Environ Health PerspectEnviron. Health PerspectEHPEnvironmental Health Perspectives0091-67651552-9924NLM-Export245088364014760ehp.130674110.1289/ehp.1306741ResearchMultidrug-Resistant and Methicillin-Resistant Staphylococcus aureus (MRSA) in Hog Slaughter and Processing Plant Workers and Their Community in North Carolina (USA)NeyraRicardo Castillo1FrisanchoJose Augusto2RinskyJessica L.3ResnickCarol2CarrollKaren Colleen4RuleAna Maria2RossTracy4YouYaqi2PriceLance B.5SilbergeldEllen Kovner2Department of Epidemiology, andDepartment of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USADepartment of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USADepartment of Pathology, Division of Microbiology, Johns Hopkins Hospital, Maryland, USADepartment of Environmental and Occupational Health, George Washington University, Washington, DC, USAAddress correspondence to E.K. Silbergeld, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205 USA. Telephone: (410) 955-8678. E-mail: esilberg@jhsph.edu07220145201412254714770232013042201407220140152014Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

Background: Use of antimicrobials in industrial food-animal production is associated with the presence of antimicrobial-resistant Staphylococcus aureus (S. aureus) among animals and humans. Hog slaughter/processing plants process large numbers of animals from industrial animal operations and are environments conducive to the exchange of bacteria between animals and workers.

Objectives: We compared the prevalence of multidrug-resistant S. aureus (MDRSA) and methicillin-resistant S. aureus (MRSA) carriage among processing plant workers, their household members, and community residents.

Methods: We conducted a cross-sectional study of hog slaughter/processing plant workers, their household members, and community residents in North Carolina. Participants responded to a questionnaire and provided a nasal swab. Swabs were tested for S. aureus, and isolates were tested for antimicrobial susceptibility and subjected to multilocus sequence typing.

Results: The prevalence of S. aureus was 21.6%, 30.2%, and 22.5% among 162 workers, 63 household members, and 111 community residents, respectively. The overall prevalence of MDRSA and MRSA tested by disk diffusion was 6.9% and 4.8%, respectively. The adjusted prevalence of MDRSA among workers was 1.96 times (95% CI: 0.71, 5.45) the prevalence in community residents. The adjusted average number of antimicrobial classes to which S. aureus isolates from workers were resistant was 2.54 times (95% CI: 1.16, 5.56) the number among isolates from community residents. We identified two MDRSA isolates and one MRSA isolate from workers as sequence type 398, a type associated with exposure to livestock.

Conclusions: Although the prevalence of S. aureus and MRSA was similar in hog slaughter/processing plant workers and their household and community members, S. aureus isolates from workers were resistant to a greater number of antimicrobial classes. These findings may be related to the nontherapeutic use of antimicrobials in food-animal production.

Citation: Castillo Neyra R, Frisancho JA, Rinsky JL, Resnick C, Carroll KC, Rule AM, Ross T, You Y, Price LB, Silbergeld EK. 2014. Multidrug-resistant and methicillin-resistant Staphylococcus aureus (MRSA) in hog slaughter and processing plant workers and their community in North Carolina (USA). Environ Health Perspect 122:471–477; http://dx.doi.org/10.1289/ehp.1306741

Introduction

Staphylococcus aureus (S. aureus) is an important pathogen that can cause serious and life-threatening infections in humans. Clinical problems caused by S. aureus range from localized illnesses, such as necrotizing skin infections and folliculitis, to systemic diseases, including toxic shock syndrome (Lowy 1998). S. aureus infections have become more dangerous and costly to treat over the past 20 years because of increasing prevalence of antimicrobial resistance. Of considerable concern is methicillin-resistant S. aureus (MRSA), as well as multidrug-resistant S. aureus (MDRSA) (Gordon and Lowy 2008). Several studies in hospitals in the United States have reported that MRSA is the most common cause of skin and soft tissue infections (King et al. 2006; Moran et al. 2006; Parchman and Munoz 2009), and MRSA carriage is associated with subsequent infection and increased morbidity and mortality compared with noncarriage (Datta and Huang 2008).

S. aureus colonizes skin and can persist in the nares; positive nasal carriage is indicative of exposure and is associated with an increased risk of clinical infection in hospitalized populations (Davis et al. 2004; Stevens et al. 2010). Based on risk factors associated with exposure, MRSA strains are often classified as health care–associated MRSA (HA-MRSA), or community-associated MRSA (CA-MRSA). Since 2001, the increases in MRSA exposures and infections in the United States are largely due to community-associated strains, such that MRSA can no longer be controlled solely on the basis of measures implemented within health care settings (Como-Sabetti et al. 2009; Stefani et al. 2012).

Within the category of CA-MRSA, studies in several countries have identified specific strains associated with livestock and which have been termed livestock-associated MRSA (LA-MRSA) (Armand-Lefevre et al. 2005; Bisdorff et al. 2012; DeBoer et al. 2009; Ogata et al. 2012; Smith and Pearson 2011; Waters et al. 2011). Studies have reported increased risks of MRSA carriage among persons working with livestock, including swine (Aubry-Damon et al. 2004; Denis et al. 2009; Geenen et al. 2012; Morcillo et al. 2012; Mulders et al. 2010; Nijsten et al. 1996; Voss et al. 2005); among veterinarians treating livestock (Garcia-Graells et al. 2012; Hanselman et al. 2006); and, more recently, among persons without direct livestock contact but residing in areas of high livestock density (Feingold et al. 2012). In addition, several recent studies have reported on the prevalence of MDRSA carriage among livestock, farm workers, and slaughterhouse workers (Khanna et al. 2008; Oppliger et al. 2012; Smith and Pearson 2011; VanCleef et al. 2010).

In comparison with the European Union, relatively fewer studies examining MDRSA and MRSA exposures in hog production have been conducted in the United States (Leedom Larson et al. 2010; Osadebe et al. 2013; Rinsky et al. 2013; Smith et al. 2009) and, to our knowledge, no studies have been published examining the prevalence of MRSA among workers in U.S. hog slaughter and processing plants or the household members of these workers. Therefore, we undertook a study of workers in a large hog slaughter and processing plant, their household members, and community residents. The objective of our study was to test the hypothesis that workers have a higher prevalence of carriage of nonsusceptible strains of S. aureus, including MDRSA and MRSA, compared with residents in the same area who do not work in hog slaughter and processing. We also tested the hypothesis that workers are more likely to carry S. aureus isolates that are resistant to more antimicrobials as compared with community residents from the same area. We included household members in this study based on studies of household transmission of S. aureus and MRSA that reported transmission rates within households as high as 43% (Davis et al. 2012). We hypothesized that household members of workers would also have greater exposure to nonsusceptible strains of S. aureus than community referents.

Methods

Study design and recruitment. We conducted a cross-sectional study between September and November 2011 in Tar Heel, North Carolina, the location of the Smithfield plant, the largest hog slaughter and processing plant in the United States. Tar Heel is sparsely populated [117 residents, according to the 2010 U.S. Census (U.S. Census Bureau 2011)], with most workers and community referents residing in nearby cities and towns in southern North Carolina and northern South Carolina. The workforce at the Tar Heel plant included approximately 4,500 workers and was unionized, which facilitated enrollment of workers in the study. Study participants were recruited through outreach efforts by our partner, the United Food and Commercial Workers International Union (UFCW) local 1208. Prior to data collection, we met with local and national officials of the UFCW, as well as with shop stewards of the local union (employees who represent the union at each work area within the plant). These individuals informed the union membership about the study. We asked workers to invite up to two members of their community (people who lived nearby, but who did not live with them or work at the plant), and up to two people living with them who did not work at the plant. Through these efforts we enrolled three categories of participants: a) plant workers, b) household members of plant workers (up to two per worker), and c) community residents. All data collection activities were conducted at the union office, located within one mile of the plant. Before initiating the study, we informed Smithfield about the study through telephone contact with the Vice President for Environmental Affairs.

Participant enrollment took place between Thursdays and Sundays in three waves. All workers had been at work within the past week and many came directly from work. Prior to enrollment, a verbal screening was conducted to determine eligibility of persons approaching the enrollment sessions: all participants were required to be ≥ 18 years of age, able to speak and understand either English or Spanish, reside in the local area (for community residents) defined as southern North Carolina and northern South Carolina, and were not working at a health care facility. Those who met these inclusion criteria were assigned a unique participant code and were directed to interview stations where oral informed consent was obtained prior to data collection. No personal identifiers were collected in order to protect confidentiality. The study was reviewed and approved by the Johns Hopkins Bloomberg School of Public Health Committee on Human Research.

Data collection and biological sampling. An extensive interview was conducted using a standardized questionnaire to collect information on demographic data, current and past occupational history, recent health history (including infections and any use of antimicrobials), contact with live animals (livestock and companion animals), and typical diet. Fluent English/Spanish speakers administered the questionnaire in both languages. We pretested the questionnaire in English and Spanish for clarity and consistency on six non-Hispanic and six Hispanic union members.

After completing the questionnaire, trained personnel collected a swab sample [BD Diagnostic Systems, (Sparks, MD) dual swab with Amies agar gel] from both nares of each participant. The rayon-tipped swab applicator was then placed into its plastic tube containing transport medium. The transport tube was labeled with the participant code, and shipped to our laboratory at Johns Hopkins by express courier service.

Microbiological and molecular analyses. Upon arrival at the laboratory, all samples were kept at room temperature until they were processed by the Johns Hopkins Hospital Laboratory of Medical Microbiology, within 72 hr of collection. Nasal swabs were cultured on BBL 5% sheep blood agar (SBA) and CHROMAgar Staph aureus plates (both from BD Diagnostic Systems) and incubated aerobically at 35°C for ≤ 48 hr before reading. Any suspected colony (β-hemolytic on 5% SBA or mauve colored on ChromAgar Staph aureus plates) was further subjected to Gram staining and the catalase assay and slide agglutination test (Rabbit Coagulase Plasma; ProLab, Richmond Hill, Ontario, Canada). Gram-positive cocci in clusters that were catalase positive and coagulase positive were identified as S. aureus (Becker and von Eiff 2011) and subcultured on 5% SBA to isolate pure colonies before being transferred into 30% glycerol and frozen at –80°C.

We transferred one isolate from each S. aureus-positive culture to our laboratory for antimicrobial susceptibility testing using the disk diffusion method [Clinical and Laboratory Standards Institute (CLSI) 2008]. Isolates were first regrown in Mueller Hinton broth and then examined for susceptibility to cefoxitin, ciprofloxacin, clindamycin, erythromycin, gentamicin, sulfamethoxazole/trimethoprim, quinupristin/dalfopristin, and tetracycline. We used the zone of growth inhibition around specific-antibiotic disks to assess the minimum inhibitory concentration (MIC). Based on these MICs and according to CLSI (2008) standards, we classified the isolates as susceptible, intermediate, or resistant to each antimicrobial except for cefoxitin, for which isolates were classified as either susceptible or resistant. Cefoxitin-resistant isolates were identified as phenotypic MRSA because resistance to cefoxitin predicts resistance to methicillin (Fernandes et al. 2005; Magiorakos et al. 2012).

We performed polymerase chain reaction (PCR) assays targeting S. aureus nuc (endonuclease) and mecA (penicillin-binding protein) genes, using the primers nuc-1: 5´-TCAG​CAAA​TGCA​TCAC​AAAC​AG-3´; nuc-2: 5´-CGTA​AATG​CACT​TGCT​TCAG​G-3´; mecA-1: 5´-GGGA​TCAT​AGCG​TCAT​TATT​C-3´ and mecA-2: 5´-AACG​ATTG​TGAC​ACGA​TAG​CC-3´ and methods previously reported (Poulsen et al. 2003). We defined as genotypic MRSA those specimens that were positive for the mecA gene. Because of variation in mecA sequences (Fluit 2011; García-Álvarez et al. 2011; Hanssen et al. 2004) that could lead to false negatives, we examined both phenotypically and genotypically characterized MRSA in our analyses. We performed multilocus sequence typing (MLST) of the seven housekeeping genes to identify S. aureus genetic strains as described by Enright et al. (2000).

Statistical analysis. The distributions of demographic, exposure, and outcome variables were examined and compared across the three categories of participants (workers, household members, community residents). As noted above, we classified isolates as either susceptible or resistant to cefoxitin; and as susceptible, intermediate, or resistant to other antimicrobials on the basis of MIC values (CLSI 2008). In addition, we also classified the isolates as either susceptible or nonsusceptible (the latter category including both intermediate and resistant isolates) as proposed by Magiorakos et al. (2012). Consistent with Magiorakos et al. (2012), we classified isolates as MDRSA if they were nonsusceptible to ≥ 3 classes of antimicrobials or were MRSA (i.e., resistant to cefoxitin). Although the susceptible and nonsusceptible categories may be more important for epidemiological purposes (Magiorakos et al. 2012) the CLSI definition is reliable in determining therapeutic failure (Kahlmeter et al. 2003). To facilitate comparison to the clinical literature, we examined both classifications.

The prevalence of S. aureus, nonsusceptible S. aureus, MDRSA, and MRSA was determined for each participant group and for the study population as a whole. We also determined the proportions of S. aureus isolates that were nonsusceptible, MDRSA, and MRSA among participants with positive S. aureus swabs. Depending on the number of individuals in each category, we used chi-squared or Fisher’s exact tests to compare proportions across participant categories.

We used unadjusted and adjusted Poisson regression to compare the average number of antimicrobials to which S. aureus isolates were resistant (based on the CLSI definition) among workers, household members, and community residents. We also used unadjusted and adjusted log binomial regression models to compare the prevalence of MDRSA among workers, household members, and community residents. All multivariable models were adjusted for age (in groups), any self-reported use of antimicrobials in the previous 6 months (yes/no), and any self-reported visit to a medical facility in the previous 6 months (yes/no). A medical facility was defined as any place where medical care is provided, including hospitals, clinics, doctor offices, and nursing homes. The variables included in the adjusted models were selected based on a priori assumptions.

Finally, we examined the patterns of antimicrobial resistance found in the S. aureus isolates and the distribution of S. aureus and genotypic MRSA strains based on MLST analysis. All statistical analyses were performed using Stata version 11 (StataCorp, College Station, TX), with a significance level of 0.05.

Results

Study population. We enrolled 336 participants. Of those, 162 participants were hog slaughter/processing plant workers, 63 were household members from 50 different households, and 111 were community residents.

Community residents were more often white non-Hispanic (18%) than workers (3.1%) or their household members (1.6%) (p < 0.01) (Table 1). On average, workers were older than household members or community residents [mean = 41 vs. 38.6 and 32.3 years of age, respectively; analysis of variance, F(2,2) = 9.01, p < 0.01]. There were more women (58.5% overall) than men in each group, but there were no statistically significant differences among groups with regard to sex, visit to a medical facility or using antimicrobials in the last 6 months, having a MRSA diagnosis in the past year, or animal contact at home unrelated to hog slaughter and processing work.

Study population characteristics by participant category.

CategoryTotal [n = 336 (%)]Worker [n = 162 (%)]Household member [n = 63 (%)]Community resident [n = 111 (%)]χ2 test statistic (df)p-Value
Age (years) 48.13 (10)< 0.01
18–2589 (26.5)24 (14.8)31 (49.2)34 (30.6)
26–3566 (19.6)32 (19.8)10 (15.9)24 (21.6)
36–4565 (19.3)40 (24.7)7 (11.1)18 (16.2)
46–5562 (18.5)43 (26.5)6 (9.5)13 (11.7)
56–8250 (14.8)23 (14.2)8 (12.7)19 (17.1)
Sex, female196 (58.5)88 (54.7)41 (65.1)67 (60.4)2.26 (1)0.32
Race/ethnicity 31.07 (6)< 0.01
African American231 (68.8)114 (70.4)46 (73.0)71 (64.0)
Hispanic52 (15.5)30 (18.5)13 (20.6)9 (8.1)
White non-Hispanic26 (7.7)5 (3.1)1 (1.6)20 (18.0)
Native American18 (5.4)9 (5.6)2 (3.2)7 (6.3)
Other9 (2.7)4 (2.5)1 (1.6)4 (3.6)
Animal contact on home property161 (47.9)74 (45.7)28 (44.4)59 (53.2)1.85 (2)0.42
Medical facility visit in last 6 months193 (58.0)89 (54.9)40 (64.5)64 (58.7)1.73 (2)0.42
MRSA diagnosis in the last year3 (0.9)2 (1.2)1 (1.6)0 (0.0)a0.43
Use of anti­microbials in last 6 months80 (23.8)37 (22.8)17 (27.0)26 (23.4)0.44 (2)0.82
Prevalence
S. aureus79 (23.5)35 (21.6)19 (30.2)25 (22.5)1.94 (2)0.38
Non­susceptible S. aureus65 (19.4)28 (17.3)13 (21.0)24 (21.6)0.88 (2)0.65
MRSA phenotypeb16 (4.8)9 (5.6)3 (4.8)4 (3.6)0.55 (2)0.76
MRSA mecAc9 (2.7)5 (3.1)2 (3.2)2 (1.8)a0.74
MDRSAd23 (6.9)13 (8.0)4 (6.5)6 (5.4)0.73 (2)0.70
ap-Value was calculated with Fisher’s exact test. bPhenotypic MRSA defined as S. aureus resistant to cefoxitin. cMRSA identified by detection of the mecA gene, genotypic MRSA is a subset of that detected phenotypically. dMDRSA denotes S. aureus non­susceptible to three or more of the anti­microbials used in this study or resistant to cefoxitin.

Prevalence of S. aureus, nonsusceptible S. aureus, MDRSA, and MRSA. The overall prevalence of S. aureus nasal carriage among the study population was 23.5% (79/336) and was higher among household members (30.2%) than workers (21.6%) or community members (22.5%) (p = 0.38) (Table 1). We tested 78 isolates from the 79 S. aureus-positive participants for antimicrobial susceptibility (one isolate did not grow). The overall prevalence of nonsusceptible S. aureus was 19.4%, with similar prevalence between groups. The overall prevalence of MDRSA was 6.9% (23/335), with 8.0%, 6.5%, and 5.4% among workers, household members and community residents, respectively. The overall prevalence of phenotypic MRSA was 4.8% (16/335), with 5.6%, 4.8%, and 3.6% among workers, household members and community residents, respectively. Nine of the 16 phenotypic MRSA isolates were positive for mecA, providing an overall prevalence of genotypic MRSA of 2.7% (9/335); with a prevalence of 3.1%, 3.2%, and 1.8% among workers, household members and community residents, respectively.

Proportion of nonsusceptible S. aureus, MDRSA, and MRSA in S. aureus isolates. The proportion of S. aureus isolates (n = 78) that were nonsusceptible to at least one antimicrobial was higher in community members (96.0%) than workers (80.0%) or household members (72.2%) (p = 0.09) (Table 2). The proportion of MDRSA among all S. aureus isolates was higher in isolates from workers (37.1%) than household members (22.2%) or community residents (24.0%) (p = 0.41), and the proportion of phenotypic MRSA also was higher in workers (25.7%) than household members (16.7%) or community residents (16.0%) (p = 0.67). The proportion of mecA-positive MRSA was 14.3%, 11.1%, and 8% among workers, household members and community residents, respectively. The prevalence of MDRSA and MRSA in S. aureus isolates was similar between household members and community residents.

Distribution of non­susceptibility, multidrug-resistance, and MRSA among those positive for S. aureus.

ClassificationTotal [n = 78 (%)]Worker [n = 35 (%)]Household member [n = 18 (%)]Community resident [n = 25 (%)]p-Valuea
Non­susceptible S. aureusb65 (83.3)28 (80.0)13 (72.2)24 (96.0)0.09
MRSA phenotypec16 (20.5)9 (25.7)3 (16.7)4 (16.0)0.67
MRSA mecAd9 (11.5)5 (14.3)2 (11.1)2 (8.0)0.90
MDRSAe23 (29.5)13 (37.1)4 (22.2)6 (24.0)0.41
ap-Value calculated with Fisher’s exact test. bS. aureus intermediate or resistant to any anti­microbial class. cPhenotypic MRSA defined as S. aureus resistant to cefoxitin. dMRSA identified by detection of mecA gene, genotypic MRSA is a subset of that detected phenotypically. eMDRSA denotes S. aureus non­susceptible to three or more of the anti­microbials used in this study or resistant to cefoxitin.

Antimicrobial resistance profile of S. aureus. We also examined the distribution of susceptible, intermediate, and resistant isolates and found unequal proportions across participant groups (Fisher’s exact test, p < 0.01). Proportions extracted from Figure 1 show that among participants carrying S. aureus, workers had the highest proportion of S. aureus resistant to at least one antimicrobial class (48.6%; 17/35), followed by household members (38.9%; 7/18) and community residents (20.0%; 5/25). The highest proportion of S. aureus showing intermediate resistance to at least one antimicrobial class was found in community members (76.0%; 19/25), followed by household members (33.3%; 6/18) and workers (31.4%; 11/35).

Heat map showing the pattern of anti­microbial resistance of the 78 isolates of S. aureus. Each row represents one isolate tested for susceptibility from a S. aureus–positive participant. Antimicrobial resistance was assessed by disk diffusion and cutoffs defined by CLSI (2008) guidelines; resistance to cefoxitin was classified as either susceptible or resistant, based on CLSI (2008) guidelines.

Detailed resistance profiles of these isolates (Figure 1) suggest that the numbers of different classes of antimicrobials to which S. aureus isolates were resistant varied among the participant groups. Workers carried S. aureus that were resistant to more antimicrobials compared with isolates carried by household members or community residents. Isolates from community residents were more likely to have intermediate resistance than isolates from workers or household members. The patterns of resistance to specific antimicrobials also varied among groups. Erythromycin nonsusceptibility (resistant or intermediate) was the most common phenotype observed in all groups. Workers and household members had the highest prevalence of erythromycin-resistant S. aureus (Figure 1). The most common pattern of multiple resistance in the entire study population was nonsusceptibility to erythromycin and ciprofloxacin (14.1%; 11/78), followed by nonsusceptibility to erythromycin, cefoxitin, and ciprofloxacin (9%; 7/78) and nonsusceptibility to erythromycin and cefoxitin (6.4%; 5/78).

Group differences in S. aureus antimicrobial resistance. Compared with isolates from community residents, isolates from workers and household members were on average resistant to 2.54 times (95% CI: 1.16, 5.56) and 1.69 times (95% CI: 0.64, 4.46) more antimicrobial classes, respectively, after adjusting for age, visiting a medical facility in the last 6 months, or using antimicrobials in the last 6 months (Table 3). Age, visiting a medical facility in the last 6 months, and taking antimicrobials in the last 6 months were not significantly associated with the number of antimicrobial classes to which the isolates were resistant and did not confound the associations with working in a hog-processing facility.

Unadjusted and adjusted estimates of the association between exposures and the mean number of anti­microbials classes to which a S. aureus isolate was resistant.

CategorynUnadjusted mean ratio (95% CI)p-ValueAdjusted mean ratio (95% CI)p-Value
Participant group
Community resident25ReferentReferent
Household member181.70 (0.70, 4.10)0.241.69 (0.64, 4.46)0.29
Worker352.46 (1.17, 5.17)0.172.54 (1.16, 5.56)0.02
Age (years)
18–2529ReferentReferent
26–35171.93 (0.97, 3.87)0.061.67 (0.80, 3.46)0.17
36–45121.13 (0.46, 2.77)0.791.10 (0.43, 2.78)0.85
46–55111.05 (0.41, 2.72)0.910.78 (0.28, 2.20)0.64
56–8281.45 (0.56, 3.74)0.441.14 (0.43, 3.08)0.79
Medical facility visit in last 6 monthsa391.33 (0.75, 2.36)0.331.37 (0.75, 2.48)0.31
Use of antimicrobials in last 6 monthsb190.85 (0.44, 1.66)0.640.93 (0.47, 1.85)0.83
aReference group are those who did not visit a medical facility in last 6 months. bReference group are those who did not take anti­microbials in last 6 months.

The prevalence of MDRSA carriage in workers was 1.96 times higher (95% CI: 0.71, 5.45) than in community residents after adjusting for other variables (p = 0.20) (Table 4). The prevalence of MDRSA in household members was comparable to community residents [prevalence ratio (PR) = 1.04; 95% CI: 0.25, 4.28].

Unadjusted and adjusted PRs estimating the association between exposures and carriage of multidrug-resistant S. aureus.

CategorynUnadjusted PR (95% CI)p-ValueAdjusted PR (95% CI)p-Value
Participant group
Community resident111ReferentReferent
Household member621.19 (0.35, 4.07)0.781.04 (0.25, 4.28)0.96
Worker1621.48 (0.58, 3.79)0.411.96 (0.71, 5.45)0.20
Age (years)
18–2588Referent Referent
26–35661.33 (0.45, 3.95)0.600.97 (0.30, 3.15)0.96
36–45650.68 (0.18, 2.61)0.570.54 (0.14, 2.17)0.39
46–55620.95 (0.28, 3.21)0.930.55 (0.14, 2.22)0.40
56–82501.17 (0.35, 3.96)0.801.07 (0.31, 3.74)0.91
Medical facility visit in last 6 monthsa1930.96 (0.42, 2.22)0.920.98 (0.41, 2.32)0.96
Use of antimicrobials in last 6 monthsb800.89 (0.34, 2.31)0.801.07 (0.40, 2.86)0.90
PR, prevalence ratio. aReference group are those who did not visit a medical facility in last 6 months. bReference group are those who did not take anti­microbials in last 6 months.

MLST and S. aureus strains by group. We identified 19 unique sequence types (ST) from 68 S. aureus isolates (Figure 2). Sequence types for the 11 remaining isolates could not be determined. S. aureus isolates from workers demonstrated greatest sequence type diversity. ST1 and ST5 were found in all three participant groups. ST8 was common among S. aureus isolates from workers and household members (21% and 22%, respectively) but absent among isolates from community residents. ST72 was also observed only among isolates from workers (n = 1) and household members (n = 3). Notably, three isolates, all from workers, were identified as ST398, including two MDRSA isolates and one MRSA isolate. Among MRSA isolates, ST8 was the predominant sequence type (38%), followed by ST1 (19%).

S. aureus sequence type diversity and distribution. Sequence types were based on seven housekeeping genes that were derived from whole genome sequences of each isolates.

Discussion

To our knowledge, this is the first published study in the United States to examine carriage of S. aureus, MDRSA, and MRSA in hog slaughter and processing plant workers and their communities. Although the prevalence of S. aureus and MRSA was similar among all three participant groups, S. aureus isolates from workers were resistant to a greater number of antimicrobial classes than isolates carried by household members or community residents. Workers also had a higher prevalence of MDRSA than community residents, although the difference was not statistically significant. The overall prevalence of S. aureus in our population was 23.5%, which is slightly lower than the estimated prevalence in U.S. adults (27.4% for people 20–59 years of age) based on NHANES data for 2003–2004 (Gorwitz et al. 2008). However, the prevalence of MRSA in our population [4.8% based on CLSI (2008) criteria, 2.7% mecA positive] was higher than the NHANES estimate of 1.1%. The prevalence of MRSA carriage in our study was also greater than estimates from two studies of young, healthy, adult military recruits that reported prevalences of MRSA carriage between 0.5% and 2% (Findlay et al. 2010; Zinderman et al. 2004).

PCR using previously reported primers (Poulsen et al. 2003) did not detect mecA in 7/16 phenotypically characterized MRSA isolates, consistent with the presence of variant mecA genes that are not detected by standard probes (García-Álvarez et al. 2011; Petersen et al. 2013). Therefore, we reported both phenotypic and genotypic MRSA as suggested by Fluit (2011). We did not conduct further PCR analyses to identify any mecA variants. We looked for ST398, a strain variant of the clonal complex (CC) 398 that has been associated with exposure to hogs and other livestock (Armand-Lefevre et al. 2005; Feingold et al. 2012; Smith and Pearson 2011). Three ST398 isolates were identified in workers using MLST, including one that was MRSA, and two that were susceptible to methicillin (cefoxitin) but classified as MDRSA on the basis of resistance to ≥ 3 other antimicrobial classes. Studies in European countries have showed that pigs are a source of MRSA CC398 infections in humans, with the predominant ST being ST398 (Lewis et al. 2008), and that MRSA CC398 is much more prevalent among persons exposed to hogs than their family members or nonexposed community residents (Cuny et al. 2009; Oppliger et al. 2012; VanCleef et al. 2010). Similar to our results, a Swiss study of antimicrobial-resistant S. aureus in pigs and pig farmers reported that 22% of all MRSA and methicillin-susceptible S. aureus CC398 strains were multidrug resistant (Oppliger et al. 2012).

We observed evidence of greater S. aureus genotype diversity in isolates from workers (11 MLST sequence types) than in isolates from household members or community residents (7 and 9 sequence types respectively). Oppliger et al. (2012) reported more S. aureus genotype diversity in isolates from non-farmers than pig farmers. We identified ST5 in all three participant groups, ST8 in workers and household members, and ST398 in workers only. Similarly, a French study observed S. aureus ST5 in both pig farmers and non-farmers, and ST8 and ST398 in pig farmers only (Armand-Lefevre et al. 2005). ST1 was identified in isolates from all three groups in our study, and was the most common isolate identified in pork meat in a U.S. study (Waters et al. 2011). However, ST1 was not prevalent in pigs, pig farmers, or non-farmers in the Swiss study (Oppliger et al. 2012).

The most common S. aureus genotypes in hog slaughter and processing plant workers in our study were ST8 (belonging to CC8) and ST5 (belonging to CC5), with the predominant MRSA genotype being ST8 (4/9 isolates). In contrast, studies from other countries reported CC9 and CC398 as the predominant S. aureus and MRSA genotypes in pigs and pig farmers (Armand-Lefevre et al. 2005; Oppliger et al. 2012). ST8 and ST5 have been consistently reported to be the most common MRSA strains in isolates from pigs and pork in the United States (Molla et al. 2012; Pu et al. 2009; Waters et al. 2011). We did not identify ST9 (belonging to CC9) among S. aureus isolates, although this sequence type was previously found in pigs and pork in the United States (Molla et al. 2012; Waters et al. 2011).

Importantly, we found that, among participants carrying S. aureus, workers had the highest proportion of S. aureus resistant to at least one antimicrobial class. Moreover, workers had isolates resistant to more antimicrobial classes and also had a higher prevalence of carriage of MDRSA as compared with community residents. Multidrug resistance also was more pronounced in isolates from Swiss hog farmers than isolates from non-farmers (Oppliger et al. 2012).

Infections caused by multidrug resistant bacteria are associated with worse health outcomes and higher expenditures (Cardoso et al. 2012; Stone 2009); however, few studies have examined the prevalence of MDRSA in human populations in the United States. One previous North Carolina study reported a 16% prevalence of MDRSA carriage among industrial livestock operation workers compared with 9% among antibiotic-free livestock operation workers (Rinsky et al. 2013). The greater number of drugs to which isolates from workers in our study were resistant is also noteworthy and may be associated with the use of multiple antimicrobials in hog feeds (Silbergeld et al. 2008).

We found resistance to erythromycin was more prevalent than resistance to any other antimicrobial class, similar to Oppliger et al. (2012). However, patterns of resistance to other antimicrobials differed between the two studies, possibly reflecting differences in the use of antimicrobials as swine feed additives between the United States and Switzerland.

In the present study, we observed the prevalence of carriage of resistant strains of S. aureus to be greater in all studied groups than in the general U.S. population, but we did not observe differences between groups for some carriage outcomes. Although differences may have been obscured in part because of small sample sizes within groups, it is also possible that the non-worker groups in our study were exposed through environmental pathways from both farms and slaughter and processing operations. Studies by our group and others support this possibility. For example, S. aureus and MDRSA have been measured in air releases from intensive hog farms in the United States (Chapin et al. 2005; Gibbs et al. 2004, 2006), detected at distances of 150 m downwind from swine houses in Germany (Schulz et al. 2012), and found in hogs being transported in open trucks from farms to the slaughter house and in untreated swine house wastes and other releases (Burkholder et al. 2007). This explanation is also supported by other work by our group on clusters of MRSA infections among persons residing in areas of intensive hog production in the Netherlands and in northern North Carolina (Feingold et al. 2012).

The overall elevated rates of MDRSA and MRSA across participant groups, and the higher rate in the worker group, may be explained by the concentration of swine farms over the greater Tar Heel region and the common use of different antimicrobial formulations as growth promoters. The slaughterhouse plant in the present study served as a hub for collecting swine from these farms. As a result, workers at the Tar Heel plant were exposed to swine from different farms, and these animals may have carried strains of S. aureus with different patterns of antimicrobial resistance. In contrast, non-workers, depending on where they lived, may have been indirectly exposed to relatively few farms and a less diverse set of S. aureus strains.

Conclusions

Our results raise concerns about the exposure of hog slaughter and processing plant workers to antimicrobial-resistant S. aureus. S. aureus isolates from workers were, on average, resistant to more classes of antimicrobials than isolates from community residents. In addition, among S. aureus–positive participants, a greater proportion of workers carried strains of S. aureus resistant to at least one antimicrobial class. Further, the overall prevalence of MRSA carriage identified in our study population in 2011 was higher than the estimate for the general U.S. population based on NHANES data for 2003–2004 (Gorwitz et al. 2008).

The observation of a similar higher prevalence of MRSA among all groups in our study may be in part related to nonoccupational exposures in the region, which has the highest density of industrial hog farms and hogs in the United States (Wing et al. 2000). Further studies will be crucial for the identification of factors associated with nonoccupational exposures.

Our results suggest a need for surveillance of antimicrobial-resistant S. aureus in populations with direct or indirect exposure to livestock. Finally, our study adds to concerns about the use of antimicrobials for nontherapeutic purposes as part of food-animal production, a practice thought to contribute to selection for antimicrobial-resistant strains of S. aureus in the community, especially in the food-production system.

We acknowledge J. McGready for his assistance with the statistical methods.

This work was supported by the National Institute for Occupational Safety and Health (grant 5R21OH009829) and by the Heinz Endowments (Pittsburgh, Pennsylvania). R.C.N. was supported by a fellowship from the Center for a Livable Future and a Fulbright scholarship, and J.L.R. was supported by a predoctoral fellowship from the National Institute of Environmental Health Sciences (award T32ES007018).

No commercial party with a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the authors or upon any organization with which the authors are associated. The authors declare they have no actual or potential competing financial interests.

ReferencesArmand-LefevreLRuimyRAndremontA2005Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs.Emerg Infect Dis1171171415890125Aubry-DamonHGrenetKSall-NdiayePCheDCordeiroEBougnouxME2004Antimicrobial resistance in commensal flora of pig farmers.Emerg Infect Dis1087387915200822Becker K, von Eiff C.2011Staphylococcus, Micrococcus, and other catalase-positive cocci. In: Manual of Clinical Microbiology (Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, eds). 10th edWashington, DCASM Press, 308–330BisdorffBScholhölterJLClaußenKPulzMNowakDRadonK2012MRSA-ST398 in livestock farmers and neighbouring residents in a rural area in Germany.Epidemiol Infect14018001808; 10.1017/S095026881100237822313681BurkholderJLibraBWeyerPHeathcoteSKolpinDThornePS2007Impacts of waste from concentrated animal feeding operations on water quality.Environ Health Perspect11530812; 10.1289/ehp.883917384784CardosoTRibeiroOAragãoICCosta-PereiraASarmentoAE2012Additional risk factors for infection by multidrug-resistant pathogens in healthcare-associated infection: a large cohort study.BMC Infect Dis12375; 10.1186/1471-2334-12-37523267668ChapinARuleAGibsonKBuckleyTSchwabK2005Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation.Environ Health Perspect113137142; 10.1289/ehp.747315687049CLSI (Clinical and Laboratory Standards Institute).2008Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline—Third Edition. CLSI document EP28-A3cWayne, PACLSIComo-SabettiKHarrimanKHBuckJMGlennenABoxrudDJLynfieldR2009Community-associated methicillin-resistant Staphylococcus aureus: trends in case and isolate characteristics from six years of prospective surveillance.Public Health Rep12442743519445419CunyCNathausRLayerFStrommengerBAltmannDWitteW2009Nasal colonization of humans with methicillin-resistant Staphylococcus aureus (MRSA) CC398 with and without exposure to pigs.PLoS One4e6800; 10.1371/journal.pone.000680019710922DattaRHuangSS2008Risk of infection and death due to methicillin-resistant Staphylococcus aureus in long-term carriers.Clin Infect Dis4717618118532892DavisKAStewartJJCrouchHKFlorezCEHospenthalDR2004Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection.Clin Infect Dis3977678215472807DavisMFIversonSABaronPVasseASilbergeldEKLautenbachE2012Household transmission of meticillin-resistant Staphylococcus aureus and other staphylococci.Lancet Infect Dis1270371622917102DeBoerEZwartkruis-NahuisJTMWitBHuijsdensXWde NeelingAJBoschT2009Prevalence of methicillin-resistant Staphylococcus aureus in meat.Int J Food Microbiol134525619144432DenisOSuetensCHallinMCatryBRamboerIDispasM2009Methicillin-resistant Staphylococcus aureus ST398 in swine farm personnel, Belgium.Emerg Infect Dis151098110119624929EnrightMCDayNPDaviesCEPeacockSJSprattBG2000Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus.J Clin Microbiol381008101510698988FeingoldBJSilbergeldEKCurrieroFCVan CleefBAGLHeckMEOCKluytmansJAJW2012Livestock density as risk factor for livestock-associated methicillin resistant Staphylococcus aureus, the Netherlands.Emerg Infect Dis181841184923092646FernandesCJFernandesLACollignonP2005Cefoxitin resistance as a surrogate marker for the detection of methicillin-resistant Staphylococcus aureus.J Antimicrob Chemother5550651015743899Findlay KE, Kurrus A, Bondurant RJ, Murray C, Mende K.2010Identification of Risk Factors for Community-Acquired Methicillin-Resitant Staphylococcus Aureus in US Army Basic Trainees [Abstract 1224]. 48th Annual Meeting—Infectious Diseases Society of America; https://idsa.confex.com/idsa/2010/webprogram/Paper3893.html [accessed 21 March 2014]FluitAC2011What to do with MRSA with a novel mec gene? [Comment] Lancet Infect Dis1158058121798457García-ÁlvarezLHoldenMTGLindsayHWebbCRBrownDFJCurranMD2011Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study.Lancet Infect Dis1159560321641281Garcia-GraellsCAntoineJLarsenJCatryBSkovRDenisO2012Livestock veterinarians at high risk of acquiring methicillin-resistant Staphylococcus aureus ST398.Epidemiol Infect14038338922082716GeenenPLGraatEAMHaenenAHengeveldPDVan HoekAHAMHuijsdensXW2012Prevalence of livestock-associated MRSA on Dutch broiler farms and in people living and/or working on these farms.Epidemiol Infect1411099110822831886GibbsSGGreenCFTarwaterPMMotaLCMenaKDScarpinoPV2006Isolation of antibiotic-resistant bacteria from the air plume downwind of a swine confined or concentrated animal feeding operation.Environ Health Perspect11410321037; 10.1289/ehp.891016835055GibbsSGGreenCFTarwaterPMScarpinoPV2004Airborne antibiotic resistant and nonresistant bacteria and fungi recovered from two swine herd confined animal feeding operations.J Occup Environ Hyg169970615673090GordonRJLowyFD2008Pathogenesis of methicillin-resistant Staphylococcus aureus infection.Clin Infect Dis46suppl 5S350S35918462090GorwitzRJKruszon-MoranDMcAllisterSKMcquillanGMcDougalLKFosheimGE2008Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001-2004.J Infect Dis1971226123418422434HanselmanBAKruthSARousseauJLowDEWilleyBMMcGeerA2006Methicillin-resistant Staphylococcus aureus colonization in veterinary personnel.Emerg Infect Dis121933193817326947HanssenAKjeldsenGEricson SollidJ2004Local variants of Staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci: evidence of horizontal gene transfer?Antimicrob Agents Chemother4828529614693553KahlmeterGBrownDFJGoldsteinFWMacGowanAPMoutonJWÖsterlundA2003European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria.J Antimicrob Chemother5214514812837738KhannaTFriendshipRDeweyCWeeseJS2008Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers.Vet Microbiol12829830318023542KingMDHumphreyBJWangYFKourbatovaEVRaySMBlumbergHM2006Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections.Ann Intern Med14430931716520471Leedom LarsonKRSmithTCDonhamKJ2010Self-reported methicillin-resistant Staphylococcus aureus infection in USA pork producers.Ann Agric Environ Med1733133421186779LewisHCMølbakKReeseCAarestrupFMSelchauMSørumM2008Pigs as source of methicillin-resistant Staphylococcus aureus CC398 infections in humans, Denmark.Emerg Infect Dis141383138918760004LowyFD1998Staphylococcus aureus Infections.N Engl J Med3395205329709046MagiorakosASrinivasanACaryRCarmeliYFalagasMGiskeC2012Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.Clin Microbiol Infect1826828121793988MollaBByrneMAbleyMMathewsJJacksonCRFedorka-CrayP2012Epidemiology and genotypic characteristics of methicillin-resistant Staphylococcus aureus strains of porcine origin.J Clin Microbiol503687369322972820MoranGJKrishnadasanAGorwitzRJFosheimGEMcDougalLKCareyRB2006Methicillin-resistant S. aureus infections among patients in the emergency department.N Engl J Med35566667416914702MorcilloACastroBRodríguez-ÁlvarezCGonzálezJCSierraAMontesinosMI2012Prevalence and characteristics of methicillin-resistant Staphylococcus aureus in pigs and pig workers in Tenerife, Spain.Foodborne Pathog Dis920721022217011MuldersMNHaenenAPJGeenenPLVesseurPCPoldervaartESBoschT2010Prevalence of livestock-associated MRSA in broiler flocks and risk factors for slaughterhouse personnel in the Netherlands.Epidemiol Infect13874375520109255NijstenRLondonNBogaardAvan denStobberinghE1996Antibiotic resistance among Escherichia coli isolated from faecal samples of pig farmers and pigs.J Antimicrob Chemother37113111408836816OgataKNarimatsuHSuzukiMHiguchiWYamamotoTTaniguchiH2012Commercially distributed meat as a potential vehicle for community-acquired methicillin-resistant Staphylococcus aureus.Appl Environ Microbiol78279780222307310OppligerAMoreillonPCharrièreNGiddeyMMorissetDSakwinskaO2012Antimicrobial resistance of Staphylococcus aureus strains acquired by pig farmers from pigs.Appl Environ Microbiol788010801422961904OsadebeLUHansonBSmithTCHeimerR2013Prevalence and characteristics of Staphylococcus aureus in Connecticut swine and swine farmers.Zoonoses Public Health6023424322883566ParchmanMMunozA2009Risk factors for methicillin-resistant Staphylococcal aureus skin and soft tissue infections presenting in primary care: a South Texas Ambulatory Research Network (STARNet) study.J Am Board Fam Med2237537919587251PetersenASteggerMHeltbergOChristensenJZeuthenAKnudsenLK2013Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans.Clin Microbiol Infect19E16E2223078039PoulsenABSkovRPallesenLV2003Detection of methicillin resistance in coagulase-negative staphylococci and in staphylococci directly from simulated blood cultures using the EVIGENE MRSA Detection Kit.J Antimicrob Chemother5141942112562714PuSHanFGeB2009Isolation and characterization of methicillin-resistant Staphylococcus aureus strains from Louisiana retail meats.Appl Environ Microbiol7526526718978079RinskyJLNadimpalliMWingSHallDBaronDPriceLB2013Livestock-associated methicillin and multidrug resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina.PLoS One8e67641; 10.1371/journal.pone.006764123844044SchulzJFrieseAKleesSTenhagenBAFetschARöslerU2012Longitudinal study of the contamination of air and of soil surfaces in the vicinity of pig barns by livestock-associated methicillin-resistant Staphylococcus aureus.Appl Environ Microbiol785666567122685139SilbergeldEKDavisMLeiblerJHPetersonAE2008One reservoir: redefining the community origins of antimicrobial-resistant infections.Med Clin North Am921391140719061758SmithTCMaleMJHarperALKroegerJSTinklerGPMoritzED2009Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in midwestern U.S. swine and swine workers.PLoS One4e4258; 10.1371/journal.pone.000425819145257SmithTCPearsonN2011The emergence of Staphylococcus aureus ST398.Vector Borne Zoonotic Dis1132733920925523StefaniSChungDRLindsayJAFriedrichAWKearnsAMWesthH2012Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods.Int J Antimicrob Agents3927328222230333StevensAMHennessyTBaggettHCBrudenDParksDKlejkaJ2010Methicillin-resistant Staphylococcus aureus carriage and risk factors for skin infections, Southwestern Alaska, USA.Emerg Infect Dis1679780320409369StonePW2009Economic burden of healthcare-associated infections: an American perspective.Expert Rev Pharmacoecon Outcomes Res941742219817525U.S. Census Bureau.2011American Fact Finder. Profile of General Population and Housing Characteristics: 2010. 2010 Demographic Profile Data.Available: http://factfinder2.census.gov/faces/nav/jsf/pages/community_facts.xhtml [accessed 20 March 2014]VanCleefBAGLBroensEMVossAHuijsdensXWZüchnerLVan BenthemBHB2010High prevalence of nasal MRSA carriage in slaughterhouse workers in contact with live pigs in the Netherlands.Epidemiol Infect13875676320141647VossALoeffenFBakkerJ2005Methicillin-resistant Staphylococcus aureus in pig farming.Emerg Infect Dis111965196616485492WatersAEContente-CuomoTBuchhagenJLiuCMWatsonLPearceK2011Multidrug-resistant Staphylococcus aureus in US Meat and Poultry.Clin Infect Dis521227123021498385WingSColeDGrantG2000Environmental injustice in North Carolina’s hog industry.Environ Health Perspect10822523110706528ZindermanCEConnerBMalakootiMALamarJEArmstrongABohnkerBK2004Community-acquired methicillin resistant Staphylococcus aureus among military recruits.Emerg Infect Dis1094194415200838