
Vol.:(0123456789)1 3

https://doi.org/10.1007/s42461-022-00580-6

Fire Size and Response Time Predictions in Underground Coal Mines 
Using Neural Networks

Manuel J. Barros‑Daza1,3   · Kray D. Luxbacher 1 · Brian Y. Lattimer 2 · Jonathan L. Hodges 3 

Received: 20 July 2021 / Accepted: 6 March 2022 
© Society for Mining, Metallurgy & Exploration Inc. 2022

Abstract
The prediction of the coal mine fire response time, defined as the remaining time before conditions at attack positions grow 
untenable for firefighters, plays a vital role in the decision-making process during a mine fire scenario. The knowledge of 
the response time along with the fire size, fire location, and arrival time could allow for the most suitable decision regarding 
direct or remote approach to the fire in the mine, mine evacuation planning, and remote attack from the surface. For this rea-
son, this paper presents a data-driven approach to predict the response time and fire size based on available and measurable 
parameters during underground coal mine fires using two interconnected artificial neural networks (ANNs). A total of 300 
fire dynamic simulator (FDS) and fire and smoke simulator (FSSIM) simulations of a straight and flat mine entry (replicating 
a belt entry) with different fire sizes, air velocities, and dimensions were used in training and testing the ANNs. The results 
showed that 95% of fire size and response time predictions should be within ± 29 kW and ± 4 s of true values obtained in 
the fire models, respectively. The approach presented in this work can provide instantaneous predictions of response time 
and fire size during ongoing mine fires. Additionally, this approach can be utilized in other mine fire locations as well as in 
different types of tunnels.
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1  Introduction

Once a fire is discovered in an underground coal mine, a 
decision-making aims to reduce the probability of high-risk 
event. Among these options is the possibility of attacking 
the fire directly or through remote techniques when condi-
tions are not tenable for the firefighting personnel. In most 
underground mine fires, direct attack at the initial stages is 
usually a priority since fires develop rapidly. If a fire cannot 
be controlled by direct firefighting methods, the probability 
of effectively extinguishing the fire without the need to seal 
the mine or a portion of the mine is greatly reduced [1–4]. 
However, considering the accessibility of coal mines and 

the potential remote locations of fires, some fires cannot be 
attacked during their first stages. Conditions at the fire prox-
imity can grow untenable preventing firefighters’ approach 
to carry out direct attack. Thus, predictions of the evolution 
of the conditions in the proximity of the fire could allow 
for the determination of the response time defined as the 
remaining time before conditions at attack positions become 
untenable for firefighters. The determination of the response 
time along with the knowledge of the fire size, fire location, 
and arrival time allows for the most informed and methodi-
cal decision regarding the type of attack. These decisions 
must be made relatively quickly, so there is a need for a 
new approach that can determine the response time and fire 
size in real time during ongoing mine fire scenarios. This 
approach must use measurable and available parameters in 
underground coal mines in order that it can be applied in 
the field.

To predict the conditions generated by enclosed fires 
such as in underground mines, two types of models have 
been used: computational fluid dynamics (CFD) fire models 
and zone fire models (ZFM) [4–9]. In CFD fire models the 
Navier–Stokes equations of mass, momentum, and energy 
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are solved as well as the species conservation equation in 
discretized geometries allowing for the spatial–temporal 
resolution of the entire domain. Parameters such as concen-
trations of combustion gasses, temperature, visibility, and 
radiation in each grid cell are solved. However, the high 
computational cost and processing time of these models that 
can be in order of days or even weeks makes it impractical 
to use in informing real-time conditions. On the other hand, 
in zone fire models the domain is divided into larger com-
partments which are represented as single nodes [10]. This 
approach of having one node per control volume minimizes 
the computational cost and time allowing for faster predic-
tions of smoke spread in larger domains. Although zone 
fire model simulations can be obtained much faster than 
CFD models, it is still unfeasible to solve entire domains 
and process results in real time. In addition, it is noteworthy 
that ZFM predictions have low spatial resolution for hazard 
analysis.

Advancements in machine learning and improvements 
in computing power have contributed to an increase in 
the usage of artificial neural networks (ANNs) for devel-
opment of data-driven models able to solve domains and 
process results in real time [11–17]. ANNs can learn com-
plex dependencies between variables which makes them 
an attractive technology for this kind of application. For 
instance, Hodges et al. [17] recently used machine learning 
to approximate the detailed thermal flow field in a mine fire 
showing the capability of ANNs to predict conditions in 
underground mines. Nevertheless, this study did not focus 
on evaluation of atmosphere conditions nor calculation of 
response time and fire size. An approach which uses measur-
able and available parameters as inputs to a machine learn-
ing model to determine response time and fire size in real 
time is particularly promising for decision-making during 
fire emergency response.

The objective of this study was to develop a data-driven 
model to make predictions of response times and fire sizes 
in real time based on on-site CO concentration sensor read-
ings downwind from the fire and other known operating 
parameters such as mine geometry, air velocity, and time 
elapsed after fire detection. This approach was implemented 
for different fire scenarios in a straight and flat mine entry 
(replicating a belt entry) with different fire characteristics, 

air velocities, and dimensions. The data used for training 
and testing the data-driven approach was generated using a 
CFD model called fire dynamics simulator (FDS) and a zone 
fore model called fire and smoke simulator (FSSIM). FDS 
was used for the determination of conditions in the proxim-
ity of the fire where the attack position is located. FSSIM 
was used to determine CO concentrations downwind from 
the fire. The entire model was composed of two intercon-
nected feedforward ANNs in which the prediction of the 
fire size performed by the first ANN is used by the second 
ANN to predict the response time. The approach presented 
in this work can provide instantaneous predictions of fire 
size and response time during ongoing mine fires and be 
applied to other mine fire locations as well as in different 
types of tunnels.

2 � Methodology

A sketch showing a high-level view of the solution algorithm 
used to develop the data-driven approach for prediction of 
fire size and response time is shown in Fig. 1. ANN-1 makes 
predictions of fire size using input parameters measured in 
mines. Fire size predictions by ANN-1 along other oper-
ating parameters are used as input to ANN-2 for response 
time determination. Data for training and testing ANNs was 
generated using FDS and FSSIM simulations. A tenability 
analysis was performed for calculation of response time in 
different scenarios. The following subsections describe the 
network architecture, tenability analysis, and data generation 
and preparation used in this work.

2.1 � Network Architectures

The entire model for the determination of fire size and 
response time used in this study is composed of two inter-
connected ANNs as shown in Fig. 1. The main constraint 
for the elaboration of the predictive model was to use only 
available and measurable parameters during underground 
coal mine fires as inputs to the ANNs. According Title 30 
CFR §75.351(e)(f)(h), underground coal mines are required 
to be monitored of carbon monoxide by atmospheric moni-
toring systems (AMS) or CO systems [18]. As defined in 

Fig. 1   Sketch of solution 
algorithm
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Title 30 CFR §75.301, AMS or CO systems are described 
as networks consisting of hardware and software capable 
of measuring atmospheric parameters and transferring the 
measurements to a designated surface location. For CO mon-
itoring, sensors of these systems must be located at key loca-
tions such as belt and return entries, working faces, electrical 
installation locations, and primary escapeways. This indi-
cates that during mine fires, CO concentration is measured 
at different mine locations and transmitted to surface in real 
time in all US underground coal mines. CO is a combustion 
product which its concentration contains information of the 
fire size and conditions during ongoing mine fire. Thus, CO 

concentration was selected as one of the input parameters to 
the predictive model. In addition to CO concentration, there 
are known operating parameters that can impact fire condi-
tions. These known parameters are mine entry dimensions, 
time elapsed after fire detection, and nominal longitudinal 
air velocity. They are all known since they are part of the 
mine operating procedures. These additional parameters 
were used along with CO concentration as input parameters 
to the ANNs (Figs. 2,3 and 4).

The architecture of the first ANN (ANN-1) consists of 
fully connected layers of which three are hidden layers of 
30 neurons as shown in Fig. 5. The input layer is composed 

Fig. 2   Architecture of ANN-1

Fig. 3   Architecture of ANN-2
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of 5 elements that as mentioned previously corresponds to 
longitudinal air velocity, tunnel width, tunnel height, CO 
concentration, and time elapsed after fire detection. The out-
put layer consists of one element that refers to the fire size 
prediction which is included in the input vector of ANN-2. 
The architecture of ANN-2 also consists of three hidden 
layers of 36 neurons for a total of 5 fully connected layers 
as shown in Fig. 6. The input vector of ANN-2 consists of 5 
elements that corresponds to fire size, velocity, tunnel width, 
tunnel height, and time elapsed after fire detection. In both 
ANNs, the rectified linear unit activation function (ReLu) 
was used for the hidden layers. The Adam gradient descent 
optimization algorithm with the mean squared error as loss 
function was used. Ten thousand epochs with a batch size of 
100 samples and a learning rate fixed at 10−2 were used for 
training both ANNs. All weights and biases were initialized 
from a normal distribution with zero mean and 10−2 stand-
ard deviation. The network architecture was created using 
Keras, a high-level neural network library built-in Python 
that runs on top of TensorFlow, an open-sourced end-to-end 
platform [19, 20].

2.2 � Tenability Analysis

The tenability analysis allows for the determination of the 
parameters and limits that should be considered to evaluate 
the tenability of the conditions in the fire proximity. US min-
ing regulation requires that each operator of an underground 
coal mine drafts an emergency and firefighting program that 
guides all miners in the procedure that they must follow if a 
fire occurs [18]. The regulation stipulates that during a mine 
fire some miners are designated to respond to the mine fire 
emergency while other miners are required to evacuate the 
mine. Mining regulation specifies that at least two miners in 
each working section and one miner for every four miners 
on a maintenance shift must be proficient in the use of fire 
suppression equipment available in the mine and know its 
location [18]. The underground miners assigned to address 
the fire are called the first responder group (FRG) since they 
are the first group to deal with the fire. The FRG is com-
monly composed of barefaced personnel [2].

In addition to the FRG, there is a second group composed 
of specially trained fire brigade and mine rescue team called 
the second responder group (SRG). Although a fire brigade 
is more focused on firefighting, the mine rescue team may 
also conduct firefighting activities during rescue procedures. 
Mining regulation requires every operator of an underground 
mine shall establish at least two mine rescue teams which 
are available when miners are underground [18]. The SRG 
has more specialized personal protective equipment (PPE) 
such as turnout gear and self-contained breathing apparatus 
(SCBA). Moreover, this group normally carries firefighting 
equipment that includes efficient water hose nozzles with 

pistol grips allowing the members of this group to attack 
fires with more control of water patterns and flows [2].

The tenability analysis carried out in this study is based 
on previous tenability analysis performed in road tunnels 
[21–23] and in a simulated methane fire event at the working 
face in a coal mine [24]. Following these analyses, four main 
parameters should be considered during tenability analysis. 
The parameters are toxicity, temperature, visibility, and radi-
ation. In this study, the data-driven approach was only devel-
oped to determine response time for the SRG; thus, tem-
perature, radiation, and visibility were only considered. It 
is noteworthy that for the SRG the toxicity is not accounted 
since this group normally carries SCBA designated to pro-
vide oxygen for at least 4 h and is suitable for firefighting. In 
some tenability analyses previously performed, some limits 
are determined for certain time of exposure such short-term 
exposure limits (STEL). However, in this study limits were 
established as ceiling or critical limit as also recommended 
by Gehandler et al. [22]. In real mine fires and numerical 
simulations have been observed that when parameters reach 
numbers close to the exposure limits, it is almost a certainty 
that they will keep increasing if the fire is not attacked. In 
addition, visibility is generally the first tenability parameter 
limit exceeded (well before limits for toxicity, temperature, 
and radiation) and its limit is always considered a critical 
limit due to the difficulty that firefighters have performing 
essential activities such as fire approaching, firefighting, and 
evacuation. Considering the accessibility of underground 
coal mines and the remote location of fires, this assumption 
assures a conservative approach.

The temperature and radiant heat limits for the SRG are 
determined by Haghighat and Luxbacher [24], and NFPA 
[21], respectively. Haghighat’s work proposed a temperature 
of 100 °C for SRG wearing turnout gear. NFPA says that 
for SRG a radiation level under roughly 5 kW/m2 can be 
withstood for around 7 min. However, in this study this value 
was considered the ceiling limit. Regarding visibility, its ten-
ability limit is commonly established based on its impact on 
firefighters walking speed. Studies have been performed to 
determine the walking speed in function of the visibility and 
the extinction coefficient [25]. For purposes of this work, the 
tenable visibility limit was set to 5 m based on Gehandler 
et al. [22]. They mentioned that this visibility limit can be set 
as long as firefighters know the environment where the fire 
occurs. It is noteworthy that a maximum visibility of 30 m 
was set in FDS. An optical coefficient equal to 3 [26] was 
used assuming light reflecting signs hanging on walls that 
indicate evacuation route as it is common in underground 
coal mines. Explosibility was not considered in this study; 
however, if fire firefighters observe or suspect an explosive 
atmosphere during an ongoing fire (e.g., methane concen-
tration between 5 and 15% with an oxygen concentration 
between 15 and 20%), the response time must be zero and 
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the scenario must be considered as not tenable immediately. 
The tenability limits used in this study are summarized in 
Table 1.

2.3 � Data Generation

As stated previously, the data used to train and test the data-
driven approach was generated from numerical simulations. 
Three hundred fire scenarios in a flat and straight mine entry 
were simulated in FDS and FSSIM. FDS simulations pro-
vided spatial–temporal results to determine the conditions 
in the fire proximity. FSSIM simulation results were used to 
determine CO concentration at sensor stations within 300 m 
downwind from the fire. It is noteworthy that in all scenar-
ios simulated at least one tenability limit was exceeded to 

determine the response time. Figure 4 shows the locations 
in which CFD and FSSIM simulations were performed with 
reference to the fire position.

2.3.1 � CFD Data Generation

CFD simulations were carried out to determine the condi-
tions at the attack position using FDS. FDS is a large-eddy 
simulation model that solves the equations of mass, momen-
tum, energy, and species conservation to determine the 
conditions due to the evolution of fire, transport of gasses, 
and smoke in an enclosed space [27]. These equations are 
solved using the method of finite differences on a collection 
of uniformly spaced-three-dimensional grids [28] allowing 
for the predictions of parameters such as combustion gas 
concentrations, visibility, heat flux, and soot fraction in each 
grid of the domain.

The geometry used in FDS simulations is shown in Fig. 5. 
It was assumed that the fire location in these scenarios was 
located at a belt entry between two crosscuts as shown in 
Fig. 4. The simulation input parameters varied in this study 
are shown in Table 2 and highlighted in Fig. 5. These param-
eters were selected since they have direct influence on the 

Table 1   SRG tenable limits

Parameter Ceiling limit

Heat flux (kW/m2)  < 5.0
Temperature (°C)  < 100
Visibility (m)  > 5

Fig. 4   Locations of FDS and FSSIM results (plan view of mine ventilation schematic)

Fig. 5   FDS geometry. Parameters varied in simulations are highlighted
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presence and amount of backlayering [29–35]. Backlayer-
ing is defined as the reversal flow of smoke and combus-
tion gasses within a tunnel (towards the forced ventilation) 
affects the visibility and toxicity at the attack position lead-
ing to untenable conditions. During direct attack, firefighters 
approach the fire and position themselves approximately 5 m 
upwind of the fire. At this attack position, they proceed to 
try and suppress the fire using water or firefighting foam. 
For this reason, FDS simulations were used to determine 
the conditions at the attack position assumed to be 5 m away 
upwind of the fire and at a height of 1.5 m. A height of 1.5 
was selected since firefighters would try to crouch when they 
attack the fire with the objective to stay below the smoke 
layer as was also assumed by Haghighat and Luxbacher [24].

The values of parameters shown in Table 2 for each sce-
nario were obtained using simple random sampling from 
uniform distribution in which each value has the same prob-
ability of being drawn during the sampling process. How-
ever, it was assured that conditions grow untenable for fire-
fighters in all scenarios to determine the response time. The 
simulation time of the 300 FDS scenarios varied depending 
on the fire size and growth rate. Each scenario was deter-
mined to last until the time the maximum fire size ( tmax ) is 
reached. The fire size at time (t) was determined using the 
T-squared approach shown in Eq. 1 for all scenarios.

In the above equation, HRR is the fire size at a time (t) 
and � is the fire growth rate that it is defined as shown in 
Eq. 1. Note that the lower and upper limits of the fire growth 
rate range refer to the standard medium and ultrafast growth 
rates, respectively.

where HRRmax is the maximum fire size reached at tmax.
The grid size (dx) was 0.1 m along each axis of the 

domain for all simulations to reduce calculation time and 
computational cost as well as have consistent results. 
McGrattan et al. [36] recommend a grid size value less than 
or equal to 0.1D∗ to completely resolved the source fire. D∗ 
refers to the characteristic length scale that corresponds to 

(1)HRR(t) = �t2

(2)� =
HRRmax

tmax
2

the total HRR of a fire plume defined in Eq. 3. Although 
the grid size used in this study does not fully resolve the 
source fire for sizes lower than 1,000 kW, the predictions 
were adequate for exploratory analysis to test the ability of 
ANNs to make predictions than comparing to experimental 
results. The range of D*/dx is between 21 and 9 for fire sizes 
of 7000 kW and 500 kW, respectively.

where Q is the heat release rate of fire, � is the air density, 
CP is the air specific heat, T0 is the ambient temperature, and 
g is the gravity acceleration.

The parameters shown in Table 1 were determined during 
the simulations since they allow for the evaluation of condi-
tions for firefighters as detailed in “Sect. 2.2.” The value of 
each parameter was calculated at intervals of 1 s at the attack 
position. Flexible polyurethane foam was used as the mate-
rial to simulate the fire in each scenario. Characteristics of 
flexible polyurethane foam are shown in Table 3.

2.4 � Zone Fire Model Data Generation

To determine the CO concentration downwind of the fire, 
FSSIM was used. In FSSIM, each control volume or com-
partment is represented as single node. Junctions that repre-
sent flow paths are defined between nodes. The approach of 
just having one node per control volume minimizes the com-
putational cost and time allowing for predictions of smoke 
spread in larger domains such as large areas in underground 
coal mines. FSSIM solves the 1-D conservation equations 
for mass, momentum, and energy [37]. In zone fire models 
also referred to as a 1D or network fire model, it is assumed 
that properties such as temperature, density, and chemical 
species take constant values through each zone.

A previous study carried out by Haghighat et al. [38] 
shows that 1D fire model results normally have an error of 
less than 5% when compared with CFD model results for 
zones of the domain located 12 times the hydraulic diameter 
(Dh) farther away downstream from the fire. Farther this 
distance known as the downstream interface boundary, the 
fluid field behaves as a quasi-1D fluid dominated by the lon-
gitudinal velocity. This finding allows for using 1D models 

(3)D∗ =

�

Q

�CPT0
√

g

�2∕5

Table 2   Range of each parameter in study

Parameter Range

Air velocity (m/s) 0.5–2.0
Fire size (kW) 750–7000
Fire growth rate (s−1) 0.01172–0.1876
Height 1.8–2.8 m
Width 5.0–7.0 m

Table 3   Heat of combustion, CO, soot, and CO2 yields of the mate-
rial involved in the fire

Material Heat of combustion (kJ/
kg)

Y
CO

(kg/kg)
Y
SOOT

(kg/kg)
Y
CO2

(kg/kg)

Polyurethane 25,300 0.02775 0.1875 1.5325
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such as FSSIM in parametric studies as the presented in 
this work to predict fire conditions at a low computational 
cost and time in large tunnel domains. While the calcula-
tion time for a 1D fire simulation in a 400 m long tunnel can 
take around 30 min using a single NVIDIA Quadro K620 
graphics, the calculation for a CFD fire model can be in the 
order of 2 weeks.

The 300 scenarios simulated in FDS were also simulated 
in FSSIM using the same input parameters and fuel charac-
teristics shown in Table 2 and Table 3, respectively. FSSIM 
simulations were used to determine the CO concentrations 
within 300 m downwind from the fire in each scenario. The 
downwind CO concentration was determined at intervals of 
1 s at 4 different sensor stations with a spacing of 75 m as 
shown in Fig. 6. The geometry used in FSSIM consisted of 
a flat and straight mine entry 400 m long and split into 80 
compartments. Thus, the length of the compartments was 
5 m. The tunnel height and width depended on the mine 
entry dimensions of each scenario. The fire was located 
17.5 m away from the inlet. The maximum CO concentration 
detected at the sensor stations at each time step was used as 
input parameter in the data-driven approach. Two air leak-
ages along the tunnel were considered based on the location 
of crosscuts downwind from the fire as shown in Fig. 6. The 
airflow quantities at leakage points were calculated based on 
mine survey results from a partner mine.

2.5 � Data Preparation

During the data preparation, simulation input parameters 
and numerical results of FDS and FSSIM were processed 
with the objective of being used for training and testing 

the ANNs and the entire model (interconnected ANNs). 
The first step consisted of linking input parameters with 
FDS and FSSIM results. This can be done because same 
scenarios were simulated in both models. With the objec-
tive to be more illustrative with the linking process, the 
linking of three samples of scenario A shown in Table 4 
is detailed in what follows. Based on time elapsed and fire 
size, it was possible to link tenability parameter results at 
the attack position predicted by FDS with the CO concen-
tration downwind from the fire predicted by FSSIM. This 
is possible since time elapsed and fire size are equally 
predicted at any time in both fire models as shown under 
FDS/FSSIM column in Table 4.

Once input parameters and results of both models were 
linked, the maximum response time for each scenario was 
calculated. This time was determined by looking for the 
time in which at least one of tenability limit was exceeded 
in each scenario. For instance, in scenario A the maxi-
mum response time was determined at 466 s when the 
tenability limit of visibility was exceeded. It is called 
maximum response time because it is referenced from the 
fire detection time (t = 0 s). Then, in order to determine 
the response time for each time step associated with the 
CO concentration and the other input parameters (tun-
nel dimensions, air velocity, and time elapsed), the value 
of maximum response time was subtracted by the value 
of each time step. After calculation of response time for 
each time step, the inputs and outputs of the models were 
assigned. Tables 5, 6, and 7 show the values of the input 
and output parameters for the first and second ANNs, and 
the entire model (interconnected ANNs) based on results 
of scenario A shown in Table 4, respectively.

Fig. 6   Geometry used in FSSIM, location of sensor stations, fire, and leakages

Table 4   Input parameters and results of both fire models linked for three different time steps of Scenario A

Scenario Simulation input parameters FDS/FSSIM FDS FSSIM

Vel (m/s) Max fire size (kW) Growth rate (s−1) Dim (H × W)
(m × m)

Current 
fire size 
(kW)

Time (s) Temp (°C) Visibility (m) [CO] (ppm)

A 1.4 5182 0.012 2.8 × 6.2 450 194 20 30 5
A 747 250 21 30 10
A 2594 465 43 6 42
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3 � Results and Discussion

After processing 300 simulation results from FDS and FSSIM, 
24,694 samples were collected for training and testing ANNs 
and testing the entire model. The entire dataset was randomly 
split into two, with 80% for training and 20% for testing. The 
ANNs were trained independently using the training data. The 
performance of ANN-1, ANN-2, and the entire model on each 
dataset was determined. ANN-1 was tested based on fire size 
predictions. ANN-2 and the entire model were tested based on 
response time predictions. During the performance evaluation 
of the entire model, inputs of ANN-1 were feed to the entire 
model and error for response time predictions was determined.

In order to determine the performance of ANN-1, the 
error for fire size predictions was calculated as follows:

where EFS,ANN1 is the error for fire size, FST is the true fire 
size, and FSANN−1 is the fire size predicted by ANN-1.

In the same way, for the determination of the performance 
of ANN-2 and the entire model, the error for response time 
was calculated as follows:

where ERT ,ANN2 is the error for response time when ANN-2 
is evaluated, RTT is the true response time, RTANN−2 is the 

(4)EFS,ANN1 = FST − FSANN−1

(5)ERT ,ANN2 = RTT − RTANN−2

(6)ERT ,MODEL = RTT − RTMODEL

response time predicted by ANN-2, ERT ,MODEL is the error 
for response time when the entire model is evaluated, and 
RTMODEL is the response time predicted by the entire model.

Due to the fluctuations inherent to the turbulent flow in 
FDS simulation, FDS results were processed applying an 
average filter with a window of 15 s in order to reduce the 
noise of the data. Figure 7 shows the evolution of visibility 
over time for scenario A before and after applying the aver-
age filter.

The discrete probability density function of fire size error 
(ANN-1) and response time error (ANN-2) for all training 
and test data when ANNs were evaluated independently are 
shown in Figs. 8 and 9, respectively. Figure 10 shows the 
discrete probability function of response time error when 
the entire model was used for all training and test data. The 
mean and standard deviation of error predictions of ANN-1, 
ANN-2, and the entire model are summarized in Table 8. An 
error of zero indicates perfect agreement between the ANN 
predictions and true values obtained from fire models.

Table 8 shows that the mean fire size error of ANN-1 
is − 1.61 kW with a standard deviation of 12.97 kW for 
training set and a mean fire size error of − 1.69 kW with a 
standard deviation of 14.36 kW for the test set. Based on 
this result, it can be stated that 95% of ANN-1 predictions 
should be within ± 29 kW which highlight the capability of 
ANN-1 to predict the current fire size only using available 
information during ongoing mine fires. However, much of 
the fire size error in ANN-1 predictions was identified to 
come from two sources. The first source was related with the 

Table 5   Values of input and 
output parameters of the ANN-1 
for three samples of scenario A

Scenario Inputs Output

Time (s) [CO] (ppm) Vel (m/s) Height (m) Width (m) Fire size (kW)

A 194 5 1.4 2.8 6.2 450
A 250 10 1.4 2.8 6.2 747
A 465 42 1.4 2.8 6.2 2594

Table 6   Values of input and 
output parameters of the ANN-2 
for the three samples of scenario 
A

Scenario Inputs Output

Time (s) Fire size (kW) Vel (m/s) Height (m) Width (m) Response time (s)

A 194 450 1.4 2.8 6.2 272
A 250 747 1.4 2.8 6.2 216
A 465 2594 1.4 2.8 6.2 1

Table 7   Values of input and 
output parameters of the entire 
model (two interconnected 
ANNs) for three samples of 
scenario A

Scenario Inputs Output

Time (s) [CO] (ppm) Vel (m/s) Height (m) Width (m) Response time (s)

A 194 5 1.4 2.8 6.2 272
A 250 10 1.4 2.8 6.2 216
A 465 42 1.4 2.8 6.2 1
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evolution of the fire size is not immediately reflected in the 
variation of the CO concentration measured by the sensors 
downwind from the fire. The longitudinal air velocity of each 
scenario has a significant influence on the CO concentration 
travel time from the source to the sensor locations. There is 
a velocity range in which ANN-1 performs well: however, 
for lower or higher velocities in this range, ANN-1 becomes 
less accurate. In addition to air velocity, different flowrates 
produce more diluted or higher CO concentration downwind 
from the fire. These two parameters cause a wide variability 
in the data that cannot be completely captured by ANN-1 
with the input parameters used. In order to determine the 
relationship between ANN-1 performance and air velocity, 
the mean fire size error and standard deviation for scenarios 
with different air velocities were determined as shown in 

Table 9. Table 9 shows that the best performance of ANN-1 
is when fire size is predicted for samples of scenarios with 
velocity between 1.0 and 1.5 m/s. The lowest mean fire size 
error and standard deviation were evidenced in this range. 
On the other hand, greater mean fire size errors and standard 
deviations were seen for scenarios with air velocity in the 
range of 0.5–1.0 m/s and 1.5–2.0 m/s.

The second error source is related to the number of sam-
ples in each velocity range. Table 9 shows that higher errors 
were obtained for velocity ranges with lower number of sam-
ples. The low number of samples in the velocity range of 0.5 
and 1.0 m/s is explained due to the short time in which the 
conditions are tenable at the attack position. The response 
time for scenarios with lower air velocities generally is short; 
thus, the number of samples generated in those scenarios 

Fig. 7   Raw and visibility over 
time for scenario A

Fig. 8   Discrete probability density functions of ANN-1 error from training and testing dataset
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is smaller. Regarding the number of samples generated in 
scenarios in the velocity range of 1.5 and 2.0 m/s can be 
stated that the small number of samples is explained due to 
the lower number of scenarios with these velocities in which 
the tenability limits are exceeded. Scenarios with greater air 
velocities require larger fire sizes to grow untenable condi-
tions for firefighters.

Two approaches may be considered to reduce ANN-1 
error. The first approach is including more training data 
that increases the number of samples for the previously 
mentioned velocity ranges. The second approach is add-
ing other input parameters that provide more information 
related to the fire evolution such as the maximum fire size 
or fire growth rate, but these parameters are not available 

Fig. 9   Discrete probability density functions of ANN-2 error from training and testing dataset

Fig. 10   Discrete probability density functions of the entire model error from training and testing dataset

Table 8   Summary of performance of ANN-1, ANN-2, and entire 
model on training and test data (values refers to µ ± 2σ)

Model Prediction Training set 
error

Test set error Unit

ANN-1 Fire size  − 1.61 ± 12.97  − 1.69 ± 14.36 kW
ANN-2 Response time 0.13 ± 0.40 0.13 ± 0.43 s
Entire model Response time  − 0.36 ± 1.80  − 0.33 ± 1.84 s

Table 9   Summary of performance of ANN-1 and number of samples 
for different velocity ranges

Velocity range (m/s) Error (µ ± 2σ) Number 
of sam-
ples

0.5–1.0  − 2.18 ± 19.75 4818
1.0–1.5  − 0.63 ± 10.43 14,043
1.5–2.0  − 3.6 ± 12.38 5833
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or measurable during mine fires. Based on results shown in 
Table 8, the desired performance of ANN-1 is met consider-
ing the limitations in the availability of parameters during 
the mine fire emergency.

Regarding ANN-2, Table 8 shows that the mean response 
time error of ANN-2 is − 0.13 s with a standard deviation of 
0.40 s for the training set and a mean response time error of 
0.13 s and standard deviation of 0.43 s for testing set. Based 
on these values, it can be stated that the 95% of ANN-2 
predictions should be within ± 1.0 s when the true fire size 
is used as input parameter. These results highlight the capa-
bility of ANN-2 to predict response times with high degree 
of accuracy when the true or actual fire size is used. The use 
of the actual fire size along with the other input parameters 
provide enough information to ANN-2 to capture data vari-
ability for having response time predictions with low error 
values.

The mean response time error of the entire model 
is − 0.36 s with a standard deviation of 1.80 s for the train-
ing set. The mean response time error of the entire model 
is − 0.33 s with a standard deviation of 1.84 s for the test-
ing set. As mentioned previously, the input parameters from 
datasets were feed to ANN-1 and error was determined from 
response time predictions by ANN-2. This indicates that the 
fire size error of ANN-1 propagates to ANN-2 and explains 
why the entire model error is greater than ANN-2 error for 
response time predictions. Even though errors of fire size 
predictions by ANN-1 affect the performance of the entire 
model, 95% of the entire model predictions of response time 
should be within ± 4.0 s when available input parameters 
during underground coal mine fires are used.

4 � Conclusion

A data-driven approach was presented to predict fire size and 
response time in real time for firefighters based on available 
and measurable input parameters during ongoing mine fires 
using two interconnected feedforward ANNs. The data for 
training and testing the ANNs were generated from 300 sce-
narios with different longitudinal air velocities, mine entry 
dimensions, and fire characteristic simulated in FDS and 
FSSIM. Simulations in the FDS model allowed for the deter-
mination of the conditions at the attack position assigned 
to be 5.0 m upwind from the fire. Simulations in FSSIM 
allowed for establishing the CO concentration evolution 
within 300 m downwind from the fire. After linking input 
parameters and simulation results from both models, 24,694 
samples were collected of which 80% was used for training 
and 20% was used for testing the robustness of the approach.

Results showed that 95% of fire size predictions were 
within ± 29 kW of the true fire size, and 95% of response 
time predictions were within ± 4.0 s of the true response 

time when testing data was used. The major fire size error 
was identified to come from predictions for samples with 
air velocities within 0.5–1.0 m/s and 1.5–2.0 m/s ranges. 
The variability in data caused by different air velocities and 
flowrates it is not entirely provided by input parameters of 
ANN-1. In addition, the small number of samples for these 
velocity ranges could be another cause of the fire size error. 
The largest response time error can be attributed to inac-
curacies in the fire size predictions since when ANN-2 was 
tested using true fire sizes, the response time error was much 
lower. Thus, it can be stated that the fire size error of ANN-1 
propagates to ANN-2 as fire size predicted by ANN-1 is 
used as input in ANN-2.

This work demonstrates that using available and measur-
able input parameters during ongoing mine fires in the data-
driven approach is possible to determine the fire size and 
response time in real time. While the model presented in this 
work was designed for a belt entry, the same methodology 
could be implemented in other mine locations. Additionally, 
this approach could be applied in different enclosed loca-
tions such as underground storage facilities and road tunnels 
where parameters collection can be performed from high-
tech electrical devices such as heat-cameras not allowed in 
underground coal mines. Thus, more complex data-driven 
approaches that use image processing techniques could be 
developed. Finally, future work is needed to incorporate 
additional physics components such as different fuels and 
reaction parameters that have direct influence on the condi-
tions during mine fires to provide broader and more realistic 
input to emergency situations.
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