirm that the mortality risk of prediabetes is probably low. This is not unexpected based on the mixed results from previous studies, several of which found either no future mortality risk or risk that was not robust across measures. However, we found that the presence of transferrin saturation and serum ferritin is associated with increased mortality risk of individuals with prediabetes. Among individuals with normal iron levels, those with prediabetes had low mortality risk levels similar to the adjusted risk of prediabetes alone. On the other hand, in adjusted survival analyses, individuals with prediabetes who also had elevated transferrin saturation had substantially increased mortality risk. These findings extend previous work on iron markers and diabetes to the previously uninvestigated area of prediabetes.

These results suggest that additional stratification of individuals with prediabetes on the basis of iron markers would be useful to identify those with higher risk and who might benefit from iron lowering therapies. Previous data has indicated that elevated iron markers are associated with the development of diabetes and that among individuals with diabetes the co-occurrence of elevated TS increases those patients’ mortality risk. Early identification of individuals with both conditions (prediabetes, elevated iron) may help in both slowing the development of diabetes as well as decreasing mortality risk. It is important for early identification of these individuals because much like individuals with prediabetes, the vast majority of individuals with elevated iron do not know it. These individuals need to be identified to mitigate the increased risk posed by elevated iron in combination with prediabetes. Such individuals would be targets for intensive
interventions to reduce risk, including typical lifestyle interventions shown to help avoid the onset of diabetes in people at high risk.32 Although more research is needed into the ability of interventions on iron in prediabetes to affect development of diabetes and mortality risk, some data suggest that reduction of TS improves HbA1c and glucose control.33

These associations of TS and ferritin with mortality in the context of prediabetes are not surprising especially if elevations of these parameters are interpreted in light of current understanding of iron toxicity.34 Iron, whether absorbed as iron salts or in dietary heme is processed by enterocytes and released into the plasma where it is transported in a non-reactive state bound to transferrin. Iron that is bound to transferrin is in the Fe2+ state and is not reactive and, therefore, not toxic. However, when TS is above 40 to 50%, free iron or so-called non-transferrin-bound iron (NTBI) is released into the plasma as the buffering ability of transferrin is exceeded.35 Labile plasma iron (LPI) is a highly reactive subspecies of NTBI that interacts with hydrogen peroxide through Fenton chemistry to form the extremely powerful oxidants, hydroxyl radical and singlet oxygen.

These are the free radicals that ultimately directly damage protein and DNA. Perhaps more importantly, NTBI/LPI species are able to enter cells via ion channels. These channels, unlike the transferrin receptor, are not regulated so this reactive iron freely enters the cytoplasm of the pancreas, pituitary, and heart.

The current results suggest that exposure to excessive free iron is dangerous in the context of prediabetes. Furthermore, elevated ferritin and TS predict poor diabetes control and phlebotomy to reduce iron even over short periods of time improve HbA1c in parallel with changes in TS, even though ferritin is not changed,33 putting further
emphasis on the fact that NTBI/LPI reflected by TS is the proximal cause of the toxicity. Several strategies are available to decrease iron, including chelation therapy and phlebotomy. Phlebotomy is an easy, inexpensive, and well-tolerated intervention. Reduction in TS by phlebotomy has been shown to improve measures of diabetic control. Furthermore, correction of severe iron overload can significantly improve glucose tolerance. Thus, the finding that a baseline measure of high TS as point measure of toxic free iron plus elevation of ferritin, evidence of elevated cytosolic iron over a longer period of time, predicts increased risk of mortality among individuals with prediabetes supports the premise that toxic free iron is a health risk.

The normoglycemic group with elevated iron markers did not show increased mortality risk in comparison to the reference group of normoglycemic and normal iron marker levels. This may seem inconsistent with other data on the increased mortality risk due to elevated TS by itself. However, there is the potential that the effect of TS on mortality is modified by the presence of other variables. This effect has been shown in the past. Rather than being inconsistent with the TS alone and mortality findings, these new findings enhance our understanding of elevated iron markers and morbidity and mortality and allow us to consider the more complex, but real, situation of patients by considering multiple variables together rather than independently.

This study has several limitations. First, although we have a nationally representative, population-based cohort followed through the National Death Index, the biomarkers are measured only at baseline. There is the possibility that either the hyperglycemia or elevated iron measures were identified and interventions were implemented to lower these biomarkers. If that were the case and a substantial number of
individuals did drop their levels due to interventions thereby decreasing the potential mortality risk, the observed adjusted risk individuals elevated at baseline is even more concerning. Second, we were only able to follow these individuals for 12 years. It is possible that this time frame may have been too short to adequately see an effect for a biomarker like prediabetes. However, we did censor the first three years of mortality so that any deaths in that time frame would not be attributed to prediabetes. The model still found a substantial mortality risk for the prediabetes plus iron markers in this length of time. Third, we were unable to evaluate the relationship between being elevated on both transferrin saturation and serum ferritin with prediabetes on the risk of mortality. We attempted such an analysis but the number of individuals in the group with prediabetes and elevation on both iron markers was small and the population estimates were deemed unreliable.

In conclusion, this study representative of the population of the United States helps to clarify the current evidence on the mortality risk of prediabetes and provides further support for the role of elevated iron markers in health risk. Future screening and intervention programs for prediabetes may benefit from additional strategies to recognize and treat iron elevations, particularly transferrin saturation.
ACKNOWLEDGEMENTS

Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

FUNDING

Funded in part by cooperative agreement 1U01DD000754-01 from the Centers for Disease Control and Prevention.

CONTRIBUTION STATEMENT

AGM: conception, design, analysis, and drafting of manuscript

RJT: design, analysis, and drafting of manuscript

TDC: conception, design, and drafting of manuscript

RB: design and analysis

COMPETING INTERESTS

The authors report no competing interests.
REFERENCES

Table 1: Baseline Characteristics of the Sample

<table>
<thead>
<tr>
<th></th>
<th>Study Sample (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted Sample Size</td>
<td>8,003</td>
</tr>
<tr>
<td>Population Estimate</td>
<td>80,653,788</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
</tr>
<tr>
<td>40-54</td>
<td>49.6</td>
</tr>
<tr>
<td>55-69</td>
<td>31.2</td>
</tr>
<tr>
<td>70+</td>
<td>19.2</td>
</tr>
<tr>
<td>Sex, male</td>
<td>46.1</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>82.2</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>8.3</td>
</tr>
<tr>
<td>Mexican-American</td>
<td>3.2</td>
</tr>
<tr>
<td>Other</td>
<td>6.4</td>
</tr>
<tr>
<td>Has health insurance</td>
<td>93.6</td>
</tr>
<tr>
<td>Obese</td>
<td>23.3</td>
</tr>
<tr>
<td>Current Smoker</td>
<td>23.6</td>
</tr>
<tr>
<td>Has diagnosed high cholesterol</td>
<td>40.1</td>
</tr>
<tr>
<td>Has diagnosed hypertension</td>
<td>31.3</td>
</tr>
<tr>
<td>Ever diagnosed with heart attack</td>
<td>5.3</td>
</tr>
<tr>
<td>Ever diagnosed with stroke</td>
<td>2.8</td>
</tr>
<tr>
<td>Ever diagnosed with cancer</td>
<td>12.3</td>
</tr>
<tr>
<td>Relative with diabetes</td>
<td>41.2</td>
</tr>
<tr>
<td>Relative with heart attack before age 50</td>
<td>15.4</td>
</tr>
<tr>
<td>Elevated C-reactive protein</td>
<td>1.2</td>
</tr>
<tr>
<td>Elevated Transferrin Saturation</td>
<td>3.3</td>
</tr>
<tr>
<td>Elevated Ferritin</td>
<td>15.6</td>
</tr>
<tr>
<td>Prediabetes</td>
<td>23.2</td>
</tr>
<tr>
<td>Assumed deceased</td>
<td>27.0</td>
</tr>
</tbody>
</table>
Table 2: Adjusted Hazard Ratios from Cox Regression for Mortality Risk of Individuals with Prediabetes

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prediabetes</td>
<td>1.04</td>
<td>1.00-1.08</td>
</tr>
<tr>
<td>Normoglycemia</td>
<td>1.0</td>
<td>--</td>
</tr>
</tbody>
</table>

Adjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, and family history of early heart attack.
Table 3: Adjusted Hazard Ratios from Cox Regression for Mortality Risk of Individuals with Prediabetes and Iron Markers

<table>
<thead>
<tr>
<th>Model</th>
<th>Hazard Ratio</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Modela</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Transferrin Saturation/ Normoglycemia</td>
<td>1.00</td>
<td>--</td>
</tr>
<tr>
<td>Normal Transferrin Saturation/ Prediabetes</td>
<td>1.13</td>
<td>1.08-1.19</td>
</tr>
<tr>
<td>Elevated Transferrin Saturation/ Normoglycemia</td>
<td>0.98</td>
<td>0.90-1.07</td>
</tr>
<tr>
<td>Elevated Transferrin Saturation/ Prediabetes</td>
<td>1.88</td>
<td>1.06-3.30</td>
</tr>
<tr>
<td>Adjusted Modelb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Ferritin/ Normoglycemia</td>
<td>1.00</td>
<td>--</td>
</tr>
<tr>
<td>Normal Ferritin/ Prediabetes</td>
<td>1.15</td>
<td>1.09-1.20</td>
</tr>
<tr>
<td>Elevated Ferritin/ Normoglycemia</td>
<td>1.05</td>
<td>1.00-1.12</td>
</tr>
<tr>
<td>Elevated Ferritin/ Prediabetes</td>
<td>1.14</td>
<td>1.04-1.24</td>
</tr>
</tbody>
</table>

a Adjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, and family history of early heart attack.

b Adjusted for: age, gender, race/ethnicity, health insurance status, obesity, current smoking status, diagnosed heart attack, diagnosed stroke, diagnosed hypertension, diagnosed high cholesterol, diagnosis of cancer, family history of diabetes, family history of early heart attack, and elevated C-reactive protein.
Figure 1. Kaplan Meier curve of survival among individuals with prediabetes or normal glycemic levels.

- Normoglycemia
- Prediabetes

Figure 2. Kaplan Meier curve of survival among individuals with prediabetes and elevated transferrin saturation

- Normoglycemia and Normal Transferrin Saturation
- Normoglycemia and Elevated Transferrin Saturation
- Prediabetes and Normal Transferrin Saturation
- Prediabetes and Elevated Transferrin Saturation
Figure 1. Kaplan Meier curve of survival among individuals with prediabetes or normal glycemic levels.

blue line = Normoglycemia
red line = Prediabetes
131x100mm (300 x 300 DPI)
Figure 2. Kaplan Meier curve of survival among individuals with prediabetes and elevated transferrin saturation

- black line = Normoglycemia and Normal Transferrin Saturation
- yellow line = Normoglycemia and Elevated Transferrin Saturation
- blue line = Prediabetes and Normal Transferrin Saturation
- red line = Prediabetes and Elevated Transferrin Saturation

131x99mm (300 x 300 DPI)
STROBE Statement—checklist of items that should be included in reports of observational studies

<table>
<thead>
<tr>
<th>Item No</th>
<th>Recommendation</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title and abstract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(a) Indicate the study’s design with a commonly used term in the title or the abstract</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(b) Provide in the abstract an informative and balanced summary of what was done and what was found</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Explain the scientific background and rationale for the investigation being reported</td>
<td>4</td>
</tr>
<tr>
<td>Objectives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>State specific objectives, including any prespecified hypotheses</td>
<td>4-5</td>
</tr>
<tr>
<td>Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Present key elements of study design early in the paper</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed</td>
<td>NA</td>
</tr>
<tr>
<td>10</td>
<td>Case-control study—For matched studies, give matching criteria and the number of controls per case</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Variables</td>
<td>6-8</td>
</tr>
<tr>
<td>8</td>
<td>Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable</td>
<td></td>
</tr>
<tr>
<td>8*</td>
<td>Data sources/measurement</td>
<td>6-8</td>
</tr>
<tr>
<td>9</td>
<td>For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Bias</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>Describe any efforts to address potential sources of bias</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Study size</td>
<td>5-8</td>
</tr>
<tr>
<td>12</td>
<td>Explain how the study size was arrived at</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Quantitative variables</td>
<td>5-8</td>
</tr>
<tr>
<td>14</td>
<td>Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Statistical methods</td>
<td>8-9</td>
</tr>
<tr>
<td>15</td>
<td>(a) Describe all statistical methods, including those used to control for confounding</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>(b) Describe any methods used to examine subgroups and interactions</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>(c) Explain how missing data were addressed</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>(d) Cohort study—If applicable, explain how loss to follow-up was addressed</td>
<td>NA</td>
</tr>
<tr>
<td>19</td>
<td>Case-control study—If applicable, explain how matching of cases and controls was addressed</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>(g) Describe any sensitivity analyses</td>
<td>NA</td>
</tr>
</tbody>
</table>

Continued on next page
Results

Participants
- **13***
 - (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed
 - (b) Give reasons for non-participation at each stage
 - (c) Consider use of a flow diagram

Descriptive data
- **14***
 - (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders
 - (b) Indicate number of participants with missing data for each variable of interest
 - (c) *Cohort study*—Summarise follow-up time (eg, average and total amount)

Outcome data
- **15***
 - *Cohort study*—Report numbers of outcome events or summary measures over time
 - *Case-control study*—Report numbers in each exposure category, or summary measures of exposure
 - *Cross-sectional study*—Report numbers of outcome events or summary measures

Main results
- **16***
 - (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included
 - (b) Report category boundaries when continuous variables were categorized
 - (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period

Other analyses
- **17***
 - Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses

Discussion

Key results
- **18***
 - Summarise key results with reference to study objectives

Limitations
- **19***
 - Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias

Interpretation
- **20***
 - Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence

Generalisability
- **21***
 - Discuss the generalisability (external validity) of the study results

Other information

Funding
- **22***
 - Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.