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Abstract

The prediction of the coal mine fire response time, defined as the remaining time before conditions at attack positions grow
untenable for firefighters, plays a vital role in the decision-making process during a mine fire scenario. The knowledge of
the response time along with the fire size, fire location, and arrival time could allow for the most suitable decision regarding
direct or remote approach to the fire in the mine, mine evacuation planning, and remote attack from the surface. For this rea-
son, this paper presents a data-driven approach to predict the response time and fire size based on available and measurable
parameters during underground coal mine fires using two interconnected artificial neural networks (ANNSs). A total of 300
fire dynamic simulator (FDS) and fire and smoke simulator (FSSIM) simulations of a straight and flat mine entry (replicating
a belt entry) with different fire sizes, air velocities, and dimensions were used in training and testing the ANNSs. The results
showed that 95% of fire size and response time predictions should be within+29 kW and +4 s of true values obtained in
the fire models, respectively. The approach presented in this work can provide instantaneous predictions of response time
and fire size during ongoing mine fires. Additionally, this approach can be utilized in other mine fire locations as well as in
different types of tunnels.
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1 Introduction the potential remote locations of fires, some fires cannot be
attacked during their first stages. Conditions at the fire prox-
imity can grow untenable preventing firefighters’ approach

to carry out direct attack. Thus, predictions of the evolution

Once a fire is discovered in an underground coal mine, a
decision-making aims to reduce the probability of high-risk

event. Among these options is the possibility of attacking
the fire directly or through remote techniques when condi-
tions are not tenable for the firefighting personnel. In most
underground mine fires, direct attack at the initial stages is
usually a priority since fires develop rapidly. If a fire cannot
be controlled by direct firefighting methods, the probability
of effectively extinguishing the fire without the need to seal
the mine or a portion of the mine is greatly reduced [1-4].
However, considering the accessibility of coal mines and
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of the conditions in the proximity of the fire could allow
for the determination of the response time defined as the
remaining time before conditions at attack positions become
untenable for firefighters. The determination of the response
time along with the knowledge of the fire size, fire location,
and arrival time allows for the most informed and methodi-
cal decision regarding the type of attack. These decisions
must be made relatively quickly, so there is a need for a
new approach that can determine the response time and fire
size in real time during ongoing mine fire scenarios. This
approach must use measurable and available parameters in
underground coal mines in order that it can be applied in
the field.

To predict the conditions generated by enclosed fires
such as in underground mines, two types of models have
been used: computational fluid dynamics (CFD) fire models
and zone fire models (ZFM) [4-9]. In CFD fire models the
Navier—Stokes equations of mass, momentum, and energy
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are solved as well as the species conservation equation in
discretized geometries allowing for the spatial-temporal
resolution of the entire domain. Parameters such as concen-
trations of combustion gasses, temperature, visibility, and
radiation in each grid cell are solved. However, the high
computational cost and processing time of these models that
can be in order of days or even weeks makes it impractical
to use in informing real-time conditions. On the other hand,
in zone fire models the domain is divided into larger com-
partments which are represented as single nodes [10]. This
approach of having one node per control volume minimizes
the computational cost and time allowing for faster predic-
tions of smoke spread in larger domains. Although zone
fire model simulations can be obtained much faster than
CFD models, it is still unfeasible to solve entire domains
and process results in real time. In addition, it is noteworthy
that ZFM predictions have low spatial resolution for hazard
analysis.

Advancements in machine learning and improvements
in computing power have contributed to an increase in
the usage of artificial neural networks (ANNs) for devel-
opment of data-driven models able to solve domains and
process results in real time [11-17]. ANNs can learn com-
plex dependencies between variables which makes them
an attractive technology for this kind of application. For
instance, Hodges et al. [17] recently used machine learning
to approximate the detailed thermal flow field in a mine fire
showing the capability of ANNs to predict conditions in
underground mines. Nevertheless, this study did not focus
on evaluation of atmosphere conditions nor calculation of
response time and fire size. An approach which uses measur-
able and available parameters as inputs to a machine learn-
ing model to determine response time and fire size in real
time is particularly promising for decision-making during
fire emergency response.

The objective of this study was to develop a data-driven
model to make predictions of response times and fire sizes
in real time based on on-site CO concentration sensor read-
ings downwind from the fire and other known operating
parameters such as mine geometry, air velocity, and time
elapsed after fire detection. This approach was implemented
for different fire scenarios in a straight and flat mine entry
(replicating a belt entry) with different fire characteristics,

Fig. 1 Sketch of solution
algorithm
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@ Springer

ANN-1

air velocities, and dimensions. The data used for training
and testing the data-driven approach was generated using a
CFD model called fire dynamics simulator (FDS) and a zone
fore model called fire and smoke simulator (FSSIM). FDS
was used for the determination of conditions in the proxim-
ity of the fire where the attack position is located. FSSIM
was used to determine CO concentrations downwind from
the fire. The entire model was composed of two intercon-
nected feedforward ANNs in which the prediction of the
fire size performed by the first ANN is used by the second
ANN to predict the response time. The approach presented
in this work can provide instantaneous predictions of fire
size and response time during ongoing mine fires and be
applied to other mine fire locations as well as in different
types of tunnels.

2 Methodology

A sketch showing a high-level view of the solution algorithm
used to develop the data-driven approach for prediction of
fire size and response time is shown in Fig. 1. ANN-1 makes
predictions of fire size using input parameters measured in
mines. Fire size predictions by ANN-1 along other oper-
ating parameters are used as input to ANN-2 for response
time determination. Data for training and testing ANNs was
generated using FDS and FSSIM simulations. A tenability
analysis was performed for calculation of response time in
different scenarios. The following subsections describe the
network architecture, tenability analysis, and data generation
and preparation used in this work.

2.1 Network Architectures

The entire model for the determination of fire size and
response time used in this study is composed of two inter-
connected ANNs as shown in Fig. 1. The main constraint
for the elaboration of the predictive model was to use only
available and measurable parameters during underground
coal mine fires as inputs to the ANNs. According Title 30
CFR §75.351(e)(f)(h), underground coal mines are required
to be monitored of carbon monoxide by atmospheric moni-
toring systems (AMS) or CO systems [18]. As defined in
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Title 30 CFR §75.301, AMS or CO systems are described
as networks consisting of hardware and software capable
of measuring atmospheric parameters and transferring the
measurements to a designated surface location. For CO mon-
itoring, sensors of these systems must be located at key loca-
tions such as belt and return entries, working faces, electrical
installation locations, and primary escapeways. This indi-
cates that during mine fires, CO concentration is measured
at different mine locations and transmitted to surface in real
time in all US underground coal mines. CO is a combustion
product which its concentration contains information of the
fire size and conditions during ongoing mine fire. Thus, CO

Fig.2 Architecture of ANN-1
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concentration was selected as one of the input parameters to
the predictive model. In addition to CO concentration, there
are known operating parameters that can impact fire condi-
tions. These known parameters are mine entry dimensions,
time elapsed after fire detection, and nominal longitudinal
air velocity. They are all known since they are part of the
mine operating procedures. These additional parameters
were used along with CO concentration as input parameters
to the ANNSs (Figs. 2,3 and 4).

The architecture of the first ANN (ANN-1) consists of
fully connected layers of which three are hidden layers of
30 neurons as shown in Fig. 5. The input layer is composed
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of 5 elements that as mentioned previously corresponds to
longitudinal air velocity, tunnel width, tunnel height, CO
concentration, and time elapsed after fire detection. The out-
put layer consists of one element that refers to the fire size
prediction which is included in the input vector of ANN-2.
The architecture of ANN-2 also consists of three hidden
layers of 36 neurons for a total of 5 fully connected layers
as shown in Fig. 6. The input vector of ANN-2 consists of 5
elements that corresponds to fire size, velocity, tunnel width,
tunnel height, and time elapsed after fire detection. In both
ANN:Ss, the rectified linear unit activation function (ReLu)
was used for the hidden layers. The Adam gradient descent
optimization algorithm with the mean squared error as loss
function was used. Ten thousand epochs with a batch size of
100 samples and a learning rate fixed at 1072 were used for
training both ANNSs. All weights and biases were initialized
from a normal distribution with zero mean and 102 stand-
ard deviation. The network architecture was created using
Keras, a high-level neural network library built-in Python
that runs on top of TensorFlow, an open-sourced end-to-end
platform [19, 20].

2.2 Tenability Analysis

The tenability analysis allows for the determination of the
parameters and limits that should be considered to evaluate
the tenability of the conditions in the fire proximity. US min-
ing regulation requires that each operator of an underground
coal mine drafts an emergency and firefighting program that
guides all miners in the procedure that they must follow if a
fire occurs [18]. The regulation stipulates that during a mine
fire some miners are designated to respond to the mine fire
emergency while other miners are required to evacuate the
mine. Mining regulation specifies that at least two miners in
each working section and one miner for every four miners
on a maintenance shift must be proficient in the use of fire
suppression equipment available in the mine and know its
location [18]. The underground miners assigned to address
the fire are called the first responder group (FRG) since they
are the first group to deal with the fire. The FRG is com-
monly composed of barefaced personnel [2].

In addition to the FRG, there is a second group composed
of specially trained fire brigade and mine rescue team called
the second responder group (SRG). Although a fire brigade
is more focused on firefighting, the mine rescue team may
also conduct firefighting activities during rescue procedures.
Mining regulation requires every operator of an underground
mine shall establish at least two mine rescue teams which
are available when miners are underground [18]. The SRG
has more specialized personal protective equipment (PPE)
such as turnout gear and self-contained breathing apparatus
(SCBA). Moreover, this group normally carries firefighting
equipment that includes efficient water hose nozzles with
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pistol grips allowing the members of this group to attack
fires with more control of water patterns and flows [2].

The tenability analysis carried out in this study is based
on previous tenability analysis performed in road tunnels
[21-23] and in a simulated methane fire event at the working
face in a coal mine [24]. Following these analyses, four main
parameters should be considered during tenability analysis.
The parameters are toxicity, temperature, visibility, and radi-
ation. In this study, the data-driven approach was only devel-
oped to determine response time for the SRG; thus, tem-
perature, radiation, and visibility were only considered. It
is noteworthy that for the SRG the toxicity is not accounted
since this group normally carries SCBA designated to pro-
vide oxygen for at least 4 h and is suitable for firefighting. In
some tenability analyses previously performed, some limits
are determined for certain time of exposure such short-term
exposure limits (STEL). However, in this study limits were
established as ceiling or critical limit as also recommended
by Gehandler et al. [22]. In real mine fires and numerical
simulations have been observed that when parameters reach
numbers close to the exposure limits, it is almost a certainty
that they will keep increasing if the fire is not attacked. In
addition, visibility is generally the first tenability parameter
limit exceeded (well before limits for toxicity, temperature,
and radiation) and its limit is always considered a critical
limit due to the difficulty that firefighters have performing
essential activities such as fire approaching, firefighting, and
evacuation. Considering the accessibility of underground
coal mines and the remote location of fires, this assumption
assures a conservative approach.

The temperature and radiant heat limits for the SRG are
determined by Haghighat and Luxbacher [24], and NFPA
[21], respectively. Haghighat’s work proposed a temperature
of 100 °C for SRG wearing turnout gear. NFPA says that
for SRG a radiation level under roughly 5 kW/m? can be
withstood for around 7 min. However, in this study this value
was considered the ceiling limit. Regarding visibility, its ten-
ability limit is commonly established based on its impact on
firefighters walking speed. Studies have been performed to
determine the walking speed in function of the visibility and
the extinction coefficient [25]. For purposes of this work, the
tenable visibility limit was set to 5 m based on Gehandler
et al. [22]. They mentioned that this visibility limit can be set
as long as firefighters know the environment where the fire
occurs. It is noteworthy that a maximum visibility of 30 m
was set in FDS. An optical coefficient equal to 3 [26] was
used assuming light reflecting signs hanging on walls that
indicate evacuation route as it is common in underground
coal mines. Explosibility was not considered in this study;
however, if fire firefighters observe or suspect an explosive
atmosphere during an ongoing fire (e.g., methane concen-
tration between 5 and 15% with an oxygen concentration
between 15 and 20%), the response time must be zero and
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Table 1 SRG tenable limits

Parameter Ceiling limit
Heat flux (kW/m?) <5.0
Temperature (°C) <100
Visibility (m) >5

the scenario must be considered as not tenable immediately.
The tenability limits used in this study are summarized in
Table 1.

2.3 Data Generation

As stated previously, the data used to train and test the data-
driven approach was generated from numerical simulations.
Three hundred fire scenarios in a flat and straight mine entry
were simulated in FDS and FSSIM. FDS simulations pro-
vided spatial-temporal results to determine the conditions
in the fire proximity. FSSIM simulation results were used to
determine CO concentration at sensor stations within 300 m
downwind from the fire. It is noteworthy that in all scenar-
ios simulated at least one tenability limit was exceeded to

determine the response time. Figure 4 shows the locations
in which CFD and FSSIM simulations were performed with
reference to the fire position.

2.3.1 CFD Data Generation

CFD simulations were carried out to determine the condi-
tions at the attack position using FDS. FDS is a large-eddy
simulation model that solves the equations of mass, momen-
tum, energy, and species conservation to determine the
conditions due to the evolution of fire, transport of gasses,
and smoke in an enclosed space [27]. These equations are
solved using the method of finite differences on a collection
of uniformly spaced-three-dimensional grids [28] allowing
for the predictions of parameters such as combustion gas
concentrations, visibility, heat flux, and soot fraction in each
grid of the domain.

The geometry used in FDS simulations is shown in Fig. 5.
It was assumed that the fire location in these scenarios was
located at a belt entry between two crosscuts as shown in
Fig. 4. The simulation input parameters varied in this study
are shown in Table 2 and highlighted in Fig. 5. These param-
eters were selected since they have direct influence on the
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Table 2 Range of each parameter in study

Parameter Range

Air velocity (m/s) 0.5-2.0
Fire size (kW) 750-7000
Fire growth rate ) 0.01172-0.1876
Height 1.8-2.8 m
Width 5.0-7.0 m

presence and amount of backlayering [29-35]. Backlayer-
ing is defined as the reversal flow of smoke and combus-
tion gasses within a tunnel (towards the forced ventilation)
affects the visibility and toxicity at the attack position lead-
ing to untenable conditions. During direct attack, firefighters
approach the fire and position themselves approximately 5 m
upwind of the fire. At this attack position, they proceed to
try and suppress the fire using water or firefighting foam.
For this reason, FDS simulations were used to determine
the conditions at the attack position assumed to be 5 m away
upwind of the fire and at a height of 1.5 m. A height of 1.5
was selected since firefighters would try to crouch when they
attack the fire with the objective to stay below the smoke
layer as was also assumed by Haghighat and Luxbacher [24].
The values of parameters shown in Table 2 for each sce-
nario were obtained using simple random sampling from
uniform distribution in which each value has the same prob-
ability of being drawn during the sampling process. How-
ever, it was assured that conditions grow untenable for fire-
fighters in all scenarios to determine the response time. The
simulation time of the 300 FDS scenarios varied depending
on the fire size and growth rate. Each scenario was deter-
mined to last until the time the maximum fire size (¢,,,,) is
reached. The fire size at time (#) was determined using the
T-squared approach shown in Eq. 1 for all scenarios.

HRR(t) = at® (D)

In the above equation, HRR is the fire size at a time (f)
and « is the fire growth rate that it is defined as shown in
Eq. 1. Note that the lower and upper limits of the fire growth
rate range refer to the standard medium and ultrafast growth
rates, respectively.

HRR,,,.

*=—— @
max

where HRR _is the maximum fire size reached at ¢

max max*

The grid size (dx) was 0.1 m along each axis of the
domain for all simulations to reduce calculation time and
computational cost as well as have consistent results.
McGrattan et al. [36] recommend a grid size value less than
or equal to 0.1D" to completely resolved the source fire. D*
refers to the characteristic length scale that corresponds to
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Table 3 Heat of combustion, CO, soot, and CO, yields of the mate-
rial involved in the fire

Material Heat of combustion (kJ/ Y,

kg) (kg/kg)

Polyurethane 25,300

Ysoor Yco2
(kg/kg) (kg/kg)

0.02775 0.1875

1.5325

the total HRR of a fire plume defined in Eq. 3. Although
the grid size used in this study does not fully resolve the
source fire for sizes lower than 1,000 kW, the predictions
were adequate for exploratory analysis to test the ability of
ANNS to make predictions than comparing to experimental
results. The range of D"/dx is between 21 and 9 for fire sizes
of 7000 kW and 500 kW, respectively.

2/5
D* = (L) 3)
/’CPTO\/g

where Q is the heat release rate of fire, p is the air density,
Cp is the air specific heat, 7, is the ambient temperature, and
g is the gravity acceleration.

The parameters shown in Table 1 were determined during
the simulations since they allow for the evaluation of condi-
tions for firefighters as detailed in “Sect. 2.2.” The value of
each parameter was calculated at intervals of 1 s at the attack
position. Flexible polyurethane foam was used as the mate-
rial to simulate the fire in each scenario. Characteristics of
flexible polyurethane foam are shown in Table 3.

2.4 Zone Fire Model Data Generation

To determine the CO concentration downwind of the fire,
FSSIM was used. In FSSIM, each control volume or com-
partment is represented as single node. Junctions that repre-
sent flow paths are defined between nodes. The approach of
just having one node per control volume minimizes the com-
putational cost and time allowing for predictions of smoke
spread in larger domains such as large areas in underground
coal mines. FSSIM solves the 1-D conservation equations
for mass, momentum, and energy [37]. In zone fire models
also referred to as a 1D or network fire model, it is assumed
that properties such as temperature, density, and chemical
species take constant values through each zone.

A previous study carried out by Haghighat et al. [38]
shows that 1D fire model results normally have an error of
less than 5% when compared with CFD model results for
zones of the domain located 12 times the hydraulic diameter
(Dh) farther away downstream from the fire. Farther this
distance known as the downstream interface boundary, the
fluid field behaves as a quasi-1D fluid dominated by the lon-
gitudinal velocity. This finding allows for using 1D models
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such as FSSIM in parametric studies as the presented in
this work to predict fire conditions at a low computational
cost and time in large tunnel domains. While the calcula-
tion time for a 1D fire simulation in a 400 m long tunnel can
take around 30 min using a single NVIDIA Quadro K620
graphics, the calculation for a CFD fire model can be in the
order of 2 weeks.

The 300 scenarios simulated in FDS were also simulated
in FSSIM using the same input parameters and fuel charac-
teristics shown in Table 2 and Table 3, respectively. FSSIM
simulations were used to determine the CO concentrations
within 300 m downwind from the fire in each scenario. The
downwind CO concentration was determined at intervals of
1 s at 4 different sensor stations with a spacing of 75 m as
shown in Fig. 6. The geometry used in FSSIM consisted of
a flat and straight mine entry 400 m long and split into 80
compartments. Thus, the length of the compartments was
5 m. The tunnel height and width depended on the mine
entry dimensions of each scenario. The fire was located
17.5 m away from the inlet. The maximum CO concentration
detected at the sensor stations at each time step was used as
input parameter in the data-driven approach. Two air leak-
ages along the tunnel were considered based on the location
of crosscuts downwind from the fire as shown in Fig. 6. The
airflow quantities at leakage points were calculated based on
mine survey results from a partner mine.

2.5 Data Preparation
During the data preparation, simulation input parameters

and numerical results of FDS and FSSIM were processed
with the objective of being used for training and testing

the ANNSs and the entire model (interconnected ANNSs).
The first step consisted of linking input parameters with
FDS and FSSIM results. This can be done because same
scenarios were simulated in both models. With the objec-
tive to be more illustrative with the linking process, the
linking of three samples of scenario A shown in Table 4
is detailed in what follows. Based on time elapsed and fire
size, it was possible to link tenability parameter results at
the attack position predicted by FDS with the CO concen-
tration downwind from the fire predicted by FSSIM. This
is possible since time elapsed and fire size are equally
predicted at any time in both fire models as shown under
FDS/FSSIM column in Table 4.

Once input parameters and results of both models were
linked, the maximum response time for each scenario was
calculated. This time was determined by looking for the
time in which at least one of tenability limit was exceeded
in each scenario. For instance, in scenario A the maxi-
mum response time was determined at 466 s when the
tenability limit of visibility was exceeded. It is called
maximum response time because it is referenced from the
fire detection time (=0 s). Then, in order to determine
the response time for each time step associated with the
CO concentration and the other input parameters (tun-
nel dimensions, air velocity, and time elapsed), the value
of maximum response time was subtracted by the value
of each time step. After calculation of response time for
each time step, the inputs and outputs of the models were
assigned. Tables 5, 6, and 7 show the values of the input
and output parameters for the first and second ANNs, and
the entire model (interconnected ANNSs) based on results
of scenario A shown in Table 4, respectively.

Fire
Airflow direction

75m

Leakage 2

75m

Leakage 1

Fig.6 Geometry used in FSSIM, location of sensor stations, fire, and leakages

Table 4 Input parameters and results of both fire models linked for three different time steps of Scenario A

Scenario Simulation input parameters FDS/FSSIM FDS FSSIM
Vel (m/s) Max fire size (kW) Growth rate (s™') Dim (HxXW) Current Time (s) Temp (°C) Visibility (m) [CO] (ppm)
(mXm) fire size
(kW)
A 1.4 5182 0.012 2.8%x6.2 450 194 20 30 5
A 747 250 21 30 10
A 2594 465 43 6 42
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Table 5 Values of input and

Scenario Inputs Output
output parameters of the ANN-1
for three samples of scenario A Time (s) [CO] (ppm) Vel (m/s) Height (m) Width (m) Fire size (kW)
A 194 5 14 2.8 6.2 450
A 250 10 14 2.8 6.2 747
A 465 42 1.4 2.8 6.2 2594
Table 6 Values of input and Scenario  Inputs Output
output parameters of the ANN-2
for the three samples of scenario Time (s) Fire size (kW) Vel (m/s) Height (m) Width (m) Response time (s)
A
A 194 450 14 2.8 6.2 272
A 250 747 14 2.8 6.2 216
A 465 2594 14 2.8 6.2 1
Table 7 Values of input and. Scenario Tnputs Output
output parameters of the entire
model (two interconnected Time (s) [CO] (ppm) Vel (m/s) Height (m) Width (m) Response time (s)
ANNSs) for three samples of
scenario A A 194 5 14 2.8 6.2 272
A 250 10 1.4 2.8 6.2 216
A 465 42 1.4 2.8 6.2 1

3 Results and Discussion

After processing 300 simulation results from FDS and FSSIM,
24,694 samples were collected for training and testing ANNs
and testing the entire model. The entire dataset was randomly
split into two, with 80% for training and 20% for testing. The
ANNSs were trained independently using the training data. The
performance of ANN-1, ANN-2, and the entire model on each
dataset was determined. ANN-1 was tested based on fire size
predictions. ANN-2 and the entire model were tested based on
response time predictions. During the performance evaluation
of the entire model, inputs of ANN-1 were feed to the entire
model and error for response time predictions was determined.
In order to determine the performance of ANN-1, the
error for fire size predictions was calculated as follows:

EFS,ANNI = FSp — FSynn_y @

where Erg 4yyi is the error for fire size, FSy is the true fire
size, and FSyy_, 1s the fire size predicted by ANN-1.

In the same way, for the determination of the performance
of ANN-2 and the entire model, the error for response time
was calculated as follows:

Erranny = RT7 — RT gy (®)]

Err moper = RTr — RT yioppr (6)

where Epr 4yy- is the error for response time when ANN-2
is evaluated, RT; is the true response time, RT ,yy_, is the
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response time predicted by ANN-2, Exr 10pg; 18 the error
for response time when the entire model is evaluated, and
RT y,0pg 1s the response time predicted by the entire model.

Due to the fluctuations inherent to the turbulent flow in
FDS simulation, FDS results were processed applying an
average filter with a window of 15 s in order to reduce the
noise of the data. Figure 7 shows the evolution of visibility
over time for scenario A before and after applying the aver-
age filter.

The discrete probability density function of fire size error
(ANN-1) and response time error (ANN-2) for all training
and test data when ANNs were evaluated independently are
shown in Figs. 8 and 9, respectively. Figure 10 shows the
discrete probability function of response time error when
the entire model was used for all training and test data. The
mean and standard deviation of error predictions of ANN-1,
ANN-2, and the entire model are summarized in Table 8. An
error of zero indicates perfect agreement between the ANN
predictions and true values obtained from fire models.

Table 8 shows that the mean fire size error of ANN-1
is—1.61 kW with a standard deviation of 12.97 kW for
training set and a mean fire size error of — 1.69 kW with a
standard deviation of 14.36 kW for the test set. Based on
this result, it can be stated that 95% of ANN-1 predictions
should be within +29 kW which highlight the capability of
ANN-1 to predict the current fire size only using available
information during ongoing mine fires. However, much of
the fire size error in ANN-1 predictions was identified to
come from two sources. The first source was related with the
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Fig.7 Raw and visibility over
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Fig.8 Discrete probability density functions of ANN-1 error from training and testing dataset

evolution of the fire size is not immediately reflected in the
variation of the CO concentration measured by the sensors
downwind from the fire. The longitudinal air velocity of each
scenario has a significant influence on the CO concentration
travel time from the source to the sensor locations. There is
a velocity range in which ANN-1 performs well: however,
for lower or higher velocities in this range, ANN-1 becomes
less accurate. In addition to air velocity, different flowrates
produce more diluted or higher CO concentration downwind
from the fire. These two parameters cause a wide variability
in the data that cannot be completely captured by ANN-1
with the input parameters used. In order to determine the
relationship between ANN-1 performance and air velocity,
the mean fire size error and standard deviation for scenarios
with different air velocities were determined as shown in

Table 9. Table 9 shows that the best performance of ANN-1
is when fire size is predicted for samples of scenarios with
velocity between 1.0 and 1.5 m/s. The lowest mean fire size
error and standard deviation were evidenced in this range.
On the other hand, greater mean fire size errors and standard
deviations were seen for scenarios with air velocity in the
range of 0.5-1.0 m/s and 1.5-2.0 m/s.

The second error source is related to the number of sam-
ples in each velocity range. Table 9 shows that higher errors
were obtained for velocity ranges with lower number of sam-
ples. The low number of samples in the velocity range of 0.5
and 1.0 m/s is explained due to the short time in which the
conditions are tenable at the attack position. The response
time for scenarios with lower air velocities generally is short;
thus, the number of samples generated in those scenarios
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Fig. 10 Discrete probability density functions of the entire model error from training and testing dataset

Table8 Summary of performance of ANN-1, ANN-2, and entire
model on training and test data (values refers to u+2c)

Table9 Summary of performance of ANN-1 and number of samples
for different velocity ranges

Model Prediction Training set Test set error ~ Unit
error

ANN-1 Fire size —1.61+1297 —-1.69+1436 kW

ANN-2 Response time 0.13+0.40 0.13+0.43 s

Entire model Response time —0.36+1.80 -033+1.84 s

is smaller. Regarding the number of samples generated in
scenarios in the velocity range of 1.5 and 2.0 m/s can be
stated that the small number of samples is explained due to
the lower number of scenarios with these velocities in which
the tenability limits are exceeded. Scenarios with greater air
velocities require larger fire sizes to grow untenable condi-
tions for firefighters.

@ Springer

Velocity range (m/s) Error (u+20) Number
of sam-
ples

0.5-1.0 —2.18+19.75 4818

1.0-1.5 —0.63+10.43 14,043

1.5-2.0 -3.6+12.38 5833

Two approaches may be considered to reduce ANN-1
error. The first approach is including more training data
that increases the number of samples for the previously
mentioned velocity ranges. The second approach is add-
ing other input parameters that provide more information
related to the fire evolution such as the maximum fire size
or fire growth rate, but these parameters are not available
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or measurable during mine fires. Based on results shown in
Table 8, the desired performance of ANN-1 is met consider-
ing the limitations in the availability of parameters during
the mine fire emergency.

Regarding ANN-2, Table 8 shows that the mean response
time error of ANN-2 is —0.13 s with a standard deviation of
0.40 s for the training set and a mean response time error of
0.13 s and standard deviation of 0.43 s for testing set. Based
on these values, it can be stated that the 95% of ANN-2
predictions should be within+ 1.0 s when the true fire size
is used as input parameter. These results highlight the capa-
bility of ANN-2 to predict response times with high degree
of accuracy when the true or actual fire size is used. The use
of the actual fire size along with the other input parameters
provide enough information to ANN-2 to capture data vari-
ability for having response time predictions with low error
values.

The mean response time error of the entire model
is—0.36 s with a standard deviation of 1.80 s for the train-
ing set. The mean response time error of the entire model
is —0.33 s with a standard deviation of 1.84 s for the test-
ing set. As mentioned previously, the input parameters from
datasets were feed to ANN-1 and error was determined from
response time predictions by ANN-2. This indicates that the
fire size error of ANN-1 propagates to ANN-2 and explains
why the entire model error is greater than ANN-2 error for
response time predictions. Even though errors of fire size
predictions by ANN-1 affect the performance of the entire
model, 95% of the entire model predictions of response time
should be within+4.0 s when available input parameters
during underground coal mine fires are used.

4 Conclusion

A data-driven approach was presented to predict fire size and
response time in real time for firefighters based on available
and measurable input parameters during ongoing mine fires
using two interconnected feedforward ANNs. The data for
training and testing the ANN's were generated from 300 sce-
narios with different longitudinal air velocities, mine entry
dimensions, and fire characteristic simulated in FDS and
FSSIM. Simulations in the FDS model allowed for the deter-
mination of the conditions at the attack position assigned
to be 5.0 m upwind from the fire. Simulations in FSSIM
allowed for establishing the CO concentration evolution
within 300 m downwind from the fire. After linking input
parameters and simulation results from both models, 24,694
samples were collected of which 80% was used for training
and 20% was used for testing the robustness of the approach.

Results showed that 95% of fire size predictions were
within +29 kW of the true fire size, and 95% of response
time predictions were within+4.0 s of the true response

time when testing data was used. The major fire size error
was identified to come from predictions for samples with
air velocities within 0.5-1.0 m/s and 1.5-2.0 m/s ranges.
The variability in data caused by different air velocities and
flowrates it is not entirely provided by input parameters of
ANN-1. In addition, the small number of samples for these
velocity ranges could be another cause of the fire size error.
The largest response time error can be attributed to inac-
curacies in the fire size predictions since when ANN-2 was
tested using true fire sizes, the response time error was much
lower. Thus, it can be stated that the fire size error of ANN-1
propagates to ANN-2 as fire size predicted by ANN-1 is
used as input in ANN-2.

This work demonstrates that using available and measur-
able input parameters during ongoing mine fires in the data-
driven approach is possible to determine the fire size and
response time in real time. While the model presented in this
work was designed for a belt entry, the same methodology
could be implemented in other mine locations. Additionally,
this approach could be applied in different enclosed loca-
tions such as underground storage facilities and road tunnels
where parameters collection can be performed from high-
tech electrical devices such as heat-cameras not allowed in
underground coal mines. Thus, more complex data-driven
approaches that use image processing techniques could be
developed. Finally, future work is needed to incorporate
additional physics components such as different fuels and
reaction parameters that have direct influence on the condi-
tions during mine fires to provide broader and more realistic
input to emergency situations.
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