We detected WU polyomavirus (WUPyV) in a bronchoalveolar lavage sample from lungs transplanted into a recipient with Job syndrome by using immunoassays specific for the WUPyV viral protein 1. Co-staining for an epithelial cell marker identified most WUPyV viral protein 1–positive cells as respiratory epithelial cells.
WU polyomavirus (WUPyV) was discovered in a child with pneumonia in 2007 (
Job syndrome is an immune disorder characterized by eczematoid dermatitis, recurrent skin and pulmonary infections, increased levels of IgE, and impaired T and B cell memory (
These studies were approved by institutional review boards at the National Institutes of Health (NIH) and Washington University. A 28-year-old woman with Job syndrome was seen at the NIH Clinical Center 6 months after bilateral lung transplantation. She had a bronchoscopic evaluation to follow up on endobronchial aspergillosis. Pathologic examination of a bronchoalveolar lavage (BAL) sample showed scattered cells, primarily columnar bronchial cells, with cytomorphologic changes reminiscent of BK polyomavirus (BKPyV)–infected decoy cells. The cells stained positive with PAb416, a monoclonal antibody against the SV40 large T antigen. The patient had BKPyV viremia (8.1 × 105 copies/mL) and viruria (6.9 × 109 copies/mL). JC polyomavirus was also detected in the urine but not in the blood. The BAL sample was weakly positive for BKPyV by PCR (<250 copies/mL) and negative for JC polyomavirus. Clinical or radiographic signs and symptoms of infection were not apparent.
Nonenveloped virions were purified from the BAL sample by using ultracentrifugation with Optiprep (#D1556; Sigma-Aldrich, St. Louis, MO, USA) (
We developed an immunohistochemical (IHC) assay to detect the WUPyV viral protein 1 (WU-VP1) by using an IgG2b designated NN-Ab06. Recombinant histidine-tagged WU-VP1 protein was generated by expressing WU-VP1 (GenBank accession no. ABQ09289) in
To generate positive control cells for IHC assay optimization, we transfected 293T cells with plasmid pDEST26-WU-VP1 (Life Technologies). A subset of cells was fixed in 10% neutral-buffered formalin and embedded in paraffin. IHC testing was performed by deparaffinizing slides in xylene and rehydrating them in a series of ethanol solutions. After treating slides with 3% hydrogen peroxide, antigen was retrieved in citrate buffer, pH 6.0 (10 mmol/L citric acid, 0.05% Tween 20) in a pressure cooker (PC6–25; Nesco, Two Rivers, WI, USA) for 3 min on the high setting.
Slides were blocked in 1.5% normal horse serum (#S-200; Vector Laboratories, Burlingame, CA, USA) and incubated with NN-Ab06, then with biotinylated anti-mouse IgG (BA-2000; Vector Laboratories). After development by using the Vectastain Avidin–Biotin Complex Kit (#PK-6100; Vector Laboratories) and (3,3′-diaminobenzidine) (#SK-4100; Vector Laboratories), we counterstained tissues with hematoxylin.
Cells with prominent dark staining were seen (
WU polyomavirus antigen in bronchoalveolar lavage specimens from lungs transplanted into a recipient (28-year-old woman) with Job syndrome. Immunohistochemical analysis of 293T cells transfected with pDEST26-WU–virus protein 1 and stained as follows. A) WU virus protein 1 monoclonal antibody (NN-Ab06). B) Isotype control. C) Mock transfected 293T cells stained with NN-Ab06. D) Bronchoalveolar lavage specimen stained with NN-Ab06 showing prominent dark staining of cells with enlarged nuclei and a ground glass appearance characteristic of viral cytopathic changes (arrows). E) Isotype control. Original magnifications ×400 in panels A–C and ×600 in panels D and E.
We applied the WU-VP1 IHC assay to formalin-fixed, paraffin-embedded sections of the BAL sample. Prominent dark staining of cells with enlarged nuclei and a ground glass appearance characteristic of viral cytopathic changes were observed (
Many WUPyV-positive cells were cuboidal to columnar and showed other morphologic features consistent with respiratory epithelial cells. To determine their etiology, we developed a double immunofluorescence (dIF) assay with a polyclonal antibody against WU-VP1 (
WU polyomavirus antigen in respiratory epithelial cells from lungs transplanted into a recipient (28-year-old woman) with Job syndrome. Immunofluorescence of 293T cells transfected with pDEST26-WU–virus protein 1 and stained with A) WU virus protein 1 polyclonal antibody (NN-Ab01) or B) preimmune serum. C) Double immunofluorescence with NN-Ab01 (red) and a monoclonal antibody against cytokeratin (green) showing a double-positive cell from the bronchoalveolar lavage specimen. D) Bronchoalveolar lavage specimen with multiple WU virus protein 1/cytokeratin double-positive cells. Original magnifications ×100 in panels A and B, ×600 in panel C, and ×400 in panel D.
For dIF, BAL sections were incubated first with the primary antibodies and then with fluorescently labeled secondary antibodies (#A10042 anti-rabbit-568 and #A10042 anti-mouse-488; Life Technologies). We observed cells positive for WU-VP1 and cytokeratin (
We hypothesized that the remaining 43% of WU-VP1-positive, cytokeratin-negative cells might be macrophages. However, a dIF assay using NN-Ab01 and an antibody against CD68 (#M0814; Dako), a macrophage marker, showed WU-VP1 and CD68 single-positive cells but no double-positive cells. In addition, a stain with NN-Ab01 and an antibody against CD45 (#M351529–2; Dako), a marker for hematopoietic cells, also showed negative results.
Before this study, to our knowledge, no specific cell type had been identified as susceptible to WUPyV infection. We found that WUPyV antigen was detected in human respiratory epithelial cells. The presence of nuclease-resistant viral DNA from the Optiprep gradient and detection of WU-VP1, which is believed to be expressed concomitantly with DNA replication (
Our patient had Job syndrome, a primary immunodeficiency not previously associated with polyomavirus susceptibility. It is possible that immunosuppressant medications, which include prednisone and tacrolimus, altered susceptibility to virus infection. Other human polyomaviruses are believed to exclusively cause disease in immunocompromised hosts. This case suggests that immunosuppression might also play a role in WUPyV infection and expands our understanding of WUPyV biology.
We thank Kenneth N. Olivier and Erika Crouch for help with interpretation of the slides, Peter C. FitzGerald for assistance with the bioinformatics analysis, and Patti Fetsch for immunocytochemical staining of SV40.
Experimental support was provided by the Hybridoma Facility of the Rheumatic Diseases Core Center. This study was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH (award no. P30AR048335); the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH; grant R21AI095922 to D.W.; the Children’s Discovery Institute at Washington University in St. Louis; and the NIH Intramural Research Program, with support from the Center for Cancer Research and National Institute of Allergy and Infectious Diseases. E.A.S. was supported by the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program.
Ms. Siebrasse is a graduate student at Washington University, St. Louis, Missouri. Her research interests focus on discovery and characterization of novel polyomaviruses.