Supporting Information

Integrating ReSET with Glycosyl lodide Glycosylation in Step-Economy

Syntheses of Tumor Associated Carbohydrate Antigens and Immunogenic Glycolipids

Hsiao-Wu Hsieh, Matthew W. Schombs, and Jacquelyn Gervay-Hague*

Tel: 1-530-754-9577. Fax: 1-530-754-6915.

jgervayhague@ucdavis.edu

Department of Chemistry, University of California, Davis, One Shields Avenue, Davis,

California 95616, United States

Table of Contents

General information	S4
¹ H NMR spectrum of compound 3 (CDCl ₃ , 800 MHz)	S 6
¹³ C NMR and DEPT135 spectrum of compound 3 (CDCl ₃ , 200 MHz)	S7
¹ H- ¹ H COSY spectrum of compound 3 (CDCl ₃ , 800 MHz)	S 8
¹ H- ¹³ C HSQC spectrum of compound 3 (CDCl ₃ , 800 MHz)	S9
¹ H- ¹³ C HMBC spectrum of compound 3 (CDCl ₃ , 800 MHz)	S10
¹ H NMR spectrum of compound 8 (C_6D_6 , 800 MHz)	S 11
¹³ C NMR and DEPT135 spectrum of compound 8 (C_6D_6 , 200 MHz)	S12
¹ H- ¹ H COSY spectrum of compound 8 (C_6D_6 , 800 MHz)	S13
¹ H- ¹³ C HSQC spectrum of compound 8 (C_6D_6 , 800 MHz)	S14
¹ H- ¹³ C HMBC spectrum of compound 8 (C_6D_6 , 800 MHz)	S15
¹ H NMR spectrum of compound 9 (C_6D_6 , 800 MHz)	S16
¹³ C NMR and DEPT135 spectrum of compound 9 (C_6D_6 , 200 MHz)	S17
¹ H- ¹ H COSY spectrum of compound 9 (C_6D_6 , 800 MHz)	S18

$^{1}\text{H}-^{13}\text{C}$ HSQC spectrum of compound 9 (C ₆ D ₆ , 800 MHz)	S19
¹ H- ¹³ C HMBC spectrum of compound 9 (C_6D_6 , 800 MHz)	S20
¹ H NMR spectrum of compound 10 (C_6D_6 , 600 MHz)	S21
13 C and DEPT135 NMR spectrum of compound 10 (C ₆ D ₆ , 150 MHz)	S22
¹ H- ¹ H COSY spectrum of compound 10 (C_6D_6 , 600 MHz)	S23
¹ H- ¹³ C HSQC spectrum of compound 10 (C_6D_6 , 600 MHz)	S24
¹ H NMR spectrum of compound 11 (pyridine-d ₅ , 800 MHz)	S25
¹³ C and DEPT135 NMR spectrum of compound 11 (pyridine-d ₅ , 200 MHz)	S26
¹ H- ¹ H COSY spectrum of compound 11 (pyridine-d ₅ , 800 MHz)	S27
¹ H- ¹³ C HSQC spectrum of compound 11 (pyridine-d ₅ , 800 MHz)	S28
¹ H- ¹³ C HMBC spectrum of compound 11 (pyridine-d ₅ , 800 MHz)	S29
¹ H NMR spectrum of compound 13 (CDCl ₃ , 600 MHz)	S30
¹³ C and DEPT135 NMR spectrum of compound 13 (CDCl ₃ , 150 MHz)	S 31
¹ H- ¹ H COSY spectrum of compound 13 (CDCl ₃ , 600 MHz)	S32
¹ H- ¹³ C HSQC spectrum of compound 13 (CDCl ₃ , 600 MHz)	S33
¹ H- ¹³ C HMBC spectrum of compound 13 (CDCl ₃ , 600 MHz)	S34
¹ H NMR spectrum of compound 14 (CDCl ₃ , 600 MHz)	S35
¹³ C and DEPT135 NMR spectrum of compound 14 (CDCl ₃ , 200 MHz)	S36
¹ H- ¹ H COSY spectrum of compound 14 (CDCl ₃ , 800 MHz)	S37
¹ H- ¹³ C HSQC spectrum of compound 14 (CDCl ₃ , 800 MHz)	S38
¹ H- ¹³ C HMBC spectrum of compound 14 (CDCl ₃ , 800 MHz)	S39
¹ H NMR spectrum of compound 16 (CDCl ₃ , 800 MHz)	S40
¹³ C and DEPT135 NMR spectrum of compound 16 (CDCl ₃ , 200 MHz)	S41
¹ H- ¹ H COSY spectrum of compound 16 (CDCl ₃ , 800 MHz)	S42
¹ H- ¹³ C HSQC spectrum of compound 16 (CDCl ₃ , 800 MHz)	S43

¹ H- ¹³ C HMBC spectrum of compound 16 (CDCl ₃ , 800 MHz)	S44
¹ H NMR spectrum of compound 17 (CDCl ₃ , 800 MHz)	S45
¹³ C and DEPT135 NMR spectrum of compound 17 (CDCl ₃ , 200 MHz)	S46
¹ H- ¹ H COSY spectrum of compound 17 (CDCl ₃ , 800 MHz)	S47
¹ H- ¹³ C HSQC spectrum of compound 17 (CDCl ₃ , 800 MHz)	S48
¹ H- ¹³ C HMBC spectrum of compound 17 (CDCl ₃ , 800 MHz)	S49
¹ H NMR spectrum of compound 18 (methanol-d ₄ , 600 MHz)	S50
13 C and DEPT135 NMR spectrum of compound 18 (methanol-d ₄ , 150 MHz)	S51
¹ H- ¹ H COSY spectrum of compound 18 (methanol-d ₄ , 600 MHz)	S52
¹ H- ¹³ C HSQC spectrum of compound 18 (methanol-d ₄ , 600 MHz)	S53
¹ H- ¹³ C HMBC spectrum of compound 18 (methanol-d ₄ , 600 MHz)	S54
¹ H NMR spectrum of compound 19 (CDCl ₃ , 600 MHz)	S55
¹³ C and DEPT135 NMR spectrum of compound 19 (CDCl ₃ , 150 MHz)	S56
¹ H- ¹ H COSY spectrum of compound 19 (CDCl ₃ , 600 MHz)	S57
¹ H- ¹³ C HSQC spectrum of compound 19 (CDCl ₃ , 600 MHz)	S58
¹ H- ¹³ C HMBC spectrum of compound 19 (CDCl ₃ , 600 MHz)	S59
¹ H NMR spectrum of compound 20 (CDCl ₃ , 800 MHz)	S60
¹³ C and DEPT135 NMR spectrum of compound 20 (CDCl ₃ , 200 MHz)	S61
¹ H- ¹ H COSY spectrum of compound 20 (CDCl ₃ , 800 MHz)	S62
¹ H- ¹³ C HSQC spectrum of compound 20 (CDCl ₃ , 800 MHz)	S63
¹ H- ¹³ C HMBC spectrum of compound 20 (CDCl ₃ , 800 MHz)	S64
¹ H NMR spectrum of compound 21 (D ₂ O, 800 MHz)	S65
¹³ C and DEPT135 NMR spectrum of compound 21 (D ₂ O, 200 MHz)	S66
$^{1}\text{H}-^{1}\text{H}$ COSY spectrum of compound 21 (D ₂ O, 800 MHz)	S67
$^{1}\text{H}-^{13}\text{C}$ HSQC spectrum of compound 21 (D ₂ O, 800 MHz)	S68

in-situ ¹ H NMR spectrum of compound 22 (CDCl ₃ , 800 MHz)	S69
in-situ ¹³ C and DEPT135 NMR spectrum of compound 22 (CDCl ₃ , 200 MHz)	S70
in-situ ¹ H- ¹ H COSY spectrum of compound 22 (CDCl ₃ , 800 MHz)	S71
in-situ ¹ H- ¹³ C HSQC spectrum of compound 22 (CDCl ₃ , 800 MHz)	S72
¹ H NMR spectrum of compound 23 (CDCl ₃ , 800 MHz)	S73
¹³ C and DEPT135 NMR spectrum of compound 23 (CDCl ₃ , 200 MHz)	S74
¹ H- ¹ H COSY spectrum of compound 23 (CDCl ₃ , 800 MHz)	S75
¹ H- ¹³ C HSQC spectrum of compound 23 (CDCl ₃ , 800 MHz)	S76
¹ H- ¹³ C HMBC spectrum of compound 23 (CDCl ₃ , 800 MHz)	S77

General Information

All reactions were conducted under a dried argon atmosphere. The anhydrous solvents (dichloromethane (DCM) 99.8%, benzene (PhH) 99.8%, Methanol (MeOH) 99.8%, N,N-dimethylformamide (DMF) 99.8% and pyridine (pyr.) 99.8%) were purchased from commercial sources without further purification. In order to maintain water content of the solvents under 15 ppm, the solvents were dried and stored under 4 Å molecular sieves according to literature procedure.¹ Trimethylsilyl iodide (TMSI, stabilized with copper) was stored at -20 °C under a desiccated Ar atmosphere. TMSI in good condition should be a colorless transparent liquid. All other solvents and reagents were purchased from commercial sources and used without further purification. All glassware utilized was oven-dried or flame-dried before use. Glass-backed TLC plates (Silica Gel 60 with a 254 nm fluorescent indicator) were used without further manipulation and stored with desiccant. TLC plates were visualized using a short-wave UV lamp, stained with an I₂-SiO₂ mixture, and/or by heating TLC plates that were dipped in a solution of ammonium molybdate/cerium (IV) sulfate or anisaldehyde/H2SO4/AcOH/EtOH. Flash column

chromatography (FCC) was performed using a silica gel (32-63 µm) stationary phase with a variable mobile phase correlated with TLC mobility. NMR experiments were conducted on either 800 or 600 MHz instruments using C₆D₆ (99.5% D), CDCl₃ (99.9% D), methanol-d₄ (99.8% D) or pyridine-d₅ (99.5% D) as the solvent. Chemical shifts were referenced to the appropriate deuterated solvent peak (7.16 ppm for C₆D₆; 7.26 ppm for CDCl₃; 3.31 ppm for methanol-d₄; 8.74 ppm for pyridine-d₅) and were reported in parts per million (ppm). Coupling constants of the coupled protons were averaged to match with each other. High resolution mass spectra were using ESI-Orbitrap LC-MS with The recorded internal calibration. microwave-assisted regioselective silyl exchange technology (ReSET) reactions were conducted in sealed 10 mL microwave vessels in a commercial microwave reactor (CEM DiscoverTM) which was operated by the SynergyTM software. The reaction temperatures were monitor by the reactor's built-in infrared (IR) detector.

Reference

(1) Williams, D. B. G.; Lawton, M. J. Org. Chem. 2010, 75, 8351-8354.

¹H-¹³C HSQC spectrum of compound **3** (CDCl₃, 800 MHz)

¹H NMR spectrum of compound **8** (C_6D_6 , 800 MHz)

 $^{1}\text{H}\text{-}^{1}\text{H}$ COSY spectrum of compound 8 (C₆D₆, 800 MHz)

S14

¹H NMR spectrum of compound **9** (C_6D_6 , 800 MHz)

 $^{1}\text{H-}^{1}\text{H}$ COSY spectrum of compound **10** (C₆D₆, 600 MHz)

¹H NMR spectrum of compound **11** (pyridine-d₅, 800 MHz)

¹H-¹H COSY spectrum of compound **13** (CDCl₃, 600 MHz)

¹H-¹³C HMBC spectrum of compound **13** (CDCl₃, 600 MHz)

¹H NMR spectrum of compound **14** (CDCl₃, 600 MHz)

 ^{13}C and DEPT135 NMR spectrum of compound 16 (CDCl_3, 200 MHz)

S44

¹³C and DEPT135 NMR spectrum of compound **17** (CDCl₃, 200 MHz)

 $^1\text{H-}^1\text{H}\,\text{COSY}$ spectrum of compound 18 (Methanol-d₄, 600 MHz)

S56

S59

in-situ ¹H NMR spectrum of compound **22** (CDCl₃, 800 MHz)

¹H NMR spectrum of compound **23** (CDCl₃, 800 MHz)

