Emerg Infect DisEmerging Infect. DisEIDEmerging Infectious Diseases1080-60401080-6059Centers for Disease Control and Prevention22516173335805511-172010.3201/eid1805.111720ResearchResearchCharacterization of Virulent West Nile Virus Kunjin Strain, Australia, 2011Characterization of WNV Kunjin Strain, AustraliaFrostMelinda J.1ZhangJing1EdmondsJudith H.1ProwNatalie A.1GuXingnianDavisRodneyHornitzkyChristineArzeyKathleen E.FinlaisonDeborahHickPaulReadAndrewHobson-PetersJodyMayFiona J.DoggettStephen L.HaniotisJohnRussellRichard C.HallRoy A.2KhromykhAlexander A.2KirklandPeter D.2Elizabeth Macarthur Agriculture Institute, Menangle, New South Wales, Australia (M.J. Frost, J. Zhang, X. Gu, R. Davis, C. Hornitzky, K.E. Arzey, D. Finlaison, P. Hick, A. Read, P.D. Kirkland);The University of Queensland, St Lucia, Queensland, Australia (J.H. Edmonds, N.A Prow, J. Hobson-Peters, F.J. May, R.A. Hall, A. A. Khromykh);University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia (S.L. Doggett, J. Haniotis, R.C. Russell)Address for correspondence: Peter D. Kirkland, Virology Laboratory, Elizabeth Macarthur Agricultural Institute, PMB 4008, Narellan, NSW 2567, Australia; email: peter.kirkland@dpi.nsw.gov.au52012185792800

An encephalitis outbreak among horses was caused by a pathogenic variant of Kunjin virus.

To determine the cause of an unprecedented outbreak of encephalitis among horses in New South Wales, Australia, in 2011, we performed genomic sequencing of viruses isolated from affected horses and mosquitoes. Results showed that most of the cases were caused by a variant West Nile virus (WNV) strain, WNVNSW2011, that is most closely related to WNV Kunjin (WNVKUN), the indigenous WNV strain in Australia. Studies in mouse models for WNV pathogenesis showed that WNVNSW2011 is substantially more neuroinvasive than the prototype WNVKUN strain. In WNVNSW2011, this apparent increase in virulence over that of the prototype strain correlated with at least 2 known markers of WNV virulence that are not found in WNVKUN. Additional studies are needed to determine the relationship of the WNVNSW2011 strain to currently and previously circulating WNVKUN strains and to confirm the cause of the increased virulence of this emerging WNV strain.

Keywords: AustraliaKunjin virusvirulenceWest Nile virusglycosylationhorsesencephalitisvirusesarboviruses

In Australia, Murray Valley encephalitis virus (MVEV) and West Nile virus (WNV) Kunjin (KUN) strain are the main etiologic agents of arboviral encephalitis in humans, which usually occurs as isolated sporadic cases or occasional small outbreaks, mainly in northwestern Australia and rarely in southern regions (Figure 1, panel A) (1). MVEV is the more virulent pathogen and the only proven cause of fatal arboviral encephalitis in humans in Australia (2). WNVKUN infections are infrequent and less severe (3). Horses are also susceptible to these viruses and have been involved in WNV outbreaks elsewhere, most notably in the United States in an outbreak that began in 1999. In Australia, infection with WNVKUN has been detected intermittently in horses in the Southeast, but reports of encephalitis caused by this virus are rare (3). In New South Wales (NSW), Australia, the seroprevalence of WNVKUN in horses is <5% (P.D. Kirkland and A. Read, unpub. data); infection is confined to inland areas where flooding supports large mosquito populations and water birds are a reservoir and amplifying host. Even in years when WNVKUN has caused disease in humans, disease has rarely been observed or confirmed in horses (3,4).

Known distribution of West Nile virus infection and disease caused by Kunjin strain (A) and distribution of encephalitis cases among equids (B), New South Wales, Australia, 2011. Dashed line indicates the Great Dividing Range.

In 2011, an outbreak of encephalitis occurred among horses in NSW. To analyze this strain of WNVKUN, we conducted genomic sequencing, antigenic profiling, in vitro growth kinetics, and mouse virulence studies on virus isolates from diseased animals and mosquitoes.

Materials and MethodsDisease Outbreak

In late February 2011, neurologic disease was reported in several horses in northwestern and southwestern NSW. The number of cases and geographic distribution gradually increased. By mid-June 2011, specimens from ≈300 horses were submitted to the virology laboratory at Elizabeth Macarthur Agriculture Institute (Menangle, NSW, Australia). Many more horses probably were affected. Diseased horses were located throughout most of NSW, west of the Great Dividing Range, but also extending through the Hunter River Valley region, Sydney Basin, and Illawarra coastal region immediately south of Sydney (Figure 1, panel B). Cases also occurred in other southern Australia states. Clinical signs were generally consistent with those described in horses infected with WNV in the United States (5). A detailed report of the clinical signs, virology, and pathology of equine cases will be published elsewhere.

Specimen Collection

Whole brains were removed from 12 horses at postmortem examination. Half of each brain was fixed in 10% neutral buffered formalin; the other half was held fresh at 4°C. Upon receipt, we collected small pieces of fresh and formalin-fixed tissue from several locations in the cerebrum and cerebellum and along the brain stem and cervical spinal cord. If virus isolation could not be performed on fresh samples within 24 h after receipt, we held the samples at −80°C until tested. Before testing, we prepared 10% tissue homogenates in RPMI medium (Life Technologies, Carlsbad, CA, USA) containing antimicrobial drugs.

Mosquitoes were collected throughout NSW, as part of the NSW Arbovirus Surveillance and Mosquito Monitoring Program, by using dry ice–baited light traps. The mosquitoes were submitted live to the Medical Entomology Laboratory at Westmead Hospital (Westmead, NSW, Australia) for species identification, arbovirus isolation, and virus identification (6).

Cells and Viruses

We propagated Vero 76 cells in Dulbecco modified minimum essential medium (DMEM; Life Technologies) supplemented with 10% fetal bovine serum (FBS). C6/36 Aedes albopictus mosquito cells were maintained in RPMI medium supplemented with 10% FBS, and BHK21 cells were maintained in DMEM containing 5% FBS. All cell lines were obtained from the American Type Culture Collection (Manassas, VA, USA). We used prototype WNVKUN MRM61C (7) and WNV New York 99 (WNVNY99) 4132 strains (8) for comparison with WNVNSW2011. Stocks of WNVKUN MRM61C and WNVNY99 4132 that most closely resembled the low-passage level WNVNSW2011 were prepared by electroporation of BHK21 cells with WNVKUN or WNVNY99 RNA (prepared from corresponding infectious cDNA clones) and passaging them 1× in C6/36 cells. Viral supernatants were harvested 5 days later. Viral titers for each viral stock were determined by plaque assay on Vero 76 cells.

Virus Neutralization Tests

We conducted microneutralization tests (9) in Vero cells by using 25–100 infectious units (measured as 50% tissue culture infective doses) of WNVNSW2011, WNVKUN, and WNVNY99; we used 2-fold dilutions of serum from an initial dilution of 1:20. Results were scored as 80% reduction in virus growth or 100% inhibition of virus growth. Reduction in virus growth was determined by assessing the extent of cytopathic effect in each well. Inhibition of virus growth was determined by the absence of viral antigen in the cells of each well when tested with a WNV-reactive monoclonal antibody (mAb) in ELISA.

Nucleic Acid Purification

We used the MagMax-96 Viral RNA Isolation Kit (Ambion, Austin, TX, USA) on a magnetic particle handling system (Kingfisher 96; Thermo Electron Corporation, Vantaa, Finland) to extract total nucleic acid from clarified 10% brain homogenate (50 μL) or tissue culture fluid. Purified nucleic acids were eluted in 50 μL of kit elution buffer and used immediately for PCR amplification or stored frozen at ≈−20°C

Real-Time Reverse Transcription PCR

We used a published WNV real-time reverse transcription PCR (rRT-PCR) (10 [assay 2]) with the following variations: Black Hole Quencher (Biosearch Technologies, Novato, CA, USA) was used instead of TAMRA on the probe, the internal control system was not used, and 5 μL of RNA was used as template. The AgPath-ID One-Step RT-PCR Kit (Applied Biosystems, Foster City, CA, USA) was used for the rRT-PCR on a 7500HT Fast Real-Time PCR System (Applied Biosystems). We ran rRT-PCR reactions in standard mode, according to conditions recommended by the mastermix manufacturer.

Virus Isolation

Supernatant from the 10% brain homogenate was placed on monolayers of A. albopictus C6/36 mosquito cells in cell culture tubes. The cultures, which were maintained in RPMI medium containing antimicrobial drugs at standard concentrations and supplemented with 2% FBS, were incubated at 28°C for 5–7 days. Culture supernatants were then passaged up to 3× on BHK21 cells maintained in Basal Medium Eagle (MP Biomedicals, Sydney, Australia) containing antimicrobial drugs and 2% FBS. We regularly examined cultures by light microscopy for cytopathic effects. We used rRT-PCR to confirm the identity of virus isolates in culture supernatants or to confirm that there was no virus replication in the absence of cytopathology. Viral RNA recovered from culture fluid at the first or second passage in BHK21 cells was sequenced as described below. A virus isolate obtained from the first brain examined was designated WNVNSW2011. Virus isolation was conducted on homogenates of mosquitoes by similar methods but with passage onto BHK and PSEK cells after initially being placed on C6/36 cells. We identified virus isolates by using immunoassays with generic and specific mAbs.

WNVNSW2011 virus harvested from the first passage in C6/36 cells was used to examine plaque morphology and virulence in mice. The virus was passaged 1× in Vero76 cells for 4 d and 1× in C6/36 cells for 5 d. Virus supernatant was centrifuged at 500 × g at 4°C for 5 min before being stored at −80°C

Reactivity with mAbs

Reactivity of the new isolate with a panel of mAbs was compared with that of WNVKUN and WNVNY99 by using a fixed-cell ELISA (11). The mAbs and their characteristics follow: mAb 10C6, anti–nonstructural protein (NS) 1 (reactive with MVEV); mAb 10A1, anti-envelope glycoprotein (anti-E; specific for WNVKUN); mAb 2B2, anti-E (reactive with WNV); mAb 3.1112G, anti-NS1 (reactive with WNV); mAb 5H1, anti-NS5 (strong reaction with WNVKUN strains, weak for WNVNY99, nonreactive with WNV strains from other lineages); mAb 17D7, anti-E (specific for strains of WNV with glycosylated E); mAb 3.101C, anti-E (specific for strains of WNV with unglycosylated E); and the pan–flavivirus-reactive mAbs (i.e., 4G4, anti-NS1; and 4G2, anti-E) (1215; J. Hobson-Peters et al., unpub. data).

Nucleic Acid Sequencing

For sequencing of the whole genome, we used total nucleic acid purified from virus-infected cell culture supernatant as template in 5 RT-PCRs with primers designed to cover the coding regions of any WNV genome (Table 1). RT and amplification were performed by using the SuperScript III One-Step RT-PCR System (Invitrogen, Carlsbad, CA, USA) with primers at 20 μM. RT was performed at 50°C for 30 min, followed by denaturation at 94°C for 2 min. PCR amplification involved 40 cycles (95°C for 30 s, 55°C for 1 min, 68°C for 4.5 min) followed by a final extension at 68°C for 10 min. Reaction products were visualized after electrophoresis on a ethidium bromide–stained 1% agarose gel. Reaction products were purified directly (MinElute PCR Purification Kit; QIAGEN, Valencia, CA, USA) or excised from the gel and cleaned (Gel MinElute PCR Purification Kit; QIAGEN). Purified nucleic acid was sequenced at the Australian Genome Research Facility (Sydney) by using the primers used to generate the PCR product. Each RT-PCR was run 3× and sequenced in both forward and reverse orientation. Sequence data were assembled by using Sequencher software (Gene Codes Corp., Ann Arbor, MI, USA). For subsequent isolates from horses and mosquitos, we used primers designed from the sequence of the WNVNSW2011 genome (Table 1) to amplify and sequence the NS3 and NS5 regions, in which changes had been identified. The same RT-PCR and sequencing methods were used, except that the annealing temperature was 50°C and extension time was 1 min. The nucleic acid sequences were translated and then aligned with WNVNSW2011 and WNVKUN (GenBank accession nos. JN887352 and D00246.1, respectively) by using ClustalW (www.clustal.org).

Primers used for viral RNA amplification and genomic sequencing of WNV isolates from horses and mosquitoes, Australia, 2011*
RT-PCR regionForward primer, 5′ → 3′ (relative genome position†)Reverse primer, 5′ → 3′ (relative genome position†)
Amplification and sequencing of whole genome 
5′ NTR capsidTAGTTCGCCTGTGTGAGCTG (5′ NTR-2)TTGAAAATTCCACAGGAATGG (capsid-1772)
Capsid-NS2AGTGATAGCATTGGGCTCWCA (capsid-1720)ATCTTGAAGGYYGCCATGAG (NS2A-1760)
NS2A-NS3CACTGATGTGTTACGCTATGTCA (NS2A-3678)CAAAGTCCCAATCATCGTTCT (NS3-5807)
NS3-NS5CGGTTTGGTTTGTGCCTAGT (NS3-5687)CCAACTTCACGCAGGATGTA (NS5-9235)
NS5–3′ NTRGACCACTGGCTTGGAAGAAA (NS5-9169)CTGGTTGTGCAGAGCAGAAG (3′ NTR-10955)
Partial sequencing of key regions of genome 
NS3GTGCTGGTAAAACAAGGAGG (NS3-5201)TGTATCCTCTAGCCGCGATG (NS3-5493)
NS5TCGGCCCAGATGATGTG (NS5-9575)CGGCATGGAACCACCAGTGTTC (NS5-9860)

*Primers were designed from available sequences in GenBank to cover the coding regions of any WNV genome. WNV, West Nile virus; RT, reverse transcription; NTR, nontranslated region; NS, nonstructural protein.
†WNVNY99 GenBank accession no. NC_009942.1.

Bioinformatics Analysis

Complete coding regions of selected WNV isolates, representing all lineages and clades and including all complete KUN sequences, were aligned with the WNVNSW2011 sequence as described (16). This alignment was transferred to BioEdit (www.mbio.ncsu.edu/BioEdit/bioedit.html) for manual editing before construction of phylogenetic trees. Maximum-likelihood trees were constructed by using PhyML (17). Trees were rooted by using the Japanese encephalitis virus Nakayama sequence (GenBank accession no. EF571853), which was removed from the final tree for clarity.

Endoglycosidase Digestion

To examine glycosylation of the E protein, viral proteins from cultures of infected C6/36 cells were digested as described (18). Proteins were separated and analyzed by Western blot. Samples were loaded with reducing sodium dodecyl sulfate–polyacrylamide gel electrophoresis buffer (NuPAGE LDS Sample Buffer; Invitrogen) on a 4%–12% NuPAGE Gel (Invitrogen). Electrophoresed proteins were electroblotted onto nitrocellulose paper (Hybond C; GE Healthcare, Little Chalfont, UK) and immunostained with anti-E mAb (11).

Plaque Morphology

We allowed the virus to adsorb to monolayers of Vero 76 cells in 6-well plates for 2 h at 37°C. The cells were overlaid with DMEM containing 0.75% low melting point agarose and 2% FBS. Four days after infection, the cells were fixed with 4% formaldehyde solution and stained with 0.2% crystal violet.

Virulence in Mice

Groups of 10 weanling (18–19 days old) or young adult (4 weeks old) Swiss outbred CD1 mice were injected intraperitoneally with 10-fold dilutions of virus. The mice were monitored for 21 days after injection and euthanized when signs of encephalitis were evident. All animal procedures had received prior approval from The University of Queensland Animal Ethics Committee.

ResultsVirus Isolation and Initial Characterization

Viral RNA was detected by WNV-specific rRT-PCR in fresh brain tissue from 6 of 12 horses showing signs of encephalitis. Viruses were isolated from 4 of these samples; each showed distinct cytopathology in BHK21 and Vero cells. rRT-PCR of the culture fluids and immunoperoxidase staining of the cells with pan–flavivirus-reactive and WNV-specific mAbs confirmed the isolation of a West Nile–like virus. The first isolate was named NSW2011 and designated WNVNSW2011. Eight isolates of WNVNSW2011 were isolated from Culex annulirostris Skuse mosquitoes during the 2011 vector season. Of the 8 isolates, 5 were from mosquitoes collected in the Riverina region of southwestern NSW (Hanwood, 4 isolates; Barren Box, 1 isolate); 2 were from the Murray region in southern NSW (Mathoura, 1 isolate; Moama, 1 isolate); and 1 was collected at Lower Portland in the outer western Sydney region of NSW. No other isolates of WNV were obtained.

Antigenic Analysis of WNV<sub>NSW2011</sub>

To antigenically type WNVNSW2011 in a fixed-cell ELISA (11), we used a panel of mAbs previously shown to differentiate between strains of WNVKUN and other WNVs (11,1315,19,20). The recognition patterns showed that the WNVNSW2011 isolate most closely resembled Australian WNVKUN strains; the WNVKUN-specific mAb 10A1 reacted strongly with prototype WNVKUN and WNVNSW2011 but not with WNVNY99 (Table 2). However, the anti-NS5 mAb 5H1, which is also specific for WNVKUN isolates from Australia (15), failed to react with WNVNSW2011 and WNVNY99, but it bound strongly to WNVKUN. The reaction patterns of mAbs 17D7 and 3.101C, which react specifically with glycosylated and unglycosylated WNV E antigens, respectively (11,14; J. Hobson-Peters et al., unpub. data), indicated that, unlike the E protein of WNVKUN, the E protein of WNVNSW2011 is glycosylated.

Binding pattern of monoclonal antibodies to the viral antigens of 3 WNV strains in fixed-cell ELISA, Australia, 2011*
VirusMonoclonal antibody, by specificity
Pan-flavivirus†
 WNV group
 WNVKUN
 Unglycosylated WNV E protein
 Glycosylated WNV E protein
 MVEV
4G4, anti-NS14G2, anti-E2B2, anti-E3.91D, anti-E10A1, anti-E5H1, anti-NS510C6, anti-NS1
3.101C17D7
WNVNSW2011++ ++ + + 
WNVKUN++ ++ +++  
WNVNY99++ ++  − + 

*WNV, West Nile virus; KUN, Kunjin; E, envelope; MVEV, Murray Valley encephalitis virus; NS, nonstructural protein; NS, nonstructural protein; NSW, New South Wales; + positive; –, negative; NY, New York.
†Prototype WNVKUN strain MRM-61C.
‡North American WNV strain.

To assess the level of antigenic crossreactivity between WNVNSW2011, WNVKUN, and WNVNY99, we assessed neutralization titers for homologous and heterologous viruses in immune serum samples from the following sources: horses infected during the 2011 outbreak, horses infected with WNVKUN in the Northern Territory of Australia several years earlier, and horses infected with WNV in the United States. Convalescent-phase serum samples from WNVNSW2011-immune horses had neutralizing titers similar to those of the homologous virus (WNVNSW2011) and of WNVKUN and WNVNY99 (Table 3). Serum samples from WNVKUN-immune horses from Northern Territory and from WNV-immune animals from the United States showed a similar pattern of cross-neutralization. However, serum samples from horses from Northern Territory and the United States showed slightly less neutralizing efficiency of WNVNSW2011; this was likely due to a higher dose (≈4-fold) of virus in the assay (Table 3). Overall, these results are consistent with those in our previous reports showing a high level of cross-neutralization between WNVKUN and WNVNY99 strains (21,22).

Neutralizing titers of serum samples from WNV–infected horses against 3 WNV strains, Australia, 2011*
Horse serum samples% Inhibition of CPE/growth†
WNVNSW2011, 100 infectious units
 WNVKUN, 26 infectious units
 WNVNY99, 32 infectious units
80‡100§8010080100
Control¶        
1<20<20 <20<20 <20<20
2<20<20 <20<20 <20<20
3<20<20 <20<20 <20<20
4<20<20 <20<20 <20<20
5<20<20 <20<20 <20<20
NSW#        
04640320 1,2801,280 640320
06320160 640640 1,280160
08320320 1,2801,280 640640
28320320 640640 320320
36320160 640640 320640
NT**        
1114738020 640320 160160
10471432080 640640 640640
1109108040 160160 160160
987274040 160160 8080
WNV††        
116040 64040 320320
2320160 1,280640 160160
380160 320320 640640
44020 160160 320320
532080 1,280320 640640
mAb 3.91D‡‡>2,560>2,560 >2,560>2,560 >2,560>2,560

*Determined, as described (14), by microneutralization assay in Vero cells. WNV, West Nile virus; CPE, cytopathic effect; NSW, New South Wales; KUN, Kunjin; NY, New York; NT, Northern Territory; mAb, monoclonal antibody.
†Boldface indicates serum samples with >4-fold difference in titer between virus strains.
‡Determined by using a microscope to assess the level of CPE in each well compared with that in control wells.
§Determined by the absence of viral antigen in the cell monolayer of each well when tested with a WNV-reactive mAb in ELISA.
¶Samples from uninfected horses.
#Samples from horses infected with WNV during the 2011 outbreak in New South Wales, Australia.
**Samples from horses infected with WNVKUN in Northern Territory, Australia.
††Samples from horses infected with WNV in the United States.
‡‡This mAb has potent WNV-neutralizing activity (11).

Nucleotide and Amino Acid Sequence Analysis of WNV<sub>NSW2011</sub>

A comparison of the nucleotide sequence of the complete coding region of the first isolate of WNVNSW2011 with sequences available in GenBank confirmed that WNVNSW2011 was genetically most closely related to Australian WNVKUN isolates (Figure 2). A detailed comparison of deduced amino acid sequences for the entire coding region of WNVNSW2011, WNVKUN, and WNVNY99 further confirmed a closer relationship between WNVNSW2011 and WNVKUN than between WNVNSW2011 and WNVNY99. There was a 42-aa difference (18 nonconserved changes) between WNVNSW2011 and WNVKUN and an 89-aa difference (38 nonconserved changes) between WNVNSW2011 and WNVNY99 (Table A1). At least 2 of the known WNV virulence markers present in WNVNY99 but not in WNVKUN were found in WNVNSW2011 (Table A1). The glycosylation tripeptide (N-Y-S) at residues E154–156, which allows N-linked glycosylation at a conserved site on the E protein, domain I, and is associated with virulence in most WNV strains (23), was present in WNVNSW2011; its presence is consistent with the mAb recognition profile. A phenylalanine residue at aa 653 in NS5, which also is associated with enhanced virulence of WNV strains (24), was present in WNVNSW2011. Because the WNVKUN strain–specific mAb 5H1 did not react with WNVNSW2011, we also examined the predicted amino acid sequence of the NS5 protein that corresponded to the linear epitope previously mapped for 5H1 to residues 41–53 in the methyltransferase domain (15). WNVNSW2011 and WNVNY99 contain a substitution (I→V) at residue 49 that is not contained in WNVKUN, confirming the critical role of this residue for 5H1 binding. Together these data suggest that WNVNSW2011 represents a virulent WNV strain that has emerged in Australia. However, the amino acid substitution in NS3, which is believed to be associated with increased virulence of WNVNY99 in birds in North America (25), was not present in isolate WNVNSW2011. Sequencing of the key regions of the other WNV isolates obtained during this outbreak (3 from horses and 8 from mosquitoes) showed that each was indistinguishable from WNVNSW2011.

Maximum-likelihood tree based on nucleotide sequences of the complete open reading frame of genomes of West Nile virus (WNV) NSW2011 (boldface) and representative strains of WNV from the different lineages and clades. All published complete Kunjin (KUN) virus sequences are included. Bootstrap values are shown on the nodes and are expressed as a percentage of 1,000 replicates. Sequences downloaded from GenBank were WNVRussia88–90, AY277251; WNVRabensburg, AY765264; WNVSarafend, AY688948; WNVUganda, AY532665; WNVIndia, DQ256376; WNVNY99, AF196835; WNV2002, GU827998; WNVKUNV-MRM16, GQ851602; WNVKUNV-MRM61C, AY274504; and WNVKUNV-K6453, GQ851603. NY, New York; NSW, New South Wales. Horizontal branch lengths indicate genetic distance proportional to the scale bar.

In vitro Growth Properties and E Protein Glycosylation Status of WNV<sub>NSW2011</sub>

The average plaque size of WNVNSW2011 (Figure 3, panel A) was 4.2 mm ± 0.5 mm, much closer to WNVNY99 (4.7 mm ± 0.8 mm) than to the prototype WNVKUN (2.8 mm ± 0.4 mm). To confirm the presence of an N-linked glycan on the E protein of WNVNSW2011, we used Western blot to analyze endoglycosidase-digested viral protein. Analysis showed that the E protein of WNVNSW2011 and WNVNY99 migrated slightly faster than the undigested control protein. This result is consistent with N-linked glycosylation (Figure 3, panel B). However, consistent with the lack of a potential glycosylation site on the E protein of most WNVKUN isolates, we found no evidence of N-linked glycosylation for WNVKUN (11,20,26).

Studies of West Nile virus (WNV) properties in cell cultures and mice. A) Plaque morphology of WNVNY99, prototype WNVKUN, and WNVNSW2011 in Vero cells. Cells in 6-well plates were infected with specified virus and overlaid with 0.75% low melting point agarose in Dulbecco modified minimum essential medium (Life Technologies, Carlsbad, CA, USA) containing 2% fetal bovine serum. Four days after infection, the cells were fixed with 4% formaldehyde and stained with 0.2% crystal violet. B) Assessment of envelope (E) protein glycosylation of WNVNSW2011, WNVKUN and WNVNY99 by endoglycosidase digestion (PNGase F; Roche Diagnostics, Basel, Switzerland). Viral proteins in culture supernatant were digested by PNGase F (+) or undigested (−) and then resolved on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The migration rate of the E protein in each sample was determined by Western blot with E glycoprotein–specific monoclonal antibodies. C) Young adult (4 weeks old) or D) weanling (18–19 days old) Swiss outbred mice survival after intraperitoneal injection with 1,000 PFU (adult) or 10 PFU (weanling) of WNVNY99, WNVKUN, or WNVNSW2011. The mice were monitored for 21 days after injection for signs of encephalitis and then euthanized. The differences in virulence in weanling and adult mice between different pairs of viruses were all highly significant, as calculated by log rank Mantel-Cox algorithm with exact p values: for adult mice, WNVNY99 vs. WNVKUN p<0.0001, WNVNY99 vs. WNVNSW2011 p = 0.0001, and WNVKUN vs. WNVNSW2011 p = 0.0012; and for weanling mice, WNVNY99 vs. WNVKUN p<0.0001, WNVNY99 vs. WNVNSW2011 p =0.0004, and WNVKUN vs. WNVNSW2011 p = 0.0006. NY, New York; KUN, Kunjin; NSW, New South Wales.

Neuroinvasive Properties of WNV<sub>NSW2011</sub> in mice

Injection of 18- to 19-day-old (weanling) mice with 10-fold dilutions of virus showed that substantially lower doses of WNVNSW2011 (50% lethal dose [LD50] 0.5 PFU), compared with WNVKUN (LD50 13.4 PFU), induced neurologic signs (Table 4); and the time to disease onset was substantially shorter (Table 4; Figure 3, panel C). In contrast, the LD50 for WNVNY99 (0.1 PFU) was lower than that for WNVNSW2011, and neurologic signs developed more rapidly (Table 4; Figure 3, panel C). Only WNVNY99 and WNVNSW2011 caused a substantial number of deaths among 4-week-old (young adult) mice. Compared with WNVNSW2011, WNVNY99 exhibited a lower LD50 (240 PFU vs. 0.7 PFU, respectively) and a shorter time to death (10.7 days vs. 6.6 days, respectively, at 1,000 PFU) (Table 5; Figure 3, panel C).

Virulence of 3 WNVs in 18- to19-day-old mice after intraperitoneal injection, Australia, 2011*
Virus and dose, PFUNo. mice/no. diedAverage survival time, dLD50
WNVNY99   
10010/106.1 
1010/106.7 
110/106.90.1 PFU
0.15/107.8 
WNVKUN   
1,0009/108.4 
1004/10813.4 PFU
106/1010.2 
13/1012 
WNVNSW2011   
1,00010/107.1 
10010/107.4 
1010/107.70.5 PFU
17/108.3 
0.11/1010 

*WNV, West Nile virus; LD50, dose at which 50% of the mice died; NY, New York; KUN, Kunjin; NSW, New South Wales.

Virulence of 3 WNVs in 4-week-old mice after intraperitoneal injection, Australia, 2011*
Virus and dose, PFUNo. mice/no. diedAverage survival time, dLD50
WNVNY99   
10010/108.3 
1010/108.20.7 PFU
15/108.6 
0.12/1010 
WNVKUN   
1,0000/1021>1,000 PFU
WNVNSW2011   
1,0007/1010.7 
1002/1011240 PFU
103/1010.3 

*WNV, West Nile virus; LD50, dose at which 50% of the mice died; NY, New York; KUN, Kunjin; NSW, New South Wales.

Discussion

It is estimated that at least 1,000 horses were affected during an unprecedented outbreak of encephalitis in southeastern Australia during 2011. The case-fatality rate was 10%–15%, and diseased animals had clinical signs consistent with those observed during a WNV outbreak in the United States. Not only was the Australian outbreak unique and unprecedented in size and disease severity, but its epidemiologic features also differed from those observed previously in Australia. In particular, WNVKUN now has been detected on the eastern seaboard of NSW, close to major urban areas, including the largest 3 cities (Sydney, Newcastle, and Wollongong). This detection occurred despite relatively small mosquito populations in many of these areas, suggesting that the virus is more virulent and probably transmitted more efficiently than other strains between mosquito vectors and mammalian hosts. Characterization of virus isolated from the brain of an animal that died showed a variant strain of WNV most closely related to WNVKUN. Typing of WNVNSW2011 by reactivity with a panel of mAbs indicated the virus was antigenically more similar to the native Australian WNVKUN strains than to exotic WNV strains. However, for WNVNSW2011, the reaction profile of mAbs 17D7 and 3.101C differed from that of the prototype WNVKUN. Similar to WNVNY99 and other virulent strains of WNV, WNVNSW2011 E protein was glycosylated at residue 154. This finding was further confirmed by gene sequencing and endoglycosidase F digestion analysis. Glycosylation of WNV E protein at this site is thought to enhance virus dissemination in the infected host by increasing the efficiency of assembly and release of virus particles from infected cells (27). Previous studies showed that a phenylalanine residue at aa 653 in NS5, observed in WNVNSW2011 and WNVNY99 but not in WNVKUN, is associated with increased resistance to interferon, which may also enhance virulence in the host (24). Virulence studies in weanling and young adult mice clearly demonstrate that WNVNSW2011 is substantially more neuroinvasive than the prototype strain of WNVKUN, which might explain the severity of the 2011 outbreak. However, the association between the identified and perhaps other amino acid changes and increased virulence of WNVNSW2011 in horses and mice will require further confirmation by using site-directed mutagenesis of an infectious cDNA clone.

Another unusual aspect of the 2011 outbreak was the absence of encephalitis caused by WNVKUN in humans. In contrast, several confirmed cases of Murray Valley encephalitis in humans were recorded in southeastern Australia during this time. This absence of disease in humans suggests that ecologic and/or epidemiologic features of the virus transmission cycle, such as small mosquito populations and timely alerts, probably resulted in less exposure of the human population to WNVNSW2011.

The US outbreak of WNV was associated with high mortality among several bird species, particularly American crows (Corvus brachyrhynchos). In contrast, increased mortality among birds of any species was not reported during the 2011 outbreak in southeastern Australia. The lack of disease in birds in Australia supports the hypothesis that the amino acid substitution observed in WNVNY99 (Ala→Pro at aa 249 in NS3) (25) is associated with increased virulence in birds because this change was not present in the WNVNSW2011 isolate. However, this observation should be viewed with some caution because of the species differences between birds in Australia and the United States and because disease was limited or absent when a species of Australian crow (Little Raven [Corvus mellori]) was experimentally infected with WNVNY99 (28).

Taken together, our results show that the WNVNSW2011 isolate is closely related to Australian WNVKUN strains. However, in contrast to the prototype WNVKUN strain (MRM-61C), the new virus has several amino acid substitutions that are likely to be the reason for enhanced virulence in horses. More extensive epidemiologic studies in the field and experimental studies in the laboratory are required to determine the relation of WNVNSW2011 to other currently and previously circulating WNVKUN strains and to confirm which viral proteins and amino acid residues are associated with increased virulence of WNVNSW2011 in horses.

Suggested citation for this article: Frost MJ, Zhang J, Edmonds JH, Prow NA, Gu X, Davis R, et al. Characterization of virulent West Nile Virus Kunjin strain, Australia, 2011. Emerg Infect Dis [serial on the Internet]. 2012 May [date cited]. http://dx.doi.org/10.3201/eid1805.111720

These authors contributed equally to the major technical aspects of this research.

These authors served as joint senior authors.

Acknowledgments

We thank Steven Davis and Richard Bowen for the generous supply of horse serum and Melissa Sanchez and Robert Doms for providing mAb 17D7. We are also grateful to the veterinarians who submitted brain samples from affected horses; without these samples, this isolate would not have been available for study.

The NSW Arbovirus Surveillance and Mosquito Monitoring Program is funded by the NSW Ministry of Health. The work was also supported by the grants to A.A.K. and R.A.H. from the National Health and Medical Research Council of Australia and the Australian Research Council.

Amino acid differences between WNV prototype Kunjin MRM61C, NY99, and NSW11 strains*
Polyprotein and aa position in polyprotein (position in individual protein)WNV strain (GenBank accession no.)
No. aa differences†
MRM61C AY274504.1)NY99 4132 (HQ596519)NSW2011 (JN887352)
C    
28TII 
41RKR2(0):2(2):4(2)
44TII 
71SGS 
PrM    
108(3)KKR 
113(8)FVF 
114(9)MMT 
120(15)GSG 
143(38)TTA6(5):10(7):7(3)
145(40)IVI 
158(53)IIT 
166(61)HYY 
195(90)LSL 
228(123)SAS 
279(174)AVT 
E    
334(44)KKR 
357(67)EDE 
379(89)SAS 
383(93)KRK 
416(126)TIT 
446(156)FSS 
449(159)TVT3(1):15(7):14(8)
452(162)ATA 
489(199)SNS 
519(229)EGE 
521(231)NTN 
600(310)RKR 
628(338)IVI 
655(365)SAS 
700(410)ATA 
773(483)LLF 
NS1    
837(46)IIV 
879(88)IVI 
893(102)RKR 
926(135)IVI 
937(146)QQR 
961(170)RKR 
997(206)FLL5(2):12(2):9(0)
1027(236)VIV 
1036(245)IVI 
1055(264)SNS 
1081(290)SSN 
1089(298)TTI 
1118(327)NSN 
NS2A    
1255(112)AVV 
1262(119)YHY 
1272(129)MII 
1311(168)CRC5(0):5(2):6(2)
1326(183)IIV 
1330(187)IIM 
1355(212)FLF 
1366(223)VII 
NS2B    
1400(26)IIM 
1438(64)GSS2(1):2(0):2(1)
1477(103)AVA 
1520(15)RKK 
1615(110)QRQ 
1680(174)VIV 
1754(249)APA 
1809(303)RKR 
1836(331)ASA3(0):12(6):11(6)
1861(356)ITI 
1887(382)KKR 
1889(383)IVI 
1912(406)VIV 
1970(465)NNS 
1991(486)CFC 
2115(610)SAS 
NS4A    
2129(5)FLF 
2179(55)AAT 
2209(85)VAV 
2213(89)AVA2(2):5(1):5(1)
2265(141)LML 
2269(145)GSS 
NS4B    
2288(15)GSG 
2296(23)TVI 
2302(29)IMI 
2324(50)VVF 
2334(60)TTM7(4):11(5):7(3)
2368(94)AAS 
2387(114)SAS 
2389(116)TTA 
2449(176)VIV 
2450(177)MMI 
2459(186)LVL 
2518(245)VII 
NS5    
2553(25)ITI 
2561(33)TIT 
2575(47)RGR 
2577(48)IVV 
2629(101)RRK 
2690(162)LIL 
2705(177)KRK7(3):15(7):12(8)
2711(183)VVI 
2775(247)KRK 
2840(311)EDE 
3059(531)RKR 
3088(560)DDN 
3181(653)SFF 
3247(719)TTI 
3259(731)TVT 
3405(877)SAS 
3427(899)LLF 
Total changes   42(18):89(38):77(34

*WNV, West Nile virus; NY, New York; NSW, New South Wales; C, core; NS, nonstructural; PrM, precursor membrane; E, envelope.
†No. aa differences (nonconservative changes in parentheses) for WNVKUN vs. WNVNSW2011:WNVNY99 vs. WNVNSW2011:WNVKUN vs. WNVNY99.

Dr Frost is a scientist engaged in research to characterize new and emerging viral pathogens among animals. She also has a special interest in the application of molecular methods for the diagnosis of viral diseases.

ReferencesRussell RC, Dwyer DE. Arboviruses associated with human disease in Australia. Microbes Infect. 2000;2:1693704 10.1016/S1286-4579(00)01324-111137043Mackenzie JS, Lindsay MD, Coelen RJ, Broom AK, Hall RA, Smith DW. Arboviruses causing human disease in the Australasian zoogeographic region. Arch Virol. 1994;136:44767 10.1007/BF013210748031248Hall RA, Broom AK, Smith DW, Mackenzie JS. The ecology and epidemiology of Kunjin virus. Curr Top Microbiol Immunol. 2002;267:25369 10.1007/978-3-642-59403-8_1312082993Badman RT, Campbell J, Aldred J. Arbovirus infection in horses—Victoria 1984. Commun Dis Intell. 1984;17:56Ostlund EN, Crom RL, Pedersen DD, Johnson DJ, Williams WO, Schmitt BJ. Equine West Nile encephalitis, United States. Emerg Infect Dis. 2001;7:6659 10.3201/eid0704.01041211589171Russell RC, Doggett SL, Clancy J, Haniotis J, Patsouris K, Hueston L, Arbovirus and vector surveillance in NSW, 1997–2000. Arbovirus Research in Australia. 2001;8:30413Khromykh AA, Sedlak PL, Westaway EG. Complementation analysis of the flavivirus Kunjin NS5 gene reveals an essential role for translation of its N-terminal half in RNA replication. J Virol. 1999;73:92475510516033Audsley M, Edmonds J, Liu W, Mokhonov V, Mokhonova E, Melian EB, Virulence determinants between New York 99 and Kunjin strains of West Nile virus. Virology. 2011;414:6373 10.1016/j.virol.2011.03.00821477835Hall RA, Broom AK, Hartnett AC, Howard MJ, Mackenzie JS. Immunodominant epitopes on the NS1 protein of MVE and KUN viruses serve as targets for a blocking ELISA to detect virus-specific antibodies in sentinel animal serum. J Virol Methods. 1995;51:20110 10.1016/0166-0934(94)00105-P7738140Eiden M, Vina-Rodriguez A, Hoffmann B, Ziegler U, Groschup M. Two new real-time quantitative reverse transcription polymerase chain reaction assays with unique target sites for the specific and sensitive detection of lineages 1 and 2 West Nile virus strains. J Vet Diagn Invest. 2010;22:74853 10.1177/10406387100220051520807934Adams SC, Broom AK, Sammels LM, Hartnett AC, Howard MJ, Coelen RJ, Glycosylation and antigenic variation among Kunjin virus isolates. Virology. 1995;206:4956 10.1016/S0042-6822(95)80018-27530394Hall RA, Kay BH, Burgess GW, Clancy P, Fanning ID. Epitope analysis of the envelope and non-structural glycoproteins of Murray Valley encephalitis virus. J Gen Virol. 1990;71:292330 10.1099/0022-1317-71-12-29231703213Hall RA, Burgess GW, Kay BH, Clancy P. Monoclonal antibodies to Kunjin and Kokobera viruses. Immunol Cell Biol. 1991;69:479 10.1038/icb.1991.71651286Hobson-Peters J, Toye P, Sanchez MD, Bossart KN, Wang LF, Clark DC, A glycosylated peptide in the West Nile virus envelope protein is immunogenic during equine infection. J Gen Virol. 2008;89:306372 10.1099/vir.0.2008/003731-019008394Hall RA, Tan SE, Selisko B, Slade R, Hobson-Peters J, Canard B, Monoclonal antibodies to the West Nile virus NS5 protein map to linear and conformational epitopes in the methyltransferase and polymerase domains. J Gen Virol. 2009;90:291222 10.1099/vir.0.013805-019710254May FJ, Davis CT, Tesh RB, Barrett AD. Phylogeography of West Nile virus: from the cradle of evolution in Africa to Eurasia, Australia, and the Americas. J Virol. 2011;85:296474 10.1128/JVI.01963-1021159871Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696704 10.1080/1063515039023552014530136Prow NA, May FJ, Westlake DJ, Hurrelbrink RJ, Biron RM, Leung JY, Determinants of attenuation in the envelope protein of the flavivirus Alfuy. J Gen Virol. 2011;92:228696 10.1099/vir.0.034793-021733886Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286:23337 10.1126/science.286.5448.233310600742Scherret JH, Poidinger M, Mackenzie JS, Broom AK, Deubel V, Lipkin WI, The relationships between West Nile and Kunjin viruses. Emerg Infect Dis. 2001;7:697705 10.3201/eid0704.01041811585535Hall RA, Nisbet DJ, Pham KB, Pyke AT, Smith GA, Khromykh AA. DNA vaccine coding for the full-length infectious Kunjin virus RNA protects mice against the New York strain of West Nile virus. Proc Natl Acad Sci U S A. 2003;100:104604 10.1073/pnas.183427010012917491Chang DC, Liu WJ, Anraku I, Clark DC, Pollitt CC, Suhrbier A, Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus. Nat Biotechnol. 2008;26:5717 10.1038/nbt140018425125Beasley DW, Li L, Suderman MT, Barrett AD. Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology. 2002;296:1723 10.1006/viro.2002.137212036314Laurent-Rolle M, Boer EF, Lubick KJ, Wolfinbarger JB, Carmody AB, Rockx B, The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol. 2010;84:350315 10.1128/JVI.01161-0920106931Brault AC, Huang CY, Langevin SA, Kinney RM, Bowen RA, Ramey WN, A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet. 2007;39:11626 10.1038/ng209717694056Wright PJ. Envelope protein of the flavivirus Kunjin is apparently not glycosylated. J Gen Virol. 1982;59:2938 10.1099/0022-1317-59-1-296279774Hanna SL, Pierson TC, Sanchez MD, Ahmed AA, Murtadha MM, Doms RW. N-linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity. J Virol. 2005;79:1326274 10.1128/JVI.79.21.13262-13274.200516227249Bingham J, Lunt RA, Green DJ, Davies KR, Stevens V, Wong FY. Experimental studies of the role of the little raven (Corvus mellori) in surveillance for West Nile virus in Australia. Aust Vet J. 2010;88:20410 10.1111/j.1751-0813.2010.00582.x20553567