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I ABSTRACT 

The research described in this report is the first phase of 

a comprehensive orogram for the development of a characterization 

for the structural properties of rock masses. The mathematical 

expression of the characterization is especially tailored for use 
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in conjunction with modern structural analysis procedures. The 

objective of the first phase of the project is to determine the 

feasibility of representing the structural prooerties of rock masses 

in terms of the analysis of an aporooriate "representative volume": 

the results of this investigation are described in detail in the 

body of the report. 

The current state-of-the-art concerninq the understandino 

and description of the fundamental mechanisms of rock behavior 

are determined from a survey of existinq literature. The 

development of a representative volume that captures the most 

important of these mechanisms is described. In order not to 

unduly obscure the fundamental aspects of this develooment, the 

mathematical analysis of the renresentative volume is limited to 

plane strain conditions. 

A subroutine for the numerical evaluation of the proposed 

model (i.e., the analysis of the representative volume) is presented. 

The steps necessary for the incorporation of the subroutine directly 

into existing two-dimensional finite element structural analysis 

programs are described. 

Comparisons between the predictions of the proposed 

characterization and published results of simple laboratory tests 



are presented and discussed. Finally recommendations are given 

concerning suggested improvements of the model and the extension 

of it to the general three-dimensional case. 
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II INTRODUCTION 

A. MOTIVATION AND SCOPE OF STUDY: 

The assessment of the degree of safety, the environmental imoact, 

and the effectiveness of proposed and existinq mininq operations often 

require a quantitative understandinq of the structural behavior of 

certain rock configurations. In such studies it is either the 

reliability over and against rock failure (safety and environmental 

impact studies) or the precipitation of rock failure (studies of the 

feasibility of proposed mining operations, e.g., cavinq) which. is of 

interest. Hence, when the term "structural analysis" is used, the 

prediction of structural behavior out to and includina failure, is meant. 

The successful performance of a structural analysis requires: 

(a) physical and mathematical descriptions of the qeometry of 

the configuration and the environmental history to which it 

is subjected, e.g., loads, temperature, sequence of mining 

operations, etc., 

(b) mathematical models for the structural response and failure 

characteristics of the constituent materials (e.o., rocks, 

shoring, etc.), and 

(c) an analysis procedure that is caoable of predicting the 

behavior of the structure given the information from the 

above two items. 

A consideration of the first item is beyond the scone of the 

present study. The development of the finite element structural 

analysis procedure has gone a long way towards providinq a general 

analysis tool (satisfaction of the third item). Unfortunately, for 



many rock structures, the capabilities and potential of the finite 

element method can not be fully realized because of the deficiencies 
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in the mathematical descriptions of the structural response and failure 

characteristics of the constituent materials; it is to this problem 

that this study is addressed. 

There have, of course, been numerous experimental and theoretical 

studies conducted which relate to the problem of the characterization 

of the structural properties of rock (references to a number of these 

studies are included in other sections of this report). Unfortunately, 

these studies have not lead to the comprehensive description of the 

material properties of rock masses that is required for most structural 

analyses of mine related rock structures. The inadequacy of available 

characterizations is well stated in the following quotes from 

Howe-73* and Brace-64, i.e., "Yule marble .... does not conform to 

any published constitutive equation cited in the literature to date" 

and "After trying all possible failure or yield conditions for metals, 

as well as failure conditions originally conceived for brittle 

materials, most investigators have concluded that no existing failure 

law holds for rocks in general. or even for a single rock under 

different conditions of loading." The seeming inadequacy of the 

experimental information, and the mathematical characterizations 

generated to date, are not due to the ineptness of the investigators 

but rather due to the exceptional complexity of the problem. Most 

* The references referred to in the main body of the report are 
listed in Section VII. The references are listed by the first 
author's last name followed by a hyphen and the year of publication. 



past studies were of necessity limited in scope to the consideration 

of only a few aspects of the overall problem, and in addition many 
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of the studies were conducted before a full appreciation was develooed 

for the extent and completeness of the material characterization 

needed for modern structural analysis purposes. 

The purpose of the present study is to initiate a program whose 

ultimate goal is the development of a characterization of the structural 

response and failure properties of rock masses that may be directly 

incorporated into available advanced finite element analysis procedures; 

the results to date of this research are described in the main body of 

this report. 

A secondary and independent phase of this project is a study of 

the fundamental mechanisms of rock behavior in terms of the response 

of a particular mathematical model. This research represents a portion 

of the doctoral research of one of the student Research Assistants 

employed on the project. A summary of this phase of the research, 

given in Appendix C, was written independently of the main body of the 

report. Thus there is no cross referencing and there may be some 

duplication. When the thesis is completed copies will be sent to 

the Bureau of Mines. 

B. FORM AND SCOPE OF DESIRED CHARACTERIZATION: 

The required form and scope of a characterization of the structural 

properties of rock is determined by the physical situations to be 

analyzed and the analysis procedure to be used. The characterization 

must accurately predict the structural behavior of the rock for all 

stress and strain histories that will be experienced by all parts of 
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the several rock structures to be analyzed. Such a precise definition 

of the limits of material behavior for which the characterization 

needs to be valid are impossible to determine (if prior to performance 

of an analysis the stress and strain histories were known there would, 

of course, be no need for the analysis). Thus practically what must be 

done is to: 

(a) provide a characterization for all anticipated stress and 

strain histories, and 

(b) be prepared to extend the characterization and repeat the 

analysis if certain stress and strain histories are predicted 

that were not accounted for by the original characterization. 
I 

When possible, in order to avoid the repetitive effort suggested 

by 11 b11
, a more general characterization than suggested by 11 a11 should be 

initially provided. Because of the near impossibility of trying to 

anticipate all possible stress and strain histories which might arise in 

the analysis of a given complicated configuration, and because of the 

equally difficult task of trying to anticipate all possible future 

applications of the characterization, it is desirable, if possible, 

to have the characterization yield reasonable and consistent results 

for all stress and strain histories. Thus in the development initiated 

in this study, it is required of the characterization that it should 

yield reasonable predictions for all stress and strain histories. Due 

to the absence of experimental evidence it is. however, recognized 

that for certain states the characterization will at best represent 

extrapolations based upon an intuitive appreciation and understanding 

of the behavior of rock masses, and thus for these situations only 



qualitatively correct results can be expected. Fortunately the 

preponderance of experimental evidence has been gathered for those 

states which most frequently occur in real situations, and thus the 

characterization should give good quantitative agreement for the 

dominant stress and strain states. 
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The importance of accounting for multi-axial stress and strain 

states, and for loading, unloading, reloading and non-proportionate 

states needs to be emphasized. The multi-axial nature (in contrast to 

the simple states often used in laboratory tests) of the stress and 

strain states that occur in complicated structural configurations is 

obvious. Less obvious, however, is the fact that the internal stresses 

may experience unloading, reloading and non-proportionate loading 

histories even though such is not the case for the external loads. 

This fact can be easily illustrated by a simple example. Consider the 

"elastic-perfectly plastic" beam (rectangular cross-section) shown in 

Figure la; it is to be noted that at time t 1 yielding begins at the 

left-hand support, and at time t 2 two plastic hinges have developed. 

Comparing Figures lb and le, it is seen that although the external 

load is monotonically increasing some internal material elements 

successively experience loading, unloading and load reversal. In 

addition, comparing Figures le and lf it is seen that, although the 

external loading is proportionate for some points within the body, 

the ratio of the internal stress components change during the loading 

history and thus the principal stress directions change. It is thus 

apparent, that for all but the simplest structures, that if such 

phenomena as nonlinear properties, local failure (e.g., cracking), 
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yielding, etc., occur, that even though the history of the applied 

loading may be simple, the history of the internal stresses and 

strains will usually be very complex. 

The most convenient form in which to express a material 

characterization for use in conjunction with modern analysis 

procedures is now described. For a particular spatial location in 

the structure and a particular point in the time history (tN_1), 

denote the stress and strain components as [cr]N-l and [E]N-l (for 

three-dimensions [cr] has the six components ax, cry, crz, Txy' Txz' 

Tyz)*. Denote the change in the strain during the next increment of 

time ~tN (i.e., tN = tN-l +~tN) as [~E]N; the accompanying change 

in the stress state [6cr]N is expressed in the form: 

( 1) 

In general, the matrices [C]N and [l]N are not only functions of 

[cr] and [E] fort= 0 + tN-l but also of [~E]N and [6cr]N and thus 

will need to be established by iteration. It is to be noted that 

even though the material may be initially isotropic (and thus several 

of the components in [cJ1 are zero, etc.) for subsequent increments 

the material, in general, exhibits anisotropic incremental properties 

due to damage induced anisotropy. The presence of non-zero terms 

for all the coefficients of the [C]N matrix, the presence of the [L]N 

* Throughout this development the stress components are limited to 
the usual components, i.e., normal and shear components; that is 
multi-polar components (e.g., couple stresses) are ignored. It 
is, however, the authors' opinion that they may be significant for 
some composite materials; their inclusion in modern structural 
analysis procedures is, however, not sufficiently advanced to 
warrant their consideration at this time. 

7 



matrix, and the fact that these matrices will, in general, vary 

from point to point within the body (even though the body might 

have been initially homogeneous) offers no particular difficulties 

for general nonlinear finite element analysis procedures. One 

feature which can, however, lead to difficulties is that after 

the initial loading stages (i.e., once the material begins to 

experience damage) the [C]N matrix may not be symmetric. Because, 
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in general, finite element procedures for structural problems have 

been based upon the assumed symmetry of [C]N, and because the 

modifications necessary to permit [C]N to be non-symmetric requires 

some effort and leads to a very considerable increase in computational 

cost, special consideration is now given to this phenomenon. 

The matrix [C]N of equ. (1) may be written in the form: 

Where the two matrices on the right are defined as follows (the T 

denotes matrix transpose): 

Now equ. (1) is written in the form*: 

(2) 

* If it is desired that the incremental properties be "positive 
definite" a similar modification may be performed to insure that 
such be the case. In other inelastic studies (e.g., see 
Hossain-74) it has been found that such a step may greatly improve 
the convergence characteristics. 
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Where 

It is to be recalled that, in general, [C]N and [L]N must be 

established in an iterative fashion; if one is dealing with iteration 
11 m11 of this procedure then the value of [t.e:]N used in calculating 

[ls]N is the strain increment estimated from the m-1 iteration. The 

use for analysis purposes of equ. (2) in place of equ. (1) means, 

of course, that one can continue to take advantage of symmetry in 

solving the set of simultaneous equations that result from the finite 

element method; the disadvantage is that the convergence of the 

iteration procedure is slowed; however the overall computational 

efficiency of the program should be improved (as compared to solving 

the non-symmetric equations directly). 

C. OUTLINE OF CHARACTERIZATION PROCEDURE: 

The development of a characterization of the structural properties 

of rock proceeds from the following assessment of the current state 

of the art: 

(a) There exists a very large quantity of published experimental 

evidence concerning the structural behavior of rock and, 

based upon this experimental evidence, a number of theories 

have been advanced to explain the various fundamental 

mechanisms involved in rock behavior. While this evidence 

and the resulting theories are sometimes contradictory and 

do not cover many important stress and strain histories, 

they can be used to construct a fairly acceptable picture of 
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the phenomenalogical aspects of rock behavior. 

(b) Based upon the above mentioned evidence a few mathematical 

characterizations of rock behavior have been prooosed. It 

is the authors' judgment, however, that none of the 

characterizations proposed to date are adequate. In the 

authors' opinion, this inadequacy is due to the fact that 

they were not constructed with the needs of modern finite 

element procedures in mind, and thus, have not yielded 

characterizations which are valid and reasonable for many 

stress and strain histories encountered in finite element 

analyses of complicated rock structures. 

It is the authors' opinion that the development of a general 

characterization of rock behavior should proceed as follows: 

(a) From a careful review of existing experimental evidence, 

isolate the dominant characteristics of rock behavior. 

(b) tor each of the characteristics identified in 11 a11
, select 

from the several proposed theoretical explanations the one 

which appears to be most substantiated by experimental evidence. 

(c) Develop a mathematical model based upon the fundamental 

mechanisms described in the previous step, and which yields· 

consistent and rea~onable behavior for those states for 

which experimental evidence is lacking. Care must be taken 

that this mathematical description is consistent with the 

laws of mechanics. 

(d) Express the characterization developed in the previous step 

in such a form that it may, with little difficulty, be 



directly incorporated into more advanced finite element 

structural analysis programs. 

(e) Utilize the results of the previous step, in conjunction 

with an existing finite element program, for the analysis 

of rock structures for which experimental measurements are 

available. Such comparisons might lead to the recognition 

of shortcomings and inaccuracies in the characterization 

which would then be rectified. 
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Steps (a), (b) and (c) will most surely bring to light many areas 

for which additional experimental evidence is needed. In addition, 

steps (c) and (d) will point out theoretical and mathematical 

deficiencies which need to be remedied. The final step of this 

procedure would be to suggest experimental and theoretical programs to 

remove these deficiencies. 

In the remainder of this report the progress made towards the 

satisfaction of the above outlined goal is described. 



III CHARACTERIZATION OF THE STRUCTURAL PROPERTIES 

OF ROCK 
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When discussing the material properties of rock, the level of 

observation must be carefully specified, i.e., properties for several 

different levels of observation can be distinguished. The levels of 

interest for this study are: 

(a) microscopic - the level of observation that considers 

individual grains, microscopic cracks, voids, etc., 

(b) macroscopic - the level of observation concerned with small 

laboratory samples, and 

(c) structural - the level of observation concerned with the 

gross structural properties of relatively large rock masses. 

Because at times, one is required to perform structural analyses 

of laboratory samples, a clear distinction can not always be made 

between the last two categories. 

A. DOMINANT CHARACTERISTICS OF ROCK BEHAVIOR 

l. Response and Failure Mechanisms*: 

Initial state: In the analysis of a rock structure, interest is 

focused upon how the structural material (i.e., the rock as it exists 

at the beginning of the period covered by the analysis) responds to 

the environmental changes imposed upon the structure (e.g., tunneling 

of neighboring rock, etc.). Thus, a distinction must be made between 

* The papers referred to in this section are not intended to give a 
complete listing of the available literature on any one phenomenon 
but rather represent the references that the authors found to be 
particularly enlightening; additional references are to be found 
in Appendix E. 



13 

damage (e.g., cracks) induced in the rock prior to the period of time 

considered by the analysis, and the damage induced during the period 

accounted for by the analysis (this period is called the "service 

period"). In theory, it is possible to eliminate, to some degree, 

this rather artificial distinction by extending the analysis back to 

include the geological history of the rock, but in practice this is 

not feasible. 

Thus, what is called the initial or virgin state of the rock 

is usually the end result of a long and complicated history of stress 

and strain; thus, the importance and necessity of being able to 

describe the initial state of the material (including the stress, 

strain and damage states) is apparent. 

Porosity and discontinuities: There appears to be three distinct 

types of discontinuities associated with rock masses and/or samples, 

i.e., 

(a) a system of small, generally, spherical voids existing 

since the formation of the rock, hereinafter called 

pores, 

(b) microscopic cracks, often penny-like, which open when a 

rock sample is quarried from the parent formation (due 

to the relieving of the naturally existing compressive 

stresses) and, 

(c) macroscopic failure or weakness planes (these planes will 

be discussed in the following section). 

For rock samples the second type of porosity appears to be, in 

general, larger than the first, it however disappears rapidly upon 



compressive loading. These penny-like cracks are the probable cause 

of the nonlinearities observed in the initial stages of loading of 

laboratory samples (Handin-63, Brace-64, Murrell-65, Walsh-65, 

Brady-70); their closing appears to be essentially an elastic 

phenomenon. Because opening of the microscopic cracks occurs 

during the removal of samples from the parent rock, the contribution 

of their closures to the behavior of intact rock is questionable 

(Walsh-65, Bieniawski-67b). 

The first two types of discontinuities are, in general, 

distributed and oriented in a rather homogeneous isotropic manner 

(Walsh-65). 

Macroscopic and structural planes of weakness and fracture: Most 

in situ rock is permeated by systems of approximately parallel 

natural (i.e., pre-existing} planes of weakness or fracture. Such 

systems may be due to bedding, or stress induced fracture caused by 

cooling, faulting, folding, etc. For a given rock, the number of 
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such systems appears to seldom exceed four (often there are three 

approximately mutually perpendicular sets) (Pomeroy-71). In addition, 

stresses induced during the "service period" of a rock structure (due 

to loads, etc.) may produce additional systems of fracture planes. 

The natural fracture planes may initially be open, filled (with 

some foreign material, e.g., clay), or closed; their initial state 

will, of course, highly influence their subsequent behavior, see 

Goodman-72 for an excellent discussion of this topic. Open and 

filled joints contribute to the behavior of the rock in an anisotropic 

manner, i.e., their effects are highly dependent upon the direction 



of applied loads. When stress induced sliding takes place along 

a closed joint system dilatation also takes place, i.e., the joints 

tend to separate. This separation appears to be caused by the 
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riding of local asperities over one another. Due to differences in 

initial smoothness, this dilatation appears to be more pronounced for 

tensile induced failure planes than shear induced fracture planes. 

The magnitude of the dilatation is also dependent upon the magnitude 

of the normal stress which acts across the sliding planes (a large 

normal stress tending to shear off the asperities and reduce the 

friction). 

The post maximum strength region of rock behavior would appear 

to be a region of large scale sliding and/or separation occuring along 

well established fracture planes. Closed fracture planes continue to 

exhibit a stiffness which appears to be a result of sliding friction 

(Jaeger-60, Herget-70, Hobbs-70), and thus the rock exhibits a 

residual strength even though "local fracture" has taken place 

(Hobbs-70). Continued movement along fracture planes appears to have 

a modifying effect upon the values of the friction and cohesion 

parameters. 

Planes of initial weakness require a certain induced stress 

state before they fracture, subsequently they can be classified as 

fracture planes. 

Microscopic cracks: As was noted previously (see comment on porosity 

and discontinuities) most in situ rock is permeated by microscopic 

cracks (normally closed for in situ conditions). As additional stress 

(this stress may add to or subtract from the in situ stress) is imposed 



upon the rock, the behavior of these cracks, their growth, and 

the formation of additional cracks appear to be major determining 

factors in the phenomenological behavior of rock (Bieniawski-67, 

Brady-69, Brady-70). 

It has been suggested that relative sliding of opposing 

faces of microscopic cracks accounts for the small hysteresis 

loops often observed in, what otherwise appears to be an 
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essentially linear elastic response for rock (i.e., when the stresses 

are substantially less than the ultimate strength of the rock) 

(Walsh-65, Bieniawski-67b). The formation of new cracks, the stable 

propagation of existing cracks (i.e., requiring energy input from 

surroundings) and the linking of cracks would appear to account 

for the highly nonlinear inelastic response in the region near the 

ultimate strength of the rock. Because crack propagation is a time 

related phenomenon, the behavior of the rock in this region is 

rate dependent, and thus the ultimate strength may be highly rate 

dependent (Bieniawski-67c, Brady-69). Because the principal stress 

directions influence the orientations of new cracks developed during 

this phase of behavior, damage induced anisotropy is experienced. 

This phase of rock behavior marks a transition between microscopic 

cracks and a macroscopic system (i.e., a stress induced macroscopic 

system which is in addition to any pre-existing systems) (Handin-63, 

Brace-64, Bieniawski-67b). As relative motions of the opposing 

crack faces take place (sliding or separation) the cracks dilate, 

and thus the material tends to dilate (positive increase in volume) 

rapidly even though the mean pressure (average of principal stresses) 



may be compressive (Handin-63, Brace-64, Goodman-72). The 

explanation for the sliding induced dilatation of closed cracks 

is given in the previous section. 

Unstable (requires no energy input from its surrounding) 

propagation and linking up of cracks would appear to result in the 

catastrophically rapid loss in strength which is observed beyond 

the ultimate load carrying capacity region. 

Finally there is evidence that if the mean pressure is high 

enough the rapid crack propagation process is arrested in favor of 

a ductile type of dislocation behavior (Handin-63, Murrell-65, 

Bieniawski-67). 
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Initial orthotropic properties: Due to the non-isotropic conditions 

that often prevail during their formation (i.e., deposition of 

sedimentary rocks, unequal stresses during the formation of 

metamorphic rocks, etc.), rocks may possess initially orthotropic 

microscopic material properties. This initial orthotropy is to be 

distinguished from that induced by subsequent damage or the large 

scale orthotropy resulting from macroscopic or structural planes of 

weakness or fracture (Jaeger-60). 

Pore pressure: Water contained within the pores of rocks can have a 

significant effect upon structural response characteristics. When 

this water is under pressure it effectively reduces the magnitude 

of the normal stresses by the value of the fluid pressure (Handin-63, 

Murrell-65). 

Evidence concerning whether or not the presence of water has an 

effect upon the value of friction for fracture and weakness planes 
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appears to be somewhat contradictory (Handin-63, Goodman-70). 

Material variability: (Evans-58, Brace-64, Brady-69, Yamaguchi-70, 

Kostak-71) Due to the nature of the formation process and their 

composite nature, rocks are highly variable (i.e., inhomogeneous) 

materials. Inhomogeneities which occur on a very large scale may be 

accounted for by treating the rock as inhomogeneous at the structural 

level; inhomogeneities which occur on a small scale must, however, 

be considered as part of the intrinsic material properties. As a 

result of microscopic and macroscopic variability, long before the 

final structural failure of rock, it is permeated with local 

failures (e.g., cracks). 

In addition, as a consequence of material variability rocks 

exhibit "size effects" (Evans-58, Brady-70, Hoagland-73) which must 

be accounted for when attempting to correlate the results of laboratory 

and field tests (in laboratory studies the variability is often 

suppressed by carefully selecting samples from the most sound regions 

of rock). The importance of accounting for size effects when 

describing material properties to be used in finite element analyses 

with variable element sizes is not well understood and needs further 

study. 

Fragmented phase: During the fracturing process a certain amount of 

pulverized material is formed (Handin-63, Brace-64) in the crack. 

Initially open cracks often contain foreign material (e.g., soil) 

which may be treated as an initial fragmented phase. 

Temperature dependence: In general, temperature affects the structural 

properties of rock tending to enhance ductility and reduce peak 



strength (Murrell -65). For many rocks these effects are small and 

relatively unimportant for temperatures below 300°C. 
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2. Some Qualitative Observations of Structural Response Characteristics: 

The structural behavior of a rock mass is governed by the 

interactive response of pre-existing planes of weakness and fracture, 

and the macroscopic properties of the rock itself. 

A qualitative discussion of the behavior of pre-existing planes 

of weakness and fracture is given in the previous section. 

The structural behavior of rock (excluding pre-existing planes 

of weakness and fracture) can be qualitatively described in terms of 

several zones of behavior (a similar description for concrete is 

given by Romstad-74). These zones are illustrated for a simple 

uniaxial test of marble given by Wawersik-70, see Figure 2; it 

must be remembered that uniaxial stress-strain behavior is merely one 

small part of the overall spectrum of behavior. Zone I is very nearly 

elastic and is nearly linear for uniaxial tension. It is nonlinear 

· for small uniaxial compressive stresses followed by an essentially 

linear region (the nonlinearity, for small compressive stress states, 

is due to the closing of pre-existing microscopic cracks as described 

earlier). Although rock is nearly elastic in this zone, unloading 

does exhibit a small hysteresis loop which is attributable to a certain 

amount of frictional sliding between opposing faces of the pre-existing 

cracks. There appears to be little damage done by loading in this 

zone and thus repeated unloading and reloading exhibit little 

deviation from the original loading path. 

All zones beyond the first are characterized by a tendency for 
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Figure 2 Typical Stress-strain Curve for Intact Rock. 
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volume increase even though the mean stress may be compressive. 

Zone II is the region from the end of Zone I to maximum strength 

where, for relatively low mean pressures, microscopic cracks 

propagate and coalesce. For large confining pressures the deformation 

experienced in this region may be much larger and more ductile in 

nature (Bieniawski-67b}. It is a rate sensitive region; the 

slower the strain rate the lower the ultimate stress capacity. In 

this zone considerable damage is done to the material (often 

concentrated in a damage zone surrounding an advancing major crack 

(Hoagland-73}} of an anisotropic nature. Thus any unloading from 

this region generally yields a large hysteresis loop and upon 

subsequent reloading the response is anisotropic in nature. 

The third behavioral zone covers a post peak strength region 

characterised by unstable crack propagation and a rapidly 

descending stress-strain curve. For Zone III the type of testing 

machine and the sample shape has a significant effect upon the 

measured results of laboratory tests (Brace-64, Bieniawski-67b, 

Kupfer-69, Hoagland-73}. Thus there is no general agreement as to 

the precise nature of the response in this zone (contrast 

Bieniawski-67b and Wawersik-70). The authors tend to favor the 

interpretation of Wawersik-70, i.e., that the behavior in this zone 

is for many rocks catastrophic. 

The fourth zone is a residual strength region for compressive 

stress states; the quantitative laboratory results for this zone 

may not be meaningful due to the presence of end effects, etc. 

However, this zone has a physical basis since even a pile of rubble 



has residual strength for certain stress states (Gardner-69). 

For non-proportionate loadings the above described zones may 

lose their identity and be of little value in describing the 

behavior of rock. The loss of orderliness, as caused by more 

complicated stress and strain histories, in the response of rocks 

once they have entered Zones II, III or IV may be appreciated by 

consideration of the following example. Consider the several 

possible subsequent behaviors of a rock which has experienced a 

tensile fracture due to a tensile strain in the x direction and 

contrast the different responses to: 

(a) a further increase in the tensile strain in the x 

direction, 

(b) a reversal of strain so as to close the crack and then 

yield a compressive strain in the x direction, and 

(c) loading of the specimen in they direction, etc. 

B. DEVELOPMENT OF MATHEMATICAL MODEL TO CHARACTERIZE THE STRUCTURAL 

BEHAV.IOR OF ROCK 

1. Representative Volume: 

The characterization of the mechanical properties of composite 
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! materials has traditionally been based upon the concept of the 
I I 

"representative volume" (e.g., see Herrmann-63b). The representative 

volume is a hypothetical element of idealized material whose 

structural properties are an approximation to the average properties 

of the material under consideration; the averaging process is 

extended over a volume commensurate in size with the level of 

structural interest. For structural analysis purposes the 



representative volume may be treated as if it were homogeneous. 

For example, if the structural behavior of steel is of interest, 

the properties of the appropriate representative volume would be 

equal to the microscopic properties of the steel averaged over a 

sufficiently large volume so that the effects of individual grains 

and grain boundaries would not be apparent. At the structural 

level of observation steel is therefore considered to be 

microscopically homogeneous even though its crystaline nature is 

recognized (it could, of course be macroscopically inhomogeneous 

due to changes in heat treatment or composition). 

For structural analysis purposes the representative volume for 
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a rock mass should represent the properties on a scale commensurate 

with the dimensions of the smallest structural feature that must be 

considered in detail. Thus, the scale of observation will be quite 

different for the purposes of a detailed theoretical study of the end 

effects in a small laboratory test specimen from that necessary for 

the structural analysis of a rock structure which may be hundreds 

of feet in extent, and for which the dimensions of the smallest finite 

element used in the analysis may be tens of feet. It is the objective 

of this study to initiate the development of a characterization for 

the structural properties of rock masses, in terms of a representative 

volume, that may be used in the analysis of rock structures of 

varying sizes. Its use for applications with greatly differing 

dimensions, will of course, require different values for the 

several parameters which describe the model, e.g., degree of 

variability, etc. 



In order to be able to concentrate upon the main objective of 

the current study, i.e., formulation of the basic procedures for 

the development of a representative volume for rock masses, two 

restrictions were placed upon the scope of the study. Firstly, the 

development was limited to the case of plane strain. The condition 

of plane strain was selected because even though it is considerably 

easier to model than general three-dimensions, it still retains 
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all the salient features of the more general case, and, in addition, 

it is an approximation that is often employed in the analysis of 

rock structures. Secondly, certain effects were neglected either 

because at this point they would greatly complicate the development 

(e.g., rate effects) and/or because for in situ conditions they are 

of secondary importance (e.g., the effect of the closure of 

microscopic cracks on the behavior of rock for near stress free 

conditions). 

Representative volumes are, in general, composed of several 

different materials or phases (e.g., for steel it consists of grains 

with an assortment of orientations, and grain boundaries). The 

spatial (geometric) arrangement of these several constituents may 

be deterministic (as is the case for a matrix enclosing carefully 

placed reinforcing elements) or non-deterministic (as is the case 

for the grains and grain boundaries of steel). When the spatial 

relationship of the several different phases is non-deterministic 

they are usually visualized as being coexistent, i.e., in some sense 

they are considered to each occupy the same space (this approximation 

may lead to certain undesirable effects, and its modification will 



be the subject of a future study}.* 

For real materials the interaction of the several constituents 

is such that equilibrium and compatibility (with proper allowance 
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being made for possible cracking) are satisfied. For non-deterministic 

models of materials it is generally impossible to simultaneously 

satisfy both these conditions. Thus it is common practice to develop 

an approximate characterization based upon the satisfaction of one 

of these two conditions and an approximation to the other (Hashin-64). 

It has been shown by Paul (60) that utilizing one or the other of 

these two extremes (i.e., satisfying compatibility and approximating 

equilibrium or vice versa) leads to bounds for the properties of the 

representative volume. However, because of the additional approximations 

used in the formulation of a non-deterministic representative volume, 

they are not necessarily bounds for the properties of the actual 

material. In addition, even if they were truly bounds of the actual 

properties, their use in the analysis of a complicated structure 

does not in general readily lead to bounding statements concerning 

the results (e.g., stress and strain predictions) of the analysis. 

Representative volumes made up of several different strengths of 

coexistent constituents, which are required to satisfy equilibrium 

yield the prediction that the model reaches its maximum stress 

capacity when the weakest constituent reaches incipient failure. 

Because this is obviously not true for most composite materials 

equilibrium models are seldom used. 

*Ina sense this approximation is not completely adhered to in the 
current study, i.e., cracks can be considered as a separate phase, 
and in this study they are not totally considered as coexistent 
with the other phases. 
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For this study the model will be based upon compatibility 

considerations. However, because there is some question (Herrmann-67) 

concerning the desirability of utilizing properties which represent 

an extreme (i.e., bounds), a future extension of this study will 

include an assessment of the feasibility and desirability of basing 

the model upon a partial satisfaction of both compatibility and 

equilibrium. 

Because of the difficulty of representing coexistent phases 

pictorially it may be of value, for illustrative purposes, to 

visualize the compatible plane strain model as a series of parallel 

plates (a corresponding visualization for three-dimensions is not 

possible). Each plate represents a phase and the thickness of each 

plate is in proportion to its representation in the total volume. 

Compatibility requires that each plate be subjected to a strain 

state identical to that of the representative volume (including 

thickness strain of zero; the simplistic visualization is misleading 

at this point). Because of the different response characteristics 

of the several constituents, the resulting stresses are not the 

same (i.e., equilibrium is only approximated). The stress state of 

the representative volume is the average of the stresses of the 

constituents (see pictorial representation in Figure 3). 

The representative volume for a rock mass in a state of plane 

strain is considered to consist of I+l particles.* The role of the 

l+l particles is to simulate the variability of the rock mass. One 

* As will be seen later, in a sense each particle may itself consist 
of several phases, i.e., intact rock and several planes of weakness 
or fracture. 



Compatible Response of 
Constituents 
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Response of Representative 
Volume 

Figure 3 Pictorial Representation of Compatible Representative Volume for a Two 
Phase Material in Plane Strain ( £2 = 0) for Case of f.y = 0, f.x ::/= 0 . 



of the particles (the I+l) accounts for the rubble phase. The 

remaining I particles are considered to be rock initially intact 

with the exception that they may contain up to three systems of 

planes of weakness or fracture, of varying degrees of structural 

integrity (the concept of structural integrity is defined later). 

The relative proportion (Pi) of each of the I+l particles must 
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be initially specified. These proportions may be fixed or be 

permitted to change during the course of the representative volume's 

stress and strain history. If this option is utilized, as the I 

intact particles experience damage, a certain portion of each is 

irreversibly assigned to the rubble phase. This option is included 

to account for the fragmentation which may accompany cracking 

(Handin-63, Brace-64). 

Each of the I+l particles is required to experience the same 

strain state as the representative volume (as was noted before the 

desirability of this assumption is open to question and will be the 

subject of a future inquiry)*, i.e., 

i = 1 + I+l (3) 

[A£];= strain state of particle i 

[A£] = strain state of the representative volume (A£x , A£Y , Ayxy) 
N · N M 

also A£ = 6£ = 6£ = A£ = 6£ = 6£ = 0 (plane strain) 
XZi YZ; Z; XZ yz Z 

The stress state for the representative volume is given by the 

* In the following, for the sake of simplicity, the subscript N 
referring to the increment number is not displayed. 



following summation: 

I+l 
Note I P; = 1 

i=l 
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(4) 

For each particle the relationship between the incremental 

stress and strain is written as (the increment number N is implied): 

Using equs. (3) and (4) 

or 

I+l 
[L\cr] = I P; · { [CJ; [6E:] + [LJ; } 

i=l 

I+l 
[L\cr J = . { I 

i=l 

I+l 
P; [C]i } [6£] + .I pi [L]; 

1=1 

Comparing this expression with equ. (1) yields: 

(5) 



I+l 
[C] = l P,. [CJ,. 

i=l 
(6) 

(7} 

Each of the I intact particles is considered to be the 

accumulation of rock, of like structural integrity and distributed 

(in a non-deterministic manner} throughout the representative 

volume. For each of these particles an integrity factor Fi is 

assigned. The strength parameters for each particle (e.g., tensile 

strength crT) are then written as the product of F. and the average 
i 1 

value of the corresponding parameter for the material as a whole, 

i.e., 

i = 1 + I (8} 

Thus, for each particle complete correlation is assumed between the 

several strength parameters; this idealization is based upon the 

assumption that they are all manifestations of one fundamental 

property (herein called structural integrity). The modification 
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of this assumption would require knowledge of the actual correlations 

of these parameters; experimental information concerning such 

correlations appears to be scant. 

Figure 4 gives an example of a histogram of structural integrity 

developed from the variability of the compressive strength of Inada 

granite given by Yamaguchi-70. The degree of scatter of the structural 
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Figure 4 Example Histogram of Structural Integrity. 
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integrity, of course, depends upon the size of the representative 

volume (i.e., size effect, see Evans-58, Brady-70, Hoagland-73) or, 

more precisely, upon the size of the finite elements to which the 

representative volume properties are being applied. Rigorous 

accounting for size effects would require knowledge of the 

correlation of the integrity factor from location to location in the 

rock (a quantity about which very little is known) and would lead 

to the prediction of non-deterministic structural properties. In 

general finite element and other structural analysis methods are not, 

at this time, sufficiently well advanced to accept such probabilistic 

descriptions of structural properties (some exceptions may be found 

in the works by Langland-71 and D'Andrea-74). Thus at present 

size effects are ignored and therefore the histogram for structural 

integrity should represent, as nearly as possible, the variability 

of strength properties on a scale commensurate with the level of 

observation for which the structural properties are to be used. 

The stiffness properties (e.g., initial modulus) are much less 

variable than the strength properties, and thus, for the purpose of 

this study are taken to be the same for all particles. If, however, 

information concerning the variability of the stiffness properties 

should become available, and assuming perfect correlation with 

strength properties, it could be incorporated into the model with 

ease. 

At this point the structural behavior of the individual phases 

is considered: 
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2. Rubble Phase: 

Because the main interest of this study is the characterization 

of relatively sound rock the rubble phase is considered to be of 

minor importance and its behavior is grossly simplified. Should 

it become desirable in the future to consider exceptionally unsound 

rock, even to the extent that it approaches a granular mass in 

composition, then this approximation would need to be revised. 

Because the shear resistance of the rubble is small compared to 

that of the intact rock it is approximated as zero; thus, it is 

assumed that the rubble has resistance only to compressive mean 

* . pressures , ,.e., 

Where: 

Where K _ 

K/3 

K/3 

0 

K/3 

K/3 

0 

~- K (bulk modulus)t 

l O j 

0 

0 

0 

and [L]R = [OJ 

for l'£ + £ < 0 X y 

)£ +£ > 0 l X y -

(9) 

If the material is initially anisotropic the concept of bulk 

modulus has been appropriately generalized by Herrmann-72. For 

* Note: Throughout this report the "structural mechanics" sign 
convention is adopted, i.e., compressive strains are 
negative, etc. 



simplicity, however, the following approximation is used (the 

subscript zero refers to the initial properties of the intact 

rock): 

Because of the relative unimportance of this phase a constant 

bulk modulus is used for all compressive mean pressures even though 

it is suspected that it is a strong nonlinear function of the mean 

pressure (e.g., see Bridgemen-52). 

3. Intact Phase: 
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The intact phase is utilized to represent the majority of the 

rock. As was noted in a previous section, the I particles of intact 

rock are assigned different values of the integrity factor, F, in 

order to simulate the varying strengths of rock contained within 

the representative volume. The different strengths are due to 

varying degrees of prior damage and/or variability introduced at the 

time of formation. 

The several concepts used in the description of this phase are 

now discussed. 

Orthotropic elastic response of sound rock: All rock within the 

intact phase which has not fractured is assumed to behave as a linear 

elastic material, i.e.,* 

I 

[~cr] = [C]e [~£] + [L]e (10) 

* For the sake of simplicity the subscript i denoting the particle 
number and the subscript N denoting the increment number are not 
always explicitly noted in this section. 



Where [Licr J = increment of stress for particle i 
I 

[Lie:] = increment of elastic strain 

[C]e = elastic properties for the sound rock 

[L]e = 0 

For an isotropic material (E and v are Young's modulus and 

Poisson's ratio, respectively): 

where 

[CJ = e 

µ = E 

;\ + 2µ 

>,. 

0 

2 ( l+v) 

;\ + 2µ 

0 

0 

0 

Because it is felt that the nonlinearities (predominantly 

an elastic effect) experienced for very small stress levels, e.g., 

the beginning of zone I of Figure 2, contribute little to the 

behavior of in situ rock, they have been ignored (see discussion 

in Section III-A-2). If in the future it should prove to be 

desirable to include this phenomenon, it is felt that this could be 

accomplished by expressing the bulk modulus as a nonlinear function 

of the mean pressure (Herrmann-63a). 
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The nonlinearity of zone II (Figure 2) is basically an inelastic 

phenomenon which is a consequence of the local fracturing process 



considered in the following paragraphs. 

Transformation of stress and strain components: A preliminary need 

for the following developments is the transformation relating the 

stress and strain components in the x-y coordinate system (i.e., 

[6£] and [6o])to the components in an arbitrary n-s system, defined 

by the angle 0 (i.e., [6£]0 and [6o]0, see Figure 5)*, i.e., 

where 

[T] = 

[60] = [T] [6o] 0 

[6£]
0 

= [T]T [6£] 

} (l+cos 20) 1 (1-cos 20) 

} (1-cos 20) } (l+cos 20) 

} sin 20 } sin 20 

, 
-sin 20 1 

sin 20 

cos 20 

(11) 

(12) 

(13) 

The inverse transformations, i.e., between [60] and [6o]0 , 

etc., are obtained by replacing e by its negative. 
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Representation of structural cracks: In the following paragraphs 

the term fracture plane is used to denote a system of approximately 

parallel macroscopic (sub-structural) planes of fracture. (Under 

certain circumstances such a system could conceivably contain only a 

single plane.) 

In contrast, structural cracks are defined as major cracks 

* The reason for employing this somewhat unorthodox notation for the 
stress components shown in Figure 5 will be apparent later. 
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Figure 5 Stress Components in the n-s Coordinate System. 



whose extent and spacing are larger than the minimum dimensions of 

the finite elements being used in the analysis of the structure. 

The treatment of structural cracks may vary depending on whether 

or not the crack exists prior to the beginning of the period of the 
/ 
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analysis. Those structural cracks which exist prior to the beginning 

of the analysis, and whose spatial locations are well defined, may 

be modeled by joint elements (Goodman-68)*. A structural crack 

which develops during the course of the analysis can be accounted 

for in one of two ways: Either an attempt can be made to predict 

its actual course through the rock by introducing discontinuities 

in the finite element grid (e.g., see Pian-71 and Taylor-72) or a 

zone of fractured elements (i.e., elements with extensive internal 

damage) can be permitted to develop along the approximate path of 

the crack (a somewhat analogous procedure was used by Hossain-74). 

The characterization developed herein is sufficiently general to 

accommodate the latter form of failure prediction and in the authors' 

opinions, the second procedure is generally preferable because of the 

exorbitant computational cost involved in attempts to trace the 

actual paths of advancing cracks by means of discontinuities in the 

finite element grid. 

Macroscopic cracks: In the following paragraphs the development of 

* It is to be noted that a finite element aligned with a crack, and 
having properties supplied by means of the characterization 
developed herein, may in fact be used as a joint element (thus a 
program using this characterization would have no need for a special 
joint element). The representative volume for such elements would 
have one natural plane of weakness with the appropriate orientation 
and stiffness properties of the joint. 



macroscopic fracture planes in individual intact particles is 

considered in detail. The development of fracture planes in one 

or more of the I intact particles, of course, does not mean that 

the representative volume has failed; the representative volume 
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does not have a complete fracture zone until all the intact particles 

have developed such planes. The appearance of fracture planes in 

some of the intact particles indicates that the material is 

experiencing inelastic behavior (e.g., zone II or III of Figure 2). 

If loading is reversed after on1y a portion of the I particles 

have developed fracture planes, then the representative volume will 

exhibit anisotropic behavior as part of its future response 

characteristics (careful tests by Wawersik-70 demonstrated such 

a phenomenon). 

Each of the I intact particles is permitted to contain up to 

three systems of fracture planes. These systems consist of a 

combination of (zero to three) prescribed pre-existent planes (i.e., 

present prior to the period covered by the analysis) and planes 

developed during the course of the analysis. A maximum of three 

was selected for the following reasons: In general, it appears 

that highly fractured rock contains, at most, four systems of 

fracture planes (Pomeroy-71), one of which, most likely, is parallel 

to the plane of the two dimensions currently under consideration 

and thus ineffectual in plane strain. Secondly, it appears that 

for two-dimensions movements along three fracture planes is sufficient 

to relieve the stress to such a degree that, for all practical 

purposes, it is impossible to develop a fourth fracture plane. 



Finally the computational cost involved in using the model is 

dependent upon the maximum permissible number of failure planes. 

Because of the different types of discontinuities (fracture 

zones) which may occur in rock, e.g., a single well defined crack, 

a series of closely spaced fine cracks, a region of concentrated 

deformation caused by many unjoined cracks and/or plastic-like 

dislocations, the failure criterion used to predict the formation 

of such fractures must be quite general. 

Numerous different failure criteria have been proposed for 

rock (e.g., see Handin-63, Murrell-65, Bieniawski-67a' Brady-70, 
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and Herget-70) none of which have proven to be entirely satisfactory 

(e.g., see Brace-64, Howe-73). The chief obstacles which have 

apparently prevented the firm establishment of a failure criterion 

for rock, are its variability, the numerous types of rock, the 

difficulty in achieving homogeneous strain and stress states for 

even simple test specimens, the lack of acceptable experimental 

procedures for achieving multi-axial stress and strain states in 

the laboratory, and finally the confusion that exists between the 

concepts of a macroscopic and a structural failure criterion (e.g., 

see Bieniawski-67a); between a failure criterion and a sliding 

criterion; and between a yield and a failure criterion. 

The failure criterion that is needed for the intact particles 

is a criterion for the formation of macroscopic fracture planes. 

(If one should choose to set I=l then, depending upon the size of 

the representative volume, a gross structural failure criterion 

might be required.) 
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The two most widely used failure criteria for rock are the 

Mohr and the Griffith (or modifications thereof). While apparently 

sound experimental evidence has been presented for the justification 

of each, it appears to the authors that the Griffith criterion is 

somewhat more rational; however, its use does not appear to result 

in sufficiently improved predictions to justify, at this time, the 

greater complexities involved (e.g., see Brace-64). Thus, for 

this study, the Mohr criterion is used. While there appears to be 

some evidence that the envelope should not be straight (e.g., see 

Brace-64, Murrell-65), it is assumed to be linear in this report 

for simplicity. The straight portion is, however, terminated in 

the tension region by a tension failure 11 cut off 11 criterion. It 

is suggested that careful considerations be given to the use of a 

parabolic envelope in future work. 

It needs to be emphasized that what is under consideration at 

this point is a failure initiation condition not a criterion for 

sliding once the fracture has occured. Under certain conditions 

(particularly for large hydrostatic pressures) such a clear 

distinction may not be justified, because it appears that a 

considerable amount of deformation takes place across the fracture 

zone before it is completely formed (e.g., see Handin-63). This 

phenomenon is discussed in more detail later. 

The fracture criterion for particle i is written as: 

or cr0 i 

(shear fracture 

(tension failure-note crt. < c
0
Jf

0
_) , , , 

( 14) 

( 15) 
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Where Te. and o
0

_ are the shear and normal stress components on 
l 1 

the fracture plane. For the sound portions of the rock the parameter 

c
0

. can be interpreted as the 11 internal 11 cohesion and f
0

_ as the 
1 , 

coefficient of 11 internal 11 friction, i.e., parameters which describe 

a failure criterion but do not necessarily have any physical 

significance (for a natural plane of weakness they are the cohesion 

and friction associated with the plane). If the rock is inherently 

orthotropic then it is to be expected that c
0 

, ot and f would 
i i Oi 

be continuous functions of orientation (e.g., see Jaeger-60}. These 

functions of e describe the variation due to anisotropy of the 

sound rock, in addition, there may be discontinuous changes in their 

values due to the presence of natural planes of weakness (bedding 

planes, etc.}; these special values are specified separately. 

Because f has a somewhat restricted range of values it is assumed 

that it is not a function of 8 (this assumption could easily be 

revised}. The orthotropic nature of c
0

_ is written as (recall 
1 

that F1 is the integrity factor}: 

or 

c
0

• (8) = F;' { ½ (l + cos 28} c
0

(x) + ½ (1 .. cos 28) c
0

(y) } 
l 

c
0

. (8) = F1c
0

(x) [ ½ (1 + cos 28) + ½ (1 - cos 28) R] (16) 
1 



It is assumed that c and crt are both characteristics of the 

same fundamental strength property and thus have the same value of 

R (this assumption would be easy to revise), i.e., 

crt.(0) = F;crt(x) [} (1 + cos 20) + ~ (1 - cos 20) R] (17) 
1 

The fundamental question that must be addressed at each 

increment, for each of the I intact particles, is whether or not 

the particle has already developed its allowed maximum of three 

fracture planes, and if not, whether or not equ. (14) or (15) might 

be satisfied during the course of the increment. If the particle 

has not developed its three planes of fracture, two possibilities 

for the satisfaction of equ. (14) or (15) are considered: 

First, prescribed planes of weakness which have not already 

failed are inspected. It is to be recalled that up to three 

naturally occuring planes of weakness or fracture may be prescribed, 

i.e., 0 specified. The values of c
0

, crt and f
0 

for each of these 

planes are of course different than the values for the sound rock.* 

* If the sum of the number of planes considered in this step, and 
the number of existing planes of fracture is equal to three, then 
the considerations described in the subsequent paragraphs are 
skipped; the reasons for this action is as follows: Because the 
magnitudes of c0 and crt for the natural planes of weakness are 
expected to be considerably less than for the surrounding sound 
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rock and because the natural planes tend to be mutually perpendicular 
to each other, it is anticipated that any non-fractured natural 
planes of weakness are approximately perpendicular to the existing 
fracture planes. This expectation, along with the condition that 
the natural weakness planes are substantially weaker than the 
surrounding rock, leads to the conclusion that if any additional 
fracturing should take place during this increment, that it would 
be along the non-fractured natural weakness planes and not in the 
sound rock. 
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A pre-existing plane of failure is prescribed as a plane of weakness 

with zero strength parameters - in the present analysis all such 

planes are considered to be initially closed. 

Secondly, for the sound rock the orientation (defined by a 

critical value of e) of a possible fracture plane which would most 

likely cause the satisfaction of equ. (14) or (15) is determined. 

Once this plane is determined, equs. (14) and (15) are checked for 

possible satisfaction. A critical orientation determined from this 

consideration is called a stress-induced failure orientation as 

opposed to the specified orientations of the natural occuring planes 

of weakness. 

If these two considerations reveal more than one possible 

failure plane, failure is permitted to occur on the one which is the 

earlier to reach the critical state in the course of the increment 

(this failure would, of course, so alter the stress state that the 

second would not occur). 

The determination of the possible stress induced failure plane 

orientation proceeds as follows: 

Both equs. (14) and (15) are expressed in a common form, i.e., 

n T = C - f 0 e e (18) 

For shear failure: 



For tension failure: 

Utilizing the inverse of equ. {11) the above expression is 

written in the form: 

sin 20 + -rxy cos 20} = C -

{ 
ax + cry crx - cry } 

f 2 + 2 cos 20 + -rxy sin 20 

Expressing the above equation in matrix notation yields: 

[Q]T [cr] + c = 0 

The vector Q is defined as: 

[Q] = 

- } [f(l + cos 20) - n sin 20] 

1 - 2 [f{l - cos 20) + n sin 20] 

- [f sin 20 + n cos 20] 

( 19) 

{20) 

{21) 

The questions that must now be answered are, will this equation 

be satisfied during the course of increment N, and if so, at what 

point in the increment and for what critical value of 0. Denote 

the stress state at the beginning of the increment as [cr]N-l and the 

apparent incremental change as [~cr]N. Assume that during the course 

of the increment up to the point of the formation of the fracture 
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plane, the changes in the several stress components are proportional 

(this assumption is one of the limiting factors on the permissible 

size of the increments), i.e., 

0 < k < 1 

Substituting equ. (22) into equ. (20) yields: 

where 

Thus: 

u(e) - k v(e) = o 

u(e) = c + [Q]T[cr]N-l 

v(e) = - [Q]T[Acr]N 

k = ~1~1 , vTeT 

(22) 

(23) 

(24) 

(25) 

(26) 

What must now be determined is the value of e that yields the 

minimum positive value of k (the definition of k, equ. (22), limits 

its range to k ~ 0). The determination of the critical value of e 

and the corresponding value of k is quite involved; the details of 

these calculations are given in Appendix A. 

Deformation resulting from movement along fracture planes: The 

relative movements of the opposing faces of a fracture plane may 

be expressed in terms of sliding and separation (i.e., opening of 

the crack). Sliding deformation of a fracture plane is illustrated 

for a clean fracture in Figure 6a and a ductile type fracture zone 

in Figure 6b. It will be seen later that it is not necessary to 
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fracture I ine 

continuous line prior to fracture 

Ga Sliding along clean fracture 

X 

y 

Ge Open fracture 
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y 

nominal line of fracture 

Gb Ductile fracture 

Figure G Deformation associated with fracture 

X 



distinguish between these two types of sliding deformations. 

Opening of a fracture is illustrated in Figure 6c. The effect 

of this deformation upon an element of rock oriented with the 

n-s axes is illustrated in Figure 7, in addition, the 11 equivalent 

distributed deformation 11 of such an element is also shown; this 

deformation is given by the following expressions (the primes 

denote strain due to movement along a fracture zone)*: 

II _ und 
be:n - d = Un 

II 

be:s = 0 

II usd 
byns =c1 = us 

Using the inverse of equ. (12) to transform these strains to the 

x-y system yields: 

(27) 

where 

l (1 2 + cos 20) 

[A] = ½(l - cos 20) 

sin 20 

* Note that u and Us are not actual displacement quantities but 
rather disp~acements per unit of distance between cracks (i.e., 
strain quantities); the actual opening of a fracture is un d, 
etc. 
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element of rock 

equivalent element 

Figure 7 Deformation of Rock Element Caused by Movement 
along Fracture. 
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l sin 20 - 2 

[BJ = l 
2 sin 20 

cos 20 

Note (see equ. (21)) that [Q] = - f[A] - n[B]. 

Thus, movement along a fracture zone results in deformation 

(i.e., strain) of the representative volume. Such strain is, of 

course, not uniformly distributed, as is usually visualized to be 
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the case for elastic strain, but instead concentrated at the fracture 

zones (this concentration of strain is somewhat akin to the 

discontinuous nature of the plastic strain in metals that develops 

at dislocations). 

Mechanics of fractured particles: Procedures must now be established 

for determining whether or not sliding (us) and/or separation (un) 

occurs along a fractured zone and their respective magnitudes. In 

addition, the state of stress at such a fracture plane must be 

investigated. 

A little reflection indicates that a particle, having as many 

as three fracture planes, may experience several different modes 

of structural response, i.e., no movement along fractures, sliding 

along one fracture, sliding along one fracture and opening of a 

second fracture, etc. In order to simplify the logic of the model 

it is important to eliminate from consideration those response 

modes which are either impossible or highly unlikely or are expressable 



in terms of other modes*. Within each increment, for a given 

particle, only a single transition from one type of behavior to 

another is permitted; symbolically this is illustrated in Figure 8. 

These two divisions of the increment are called "intervals". If 

the incremental strain changes are relatively small, it appears 

51 

that the most likely combinations of behaviors for a given particle 

are limited to those listed in Table l (in all cases b may range 

from 0.0 to 1.0). While it is unlikely, for small strain increments, 

that any other response mode will occur, if one should (e.g., 

closure of two fracture planes during the same increment) a small 

error will be introduced. However, this error may be corrected in 

the next increment (see Appendix A). The logic of selecting, for 

a given increment, the proper response mode is discussed in a 

following section. 

The precise definition of the factor b, used in Figure 8, is 

such that the strains for the two response regions are: 

For particle i in response region a, write the incremental 

stress-strain relationship in the form: 

[6cr]
1
• = [C]

1
. [6£] + [L]. 

a a a 1a 

* For example, the behavior of a particle with three open fractures 
can, by the introduction of rigid body motion (accompanied by no 
change in the strain or stress states), be expressed in terms of 
the behavior of one with two open cracks. 



Response a 

C: 
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C: 
ro 
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( 1-b ).6.t b.6.t 

Figure 8 Symbolic Representation of the Transition in Response 

Mode Permitted in a Given Increment. 



Response a 
I 

Nature of Transition Response b 

Elastic response I New shear fracture or Combination 
of sound rock I renewed activity of elastic response 

I existing closed fracture and sliding along 

I fracture 

Elastic response i New tension fracture or Elastic response : 
of sound rock I incipient opening of of rock with one 

! existing fracture open crack i 
Elastic response I New shear fracture or Combination 
of rock with one I renewed activity along elastic response 
open crack i existing closed fracture (one open crack) 

I and sliding along 
a closed crack 

Elastic response Formation of another Elastic response 
of rock with one tension fracture or with two open 
open crack incipient opening of cracks 

i 
existing closed crack 

Elastic response Closure of crack Elastic response 
of rock with one of rock without 
open crack i movement along I 

I closed crack I 

Elastic response Closure of one crack Elastic response 
of rock with two with one open 
open cracks crack without 

movement along 
I closed crack 
I I 

Table l - Permissible Combinations of Response for a Particle in a 
Given Increment. 
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Use has been made of equ. (3); the determination of [CJ. , etc., 
,a 

is discussed in subsequent sections. Noting the definition of 

b the above expression is written in the form: 

[6crJi = [CJ; (1 - b) [6£JN + [L]; 
a a a 

likewise 
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The total stress increment is the sum of these two expressions, 

i.e., 

= [6crJ. + [6cr]
1
• 

1a b 

Thus: 

Comparing the above expression with equ. (5) yields: 

[C]. 
1 

(28) 

(29) 

The appropriate expressions for [CJ and [LJ must now be 

established for each of the possible response mechanisms (including 

the effects of the transition to the mechanism, i.e., fracturing 

and the opening or closing of the resulting cracks). In formulating 

these expressions two approximations are made. A closed joint has 



infinite normal stiffness and a sliding closed joint experiences 

no normal deformation. There is good experimental evidence to 
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refute both of these assumptions (see discussion in Section 111-A-l). 

Thus an obvious future improvement to the model will be to 

incorporate a more realistic description of joint behavior such 

as that suggested by Goodman-72. 

Response of sound rock: For situations when there is no movement 

along any fracture planes the particle is considered to behave 

elastically, i.e., obeys equ. (10). 

Response with one open crack: Consider a particle with an open 

fracture; if this fracture were'not previously open it is either 

newly formed at the beginning of the interval or the result of the 

opening of a previously closed fracture, see Table 1. If the 

fracture were open at the beginning of the interval it may remain 

open or it may close at the end of the interval. 

The total strain [6£] (the subscript i indicating the particle 

number and a orb indicating the interval, see Figure 7, are not 

' displayed for simplicity) consists of an elastic strain [6£] and 

a portion due to the relative movement of the faces of the open 

" crack [6e] (equ. (27)), i.e., 

The stress is related to the elastic strain by equ. (10), i.e., 

' Solving for [6e] from equ. (30) and substituting into the above 



expression yields: 

Define: 

[E] = [C]e [A] , [D] = [C]e [B] (31) 

Thus: 

(32) 

Using the definitions of the [A] and [B] matrices,·the expressions 

(inverse of equ. (11)) for the normal (606) and the shear (6T6). 

components of stress acting across the fracture are written in the 

form: 

6cr
0 

= [A]T[6cr] 

6Ta = [B]T[6cr] 

(33) 

(34) 

For a fracture continually open the values of 6cr
0 

and 6t0 are 

zero; for a newly formed fracture they are equal to the negatives 

of the stresses existing across the plane at the time of fracture. 

Defining cr0 and Te to have the appropriate values and using 
0 0 

equs. (32), (33) and (34) yields: 

6cr
0 

= [A] T - { [C]e[6£] - 6un [E] - 6us [D] } (35) 
0 

6T
0 

= [B] T · { [C]e[.1\£] - 6un [E] - 6us [D] } (36) 
0 
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[AJ T [DJ ·i 

[BJT[DJ 

Using equ. (31) and the fact that [CJe = [cJ!, equs. (35) and (36) 

may be written in the form: 

[xJ 
[EJT[AE] - Aa00 l 
[DJT[AE] - AT

0 
0 

The solution of these two simultaneous equations yields values 

for the increments of deformation of the open fracture plane. 

where 

[Hi = - . { 1/Jll [E] T + 1/Jl 2 [DJ T } 

[M] T = - , { i/J12 [E] T + i/J22 [DJ T } 

i/J22 = - xi,/DET 

(37) 

(38) 

(39) 

(40) 
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Using equs. (32) and (35)-(38) permits the expression of the 

incremental change in stress in terms of the strain increment and 

the negatives of the stresses existing at the time of the fracture, 

; . e. , 

Thus, for elastic behavior with one open crack, the 

incremental properties are: 

[L]lc = - { i/Jn[EJ + i/J12CDJ } Licreo - , { i/J12[E] 

+ I/J22[D]} LiT0 
0 

(42) 

(43) 

If the value of Liun (equ. (37)) is such that the indicated 

total accumulated value of un is less than zero, then the interval 

must be appropriately reduced in length (i.e., appropriate value 

selected for 11 b11
, see Figure 8), so that at the end of the interval 

the crack just closes, see Table 1. If the value of separation 

at the beginning of the interval is u and the value calculated 
nN-1 

from equ. ( 37) is Liu ( where u + Liu < o) , then the factor 
n nN- l n 

(l-b) of Figure 8 must be such that: 

u + (1-b) Liu = 0 
nN-1 n 
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or 

Response with two open cracks: Figure 9 is a pictorial representation 

of a particle with two open fractures. It is apparent that as long 

as both fractures remain open that the particle can experience 

arbitrary changes in strain without any accompanying stress, hence 

the incremental stiffness is zero, i.e., 

(44) 

The remaining task is to calculate [LJ2c (non-zero values would 

be due to the formation of one or the other of the cracks) and, for 

a given strain increment, the amount of deformation experienced by 

each of the fractures. 

Because of the limitation that has been placed upon the 

permissible response modes, see Table 1, only one of the two 

fractures can be newly formed. If one of the two fractures is newly 

formed, denote the stress that existed in the particle prior to this 

occurence as [cr]
0

• Upon the formation of the second open fracture 

the particle is no longer capable of carrying any stress, and thus 

[LJ2c must be equal to the negative of [cr]
0

, i.e., 

This "release" of stress due to the formation of the crack 

produces an elastic change in strain (use inverse of equ. (10)), 

i . e. , 



( ~ 
fracture system 2 fracture system 1 

Figure 9 Pictorial Representation of Particle with Two 

Open Fracture Systems . 
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(46) 

At this point it is convenient to express all strain quantities· 

in a coordinate system aligned with one of the fracture systems. 

Using equ. (12) the strain of equ. (46) is transformed to the n1-s1 
system, i.e., 

The imposed strain increment [bE] is also transformed to the 

n1-s1 system, i.e., 

The total strain increment, [bc]1, is equal to the sum of [bE] o, 
and the strain produced by the deformations of the two fracture 

systems, i.e., bu , fius , bu , and 6us • This latter strain is 
n, 1 n2 2 

expressed by using equ. (27) and noting that, relative to the n
1
-s

1 

system, the angle used in expressing the deformation of the first 
I 

fracture plane is zero and for the second is 0 = 02 - 01, 

1 I l . I 

+ fiu + 2 (1 + cos 20 ; 6u
0 

- 2 sin 20 
nl 2 

. * ,.e., 

(47) 

(49) 

* It is assumed that there is no interference produced by simultaneous 
deformation of two fracture systems. 
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Now values for 6un ... 6us must be selected to satisfy 
1 2 

equs. (47)-(49). Because this involves selecting four unknowns 

to satisfy three equations a non-uniqueness is apparent. Thus, 

an arbitrary assignment will need to be made for the value of one 

of the unknowns; because only rigid body motion is involved in 

this assumption, it does not affect the overall results. 

The process of satisfying equs. (47)-(49) must yield values 

of 6un and 6u such that the total accumulated values of un 
1 n2 1 

ind u remain greater than zero (if this is not possible then the 
n2 

end of the response interval is signified)*. Equs. (47)-(49) 

indicate two distinct possible modes of behavior, i.e., the cases 

of 0
1 

= n/2 and 01 
~ n/2. This distinction is not, however, as 

clear as it might appear because when a finite number of significant 

figures are employed strict equality has no real meaning. What does 

have significance is the immediate neighborhood of the equality, 
• I 

1.e., e ~ n/2; in accordance with the convergence limit used in 

the establishment of values of e (Appendix A) this condition is 

defined as cos 20
1 

< -.9976 (i.e., approximately 88° < 01 
< 92°). 

I 

For the case of e ~ n/2 (i.e., cracks approximately 

perpendicular), because sin 20' ~ 0.0, the last terms of equs. (47) 

and (48) are, for reasonable values of 6us , small and generally 
2 

unimportant. Thus, for all practical purposes there is no 

arbitrariness in the selection of 6u and 6u as they are defined 
nl n2 

by equs. (47) and (48). Hence, the non-uniqueness is removed by 

* Amoung the history items that must be calculated and stored for 
each particle are the values of un for each fracture system. 



completely eliminating the last two terms of equs. (47} and (48} 

by requiring that tus = 0; solving equs. (47)-(49} in this 
2 

manner yields: 

also 

tu = __ 2 __ ,­
n2 1-cos 20 

- 6£ ] s, 
0 

- -2
1 (1 + cos 20

1 ~ tu 
n2 

- tu sin 20 
n2 

I 

(50} 

(51) 

(52} 

(53} 

For the case of e' i ~/2 (as defined previously}, a first 

attempt is made to remove the non-uniqueness by using equs. (50)­

(53); if the predicted values of AU and 6u do not close either 
n, n2 

of the cracks, the search is over. If, however, one or both of the 

cracks is predicted to close an attempt is made to remove the 

non-uniqueness in some way that does not produce this effect. 

For the alternative selection, equs. (47) and (48) are added, 

i . e. , 

tun + AU = 6E - 6£ 
l n2 nl nl 

0 

(54) 

If the result of the attempt to use equs. (50)-(53) predicts that 

crack 11 211 is the first to close, then the non-uniqueness is removed 

by arbitrarily requiring crack 11 211 to "very nearly 11 close, i.e., 

set 
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where u = previous width of crack "2" 
n2 

o = very small number (e.g., 10-8) 

Equation (54) now yields: 

If this value of flu is not sufficient to close crack "l" then 
nl 
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the search is over. If, however, a closing of the crack is indicated 

it is arbitrarily required to very nearly close, i.e., flu = - u 
n1 n1 

+ o, and the length of the interval is adjusted (i.e., a transition 

to a situation of one open crack is produced, and the appropriate 

value of b for equ. (28) is calculated) so that the solution of 

equ. (54) closes crack 2, i.e., flu = - u . 
n2 n2 

In contrast to the assumption of the above paragraph, if the 

initial use of equs. (50)-(53) should predict a closing of crack 

"1 11 instead, then the steps of the previous paragraph are carried 

out with the subscripts 1 and 2 reversed. 
I For the case of e f TI/2, once values for flu and flu are 

nl n2 
determined, flus and flus may be calculated from equs. (49) and 

1 2 
(47) or (48). As the model is now formulated, these values are 

not required and therefore are not computed. 

Response when sliding occurs along a closed fracture zone: To 

determine whether or not sliding deformation will occur along a 

closed fracture, an appropriate sliding criterion must be established. 
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Conceptually this criterion is to be distinguished from the failure 

initiation criterion discussed previously (Jaeger-6O, Murrell-65, 

Herget-7O). A Mohr criterion is also used for the sliding criterion 

(other criteria have been proposed, e.g., see Murrell-65, Hobbs-7O). 

This criterion is, however, defined by different values of crt, c, 

and f, i.e., 

(55) 

Where fs is the coefficient of sliding friction and cs is the 

residual cohesion {for the present study crt is taken to be zero, 
s 

however, for the representation of ductile type fracture zones, 

it may be desirable to modify this assumption). 

The utilization of similar criteria, for the phenomena of 

failure initiation and subsequent sliding, is important in order 

to be able to account for the fact that the transition from fracture 

to sliding deformation is not always easy to distinguish. The 

precise occurence of this transition is somewhat nebulous for the 

following reasons: 

a) The fracturing process may proceed rather slowly; e.g., 

consist of the gradual linking up of numerous small 

cracks, e.g., see Handin-63, Herget-7O. 

b) Continued sliding may reduce f due to the breaking of 

asperities, e.g., see Goodman-72. 

c) If the value of cr0 is large, then a clean fracture may 

not take place, instead a zone of ductile type deformation 

develops (for which, obviously, cs>> 0), e.g., see Handin-63, 



Murrell-65. 

The transition from the fracture (equ. (18)) to the sliding 

criterion (equ. (55)) is accomplished by writing both as a single 

equation with variable coefficients c and f, i.e., 

(56) 

Where c and fare prescribed functions of a measure of damage 

(evidence of such damage dependence may be found in the works of 

Handin-63 and Hobbs-70). Obviously for B = 0, c = c and f = f , 
0 0 

and for very large values of B, c = cs and f = fs; the variation 

of c and f for intermediary values of B is a matter of conjecture 

and must be the subject of future study. An example of the type 

of functions used by the authors for c(B) and f(B) are given in 

Figure 10. 

The nature of the measure of damage, B, must also be the 
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subject of future study. A preliminary consideration of experimental 

evidence and intuition suggests a function of the history of the 

normal pressure and the relative sliding displacement of the opposing 

faces of the fracture, i.e., B = B (cr0 , usd). For the sake of 

simplicity, the following definition has been used in the current 

study: 

where a = {: 
u = 0 n 

u > 0 
n 

(57) 
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f 

C 

/ point of crack formation 

Figure 10 Typical Curves for c and f. 



Thus, the measure of damage has been taken as the sum of 

the absolute values of the sliding deformation increments (6us) 

that have occured when the crack is closed. This assumption is 

predicated on the concept that the greater the sliding deformation, 

the more complete is the fracture (break down of cohesion) and the 

smoother (due to polishing and grinding) the fracture faces. It 

would be more realistic to use the actual displacement usd instead 

of the sliding deformation us; this would, however, require a 

prediction for the value of the fracture plane spacing d. The 

prediction of d for fractures along planes which are not natural 

planes of weakness needs further investigation. 

In addition it appears that the value of cr8 should play a 

more prominent role in the calculation of 8 (justification for 

this statement is given in a later section). In particular, 

indications are that large compressive values of cr0 tend to prevent 

the formation of well developed fracture zones and, hence, for a 

given amount of sliding deformation should result in a reduction 

in the value of B (this trend would probably be reversed once a 

clean fracture has developed). Thus, one of the first revisions 

of the model that will be undertaken in the continuation of this 

research is to develop a more rational expression for the damage 

measure 8-
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Because it is possible to write both the fracture and sliding 

criteria in a single equation, there is no need, as long as the 

appropriate value of B is us~d, to distinguish between the formation 

of a new fracture and the sliding deformation of an existing closed 



fracture. 

The initiation of sliding may occur at any point during 

increment N; once it has begun, due to the inherent instability 

caused by the decreasing values of c and f (see Figure 10), it is 

assumed that it continues to the end of the increment, see Table 1. 

The value of the damage at the beginning of the interval is denoted 

as Sb and at the end of the interval by SN. 

Equ. (56) must now be expressed in incremental form. It is 

first written in the form of equ. (20) (where c and fare 

appropriate functions of damage), i.e., 

When the sliding begins equ. (58) yields: 

(59) 

Where [Q]b (equ. (21)) makes use of the values of fb (defined by 

Sb) and [cr]b (the stress state at the beginning of the sliding 

interval). At the end of the interval equ. (58) yields: 

or 

(60) 

where 
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Subtracting equs. (59) and (60) gives: 

or [Q]~ [6cr] +Xe= 0 (61) 

(62) 

Equ. (61) is the incremental form of the failure-sliding 

criterion; its adequacy is based upon the assumption that the 

interval is sufficiently small so that within the interval the 

left-hand side of equ. (58) may be expressed as a linear combination 

of the values at the ends of the interval. 

During the interval, the strain due to the elastic response 
I 

of the rock is denoted by (6£] (expressed either by equ. (10} or 

(41)*; denote the appropriate matrix of incremental properties as 

[C]
1

). The remainder of the total strain (6£] (denoted by a double 

prime} is then due to the sliding deformation of the fracture plane, 

i . e. , 

Using equ. (27) (note: any strain due to a possible open 

crack is taken care of by equ. (41), and hence is included in 

* If equ. (41) is used because the open crack cannot be newly opened 
the [L] matrix is zero, see Table 1. 
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or 
I 

[lle:] = [lle:] - llUs [BJ (63) 

The relationship between the stress [!lo] and the elastic 
I 

strain [lle:] is: 

I I 

[!lo]= [CJ [6e:J 

I 

Using equ. (62) to eliminate [6e:] from the above expression yields: 

I 

[ llO J = [ C] . { [ !le: J - llU s [ B] } 

Define: 

I 

[G] = - [CJ [BJ (64) 

Thus: 

(65) 

The magnitude of the sliding deformation, flus, is determined by 

satisfying the incremental fracture-sliding criterion, i.e., 

equ. (61): 

or 

where 



f;; = 1 
[Q]~ [G] 

Because the right-hand side of this equation contains tic which 

depends on [a J~p a quantity which is not known a priori, and 
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because cN and fN are dependent upon the value of ~us (see equ. (62)), 

the value of ~us must be established by iteration. 

Substituting the above expression into equ. (65) yields: 

or (using equ. (64)} 

Thus the stiffness properties [C]s for the case of sliding of 

a closed fracture is: 

(66) 

The loss of strength [L]s due to reduction of sliding resistance 

along the fracture plane is 

(67) 

It needs to be emphasized that iteration is required to 

establish cN, fN and [cr]N which are needed in the calculation of 

F:c. That is, the quantities ~us and [~a] are estimated and used 

to predict cN, etc.; these values are in turn used to produce ~us 

and [~cr] which are compared to the estimated values, etc. 



Fragmentation of intact particles: Some fragmentation of sound 

rock may occur as a consequence of stress induced damage (see 

discussion in Section III-A-1). As this fragmentation takes place 

a certain amount of material is transferred from the intact phase 

to the rubble phase (see discussion in Section III-B-1). In the 

absence of sufficient experimental evidence to quantitatively 

describe this phenomenon, an arbitrary assumption is made for 

the purposes of this exploratory study. It is assumed, that during 

increment N, that the change in value of the relative proportion 
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of particle i (i.e., P1 , see Figure 4) is expressed by the following 

equation {a negative value indicates loss of material due to 

fragmentation): 

= (e-Dryn _ e-Dryn-1) P; MX (68) 

Where: Dr - a prescribed parameter measuring ease of fragmentation 

y - a measure of the damage that produces fragmentation 

M - the maximum fraction of material that may be lost 
X 

from the particle due to fragmentation (currently in 

the model Mx = 0.05). 

The fragmentation damage measure y was selected to be equal to 

(·~5) times the number of fractures in the particle plus the sum of 
r 

the measures of damage S (see equ. (57)) for each of these fractures. 

This definition of y was selected in an attempt to account for the 

fragmentation which occurs when the fracture first forms, plus any 

· additional fragmentation which results from sliding deformation of 

the closed joint. 



The arbitrary nature of the above expression is apparent, and 

thus, at this time, use of this feature should be restricted to 

exploratory studies. 

Determination of particle behavior: At this point, the equations 

have been established which describe the various particle behavior 

mechanisms listed in Table 1. Thus the [CJ; , [CJ; , [LJi , [LJi 
a b a b 

matrices which describe the response of the particles for each of 

the two intervals represented in Figure 8 and which enter into 

equs. (28) and (29) are given by equ. (10) or (42) or (44) or (66) 

and by (10) or (43) or (45) or (67). The factor b, which defines 

the boundary between the two intervals of Figure 8 and which ~nters 

into equ. (28), is determined from either equ. (26) or from the 

considerations relative to the closing of an open fracture. 

The one item that remains unexplained is the description of 

the sequence of steps for determining which of the behavioral modes 

described in Table 1 is to be used for a given particle. The logic 

of this selection process is shown in Figure 11. 

4. Composite Behavior: 

The calculation of the incremental properties for the 

representative volume utilizes the results for the rubble phase, 

i.e., equ. (9), the results for the several intact phases, i.e., 

equs. (28) and (29), and equs. (6) and (7). 

It is to be kept in mind (see discussion in Section II-8) 

that all the calculations of the previous sections are based upon 

an assumed knowledge of the strain increment [~EJN which, of 

course, is not usually known a priori. Hence, the composite 
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Determination of number (NC) of 
open cracks in particle 

NC=O~=l 

~ 
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Calculation of Particle Properties, Equs.(28) and (29) I 

Figure 11 Logic for Selecting Particle Response Mode 

(See Table l) 
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properties for a given increment must be established in an iterative 

fashion. 

C. COMPUTER PROGRAMS FOR MODEL: 

It is apparent from the description of the model that numerical 

evaluation is not a simple operation and thus, even for the simplest 

cases, requires the use of a high speed computer. 

Two types of applications of the model are of interest. Initially 

it is of particular importance to be able to use the model to predict 

results for simple laboratory tests. The second type of application 

is the primary use for which the model was developed (see discussion 

in Section II-B), i.e., to provide the incremental properties for 

finite element analyses of rock structures. Both of these needs 

were taken into account during the development of the two computer 

programs described in this section. 

A computer subroutine (called PROP) has been prepared for the 

evaluation of the incremental properties of the representative volume 

for rock masses. This subroutine is so formulated that it may, with 

little difficulty, be directly incorporated into existing finite 

element programs for use in plane strain analyses of rock structures. 

The required characteristics of the finite element program are 

discussed in Section II-B. In addition, a small program for 

predicting the results of simple laboratory tests is given (called 

EVAL). This program makes use of the subroutine for the calculation 

of the properties of the rock. The use of these two programs is 

described in the remainder of this section. 
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1. Subroutine PROP: 

The purpose of this subroutine is to calculate incremental 

properties for rock masses (based on the analysis of the representative 

volume). Throughout the development of this subroutine, the authors 

drew upon their extensive experience in the development and use of 

finite element programs, in an attempt to make the subroutine as 

compatible as possible with the more advanced of the existing 

two-dimensional finite element programs. While, to date, the 

authors have not had the time to incorporate the subroutine into 

one of their existing programs, it would be a relatively simple 

operation and is high on the agenda for the continuation of this 

research. 

The logic of the subroutine follows very closely that presented 

in Figure 11, and thus does not require further discussion. In 

order to simplify this exploratory investigation, certain sophistications 

regarding dimension changes, dimension checks, print-out concerning 

the nature and scope of damage in the rock, etc., have not been 

included, but instead left for future work. 

The listing of the program is given in Appendix B. The necessary 

steps for incorporating the subroutine into a finite element program 

are now described. 

The call to the subroutine is: 

CALL PROP (INTR, NELM, ISYMN, IC, DESP, CS, XLS} 

The first four arguments are integer variables; the dimensions of 

the three arrays are DESP(3), CS(3,3} and XL(3}. 

Two preliminary calls must be made to the subroutine in order 



to enter material properties and to initialize history and property 

arrays for each of the finite elements. The formats for these 

calls are: 
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1) The first call is for the purpose of causing the subroutine 

to read the sets (one for each different type of rock) of 

parameters which describe the characteristics of the 

representative volume. The reading and echo printing of 

these parameters is done within the subroutine; the formats 

for the read statements are described later. For this 

call the only argument that has significance is INTR which 

must be assigned the value of 1. 

2) The second call is for the purpose of establishing the 

auxiliary storage arrays for the properties and damage 

history of each finite element. This call must be executed 

for each of the rock elements, i.e., NELM times (the 

precise nature of the sequencing of these calls is described 

later}. For this call the arguments of interest are (the 

material number must correspond to the appropriate rock 

type identification number described in the first call): 

INTR = 2 

NELM = Total number of rock elements 

IC = Material number of element 

After these two preliminary calls are completed the subroutine 

is ready for the prediction of the incremental properties for each 

of the rock finite elements; these predictions take place within the 



incremental-iterative analysis loops (see discussion in Section 

II-B). 

For each iteration of each increment the subroutine is called 

NELM times; the definitions of the arguments in the call are: 

INTR = 3 

NELM = Total number of rock elements 
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{ 
01 \ ISYMN = ) 

if the subroutine is { unsymmetrical form, equ. (1) 
to return the material 
properties in symmetrical form, equ. (2) 

IC = Iteration number (note: the first iteration of each 

increment must be numbered 1, i.e., IC~l) 

DSEP = Estimate of strain increment, i.e., [6E]N of equ. (l)t 

CS = Predicted incremental stiffness properties, i.e., 

[C]N of equ. (1) or [Cs]N of equ. (2) 

XLS = Predicted incremental strain independent stresses 

i.e., [L]N of equ. (1) or [Ls]N of equ. (2). 

The first five arguments are, of course, values provided to 

the subroutine by the calling program, whereas, the last two are 

incremental properties calculated within the subroutine and returned 

to the main program. 

Within each iteration PROP must be called for each of the 

NELM elements; these calls must be in precisely the same order as 

was the case for the 2nd preliminary call. 

The input of material parameters (read by the subroutine 

i" The current development is for plane strain, thus the three 
components of [6E]N are 6Ex , 6EY , and 6yxy. 

N N N 



during the first preliminary call) is according to the following 

format: 

A. Control Card (15): 

Col. 5: NOMAT ( ~ 4 )* -number of different types of rock 

B. NOMAT sets of cards describing the rock types 

1. Initial Card (415,El0.3) 

Col. 5: MN ( ~ 4) -material number (i.e., rock type 

identification number) 

10: NONP ( ~ 2)** -number of natural planes of 

weakness 

14-15: NODIS ( ~ 20) -number of intact particles 

(denoted by the symbol I in Section III-B-1) 

f 
O isotropic rock 

20: ITYP = 
l orthotropic rock 

21-30: Dr-parameter used to control fragmentation of 

of intact particles (see equ. (68)). 

* Indicates dimension limit. 
** The limit of 2 for the number of natural planes of weakness is 

in contradiction to the final decision concerning this limit 
(i.e., 3) as stated in the main body of the report; time did 
not permit the modification of the subroutine to reflect this 
decision; in the authors' judgment there should be very few 
instances when this will be a detriment. In addition, contrary 
to the statement in the main body of the report, time did not 
permit the inclusion of residual stress effects. 
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2. Elastic Properties Card (BEl0.2) - see equ. (l) · 

ITYP 

Cols 0 1 

1-10 E ell 

11-20 \) c,2 

21-30 C13 

31-40 C22 

41-50 c23 

51-60 C33 

61-70 <P (in degrees)* 

71-80 R (see equ. (16)) 

3. NONP+l Groups of cards giving strength parameters (first 

NONP are for the natural planes of weakness, the 

last group is for the sound rock): 

a) 1st card (2I5,2El0.3): 

Co 1 . 5: NOF ( ~ 5) -number of points defining the 

function f(B) (see Figure 10) 

10: NOC ( ~ 5) -number of points defining the 

function c(S) (see Figure 10) 

11-20: at-tensile strength 

21-30: 8 -orientation (in degrees) of natural 

plane of weakness (see Figure 6); left 

blank for sound rock 

* The C11, C12, •.. C33 properties are given for the preferred 
direct1ons x1-x2, the angle <Pis measured from the x axis to the 
x1 axis. 
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· b) As many cards (8El0.2) as needed to describe the 

function c(B) (see Figure 10) 

Co 1 . 1-10: c1 
11-20: s, 
21-30: c2 

c) As many cards (8El0.2) as needed to describe the 

function f(B) (see Figure 10) 

Col. 1-10: fl 

11-20: s, 
21-30: f2 

4. Description of Integrity Factor - As many cards (8El0.2) 

as needed to give the distribution function for the 

integrity factor F (see Figure 4)*: 

Co 1 • 1-10: Pl 

11-20: F1 

21-30: P2 

This completes the input of the parameters which describe 

* The proportion of the rubble phase is automatically assigned, 
NODIS 

i.e.' PNODIS+l = PI+l = 1 - l P;. 
i=l 
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the representative volume. 

The subroutine makes use of one auxiliary storage unit in a 

sequential operation. In the subroutine this unit is labeled 11 111 

and treated as a tape unit (it can, of course, be a disk simulation 

of a tape unit). Special provision is made so that this auxiliary 

storage is not used when NELM = 1, i.e., when the subroutine is 

used in the analysis of simple laboratory samples. The storage 

required by the subroutine for COMMON/Bl/ may be used by the main 

program, for other purposes, prior to the 2nd preliminary call; the 

storage for the second common block is required by the subroutine 

for the period beginning with the first preliminary call and ending 

with the completion of the second preliminary call. 

2. Program EVAL: 

In order to evaluate the effectiveness of the proposed 

characterization for the structural properties of rock, that is 

embodied in subroutine PROP, it is necessary to incorporate the 

subroutine into an analysis program. Because the preliminary 

evaluation was limited to simple laboratory tests it was not 

necessary to use a general finite element program. For the sake 

of economy the following special analysis program applicable to 

simple laboratory tests was developed. 

The program is capable of considering simple three-dimensional 

states; its use in this phase of the research is, however, limited 

to the plane strain case. The program can treat any combination 

of prescribed histories of the six stress and/or strain quantities, 

i.e., prescriptions of the histories of (crx or Ex) and (cry or EY) 
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and ..• (Tyz or Yyz). The only restriction placed upon these 

histories is that during the course of the analysis the prescribed 

quantities cannot be changed, e.g., at some point in the analysis 

a change from a prescription of crx to a prescription of Ex is not 

permissible. During the last stages of this research effort this 

restriction was found to be somewhat inconvenient and will be 

removed early in the next phase of the research program. 

Denote two of the six quantities to be described (e.g., crx 

or Ex' and cry or EY) as f and g. Now, although time is not 

explicitly involved in the characterization, and hence in the 

analysis, for the purpose of describing the stress and strain 

histories it is convenient to introduce it. Thus the prescription 

of the histories off and g can be thought of as a prescription 

of the functions f(t) and g(t). For the purpose of this analysis 

the histories are described by a series of linear segments, e.g., 

see Figure 12. The histories are prescribed by successively 

giving values for f 1, g1; f2 , g2; etc. 

The effects of friction between the testing machine and the 

sample may be included in the analysis in a very crude fashion 

by requiring that a stress be developed to oppose strain. This 
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option is invoked by prescribing non-zero values for the environmental 

stiffness factors, ENVSTF(I). For example, if Txy is prescribed to 

be h(t) and ENVSTF(4) = k4 then the actual shear stress which is 

developed is h(t) - k4y . The last term may be used to crudely xy 

simulate the development of a shear stress, due to friction, on the 

ends of the sample. 
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f ,g 

t 

Segment 1 Segment 2 Segment 3 

Figure 12 Examples of Prescribed Functions. 



Program EVAL is based on a standard incremental-iterative 

analysis procedure for nonlinear problems. This procedure is 

well documented in many places (e.g., see Taylor-72) and thus 
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need not be described here. Within each iteration, program EVAL 

calls subroutine PROP for a prediction of the incremental structural 

properties of the rock. The required degree of convergence is 

sontrolled by the specified maximum value (CONLNT) for the average 

error in the strain increment estimate used in the calculation 

of the incremental properties. The rate of convergence may be 

improved by using an appropriate value for the convergence factor 

"CONFAC"; the improved estimate of the strain increment is written 

in the form: 

If the iteration scheme fails to converge within twenty 

iterations the program automatically halves the increment, and 

the iteration scheme is repeated. In a given analysis, if this 

halving procedure takes place more than fifteen times, it is 

taken as an indication that the problem is unstable and the 

analysis is aborted with the statement, "Sample is no longer 

stable". Once the halving procedure has been used, if the 

iteration scheme at any time converges in less than four iterations, 

the increment is doubled for the next step. 

The listing of the program is given in Appendix B; the use 

of the program is described below: 

A. Title Card (12A6): 



B. 

Col. 1-72: Information to be printed as the heading of 

the output 

Control Card (611, 14, 6El0.2, 2F5.1): 

Col. 1 : IFF(l) = { ~I if fax\ prescribed 
EX 

2: IFF(2) = i ~} if f cry\ 
l £y 

prescribed 

3: IFF(3) = t ~ t if ~ az*j prescribed 
£z 

4: IFF(4) = [ ~ \ if { ~xy \ prescribed 
xy 

5: IFF(5) = f ~ l if { Txz f 
Yxz 

prescribed 

6: IFF ( 6) = f ~t if f 0.:zi prescribed 
yz 

10: ITYPE = f 0)** f 2-D J 1 l for 3-D PROP Subroutine 

11-20: ENVSTF(l) 

21-30: ENVSTF(2) environmental stiffnesses 

61-70: ENVSTF(6) 

71-75: CONFAC - convergence factor 

76-80: CONLMT - convergence criterion 

C. Material Properties - At this point the properties of the 

rock are supplied to Subroutine 

PROP (see description of input for 

PROP) 

* For plane strain IFF(3) = IFF(5) = IFF(6) = l and the histories 
of £

2
, Yxz' Yyz are prescribed to be zero. 

** The use of the current subroutine PROP requires that ITYPE = 0. 
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D. History Cards (lX, 14, 6El0.2), for each history segment 

(see Figure 11) the following card must be 

supplied 

Col. 2- 5: NMIS - minimum number of increments to be used 

in this segment* 

6-15: Value of crx or £x** at end of segment 

16-25: Value of cry or £Y at end of segment 

26-35: Value of cr
2 

or £
2 

at end of segment 

36-45: Value of Txy or Yxy at end of segment 

46-55: Value of Txz or Yxz at end of segment 

56-65: Value of Tyz or Yyz at end of segment 

E. End Card (Il) - Number 9 punched in Col. 1. 

The above sequence (A-E) of cards is repeated for each analysis 

and placed in the data deck consecutively. 

D. NUMERICAL RESULTS: 

Some representative results predicted by the model, for simple 

stress and strain histories, are given in this section. These 

results were obtained by using the two programs described in the 

previous section. 

Unfortunately, a state of plane strain is very difficult to 

achieve in the laboratory, and thus no experimental results for this 

state were located in the literature. In order to develop some feel 

* The automatic halving process previously described may result in 
the use of a greater number of increments. 

** The determination of which of the values of crx or £xis being 
supplied depends upon the value of IFF(l), etc. 
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for the appropriateness of the proposed model, the results are 

qualitatively compared to experimental results from cylindrical 

tri-axial tests. There is, of course, no reason to expect 

quantitative agreement between these two states, but one would expect 

similarities in their general characteristics. Thus, if the model 

can be made to predict results which are similar in nature to measured 

cylindrical tri-axial data, it is a strong indication that the model 

has the capabilities of predicting real rock behavior. From the 

large number of predictions made with the model, a few of the most 

interesting are briefly discussed below. 

Of the experimental results that the authors located in the 

literature, those due to Wawersik-70 appear to be the least influenced 

by the characteristics of the experimental apparatus (in light of 

recent studies of the importance of end effects in tests of concrete, 

Kupfer-69, the authors suggest that even these results may be rather 

highly influenced by such disturbances). Figure 13 reproduces from 

Wawersik's paper a series of stress-strain curves taken with different 

confining pressures. Values for the several parameters which define 

the model (see Section III-C-1) were selected so as to give a stress­

strain curve (zero confining pressure), for plane strain, that 

qualitatively agrees with the one given in Figure 13 for cylindrical 

tri-axial conditions. Because of the quantitative meaninglessness 

of comparing plane strain and cylindrical tri-axial results, no attempt 

was made to select the parameters to obtain good quantitative agreement. 

The values of the model parameters are given in Figure 14; the predicted 

behavior for zero confinement pressure is given in Figure 15. It 
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NONP = 0 
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at = 2000. 

Figure 14 Model Parameters. Used in Study of Tennessee Marble II. 
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must be emphasized that the parametric values, given in Figure 14, 

were selected to simulate cylindrical tri-axial results with a 
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plane strain model, and thus are not correct values for the rock 

(i.e., values that would be used for actual plane strain conditions). 

When viewing these results, two facts should be kept in mind. 

First, the detailed shape of the descending portion of the experimental 

curve may be as much a product of the test arrangement, sample 

properties and test equipment as of the fundamental characteristics 

of the rock. Second, the local variations in this portion of the 

analytical curve are, to some extent, dependent upon the sizes of 

the increments used in the analysis. Thus, once the peak strength 

is exceeded, only the general nature of the curves are of interest. 

The comparison of these results suggest that the model has the 

capability of capturing the general one-dimensional stress-strain 

characteristics of this particular rock. While Wawersik does not 

report any lateral strain (or volume change) measurements, the 

predicted results are in good qualitative agreement with observations 

made by other experimentalists, e.g., see Walsh-65 and Bieniawski-67b. 

Utilizing the same parameters, Figure 14, the predictions given 

in Figure 16 for pressurized plane strain tests were obtained. A 

comparison of Figures 13 and 16 illustrates a shortcoming of the 

model which was previously alluded to in Section III-8-3. The model's 

prediction of strength loss (descending portion of stress-strain 

curve) is a consequence of the reduction inc and f values (see 

Figure 14) as a function of B. The poor correlation between Figures 

13 and 16, for large values of confining pressure, is explainable by 
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the fact that the model, as now formulated, does not account for an 

apparent decrease in the damage rate for high confining pressures. 

An indication of the validity of this assertion is found in the 

following study. 

The c and f curves (Figure 14) used in the prediction of the 

results reported in Figure 16 were modified so as to make them 

decrease less rapidly with increases in the value of S, see 

Figure 17 (in actuality what is needed is to modify the definition 

of S, equ. (57), so that for higher me~n pressures it accumulates 

more slowly). The revised predictions, for 2000 psi confining 

pressure, are shown in Figure 18. With further revision, the 

predicted results could have been brought even more closely into 

line with the observations. A comparison of Figures 13, 16 and 18 

demonstrate the importance of the proposal to make the measure of 

damage (S) a function of the mean pressure. 

Wawersik also .gave experimental results for the case when 
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the load is cycled from a point on the descending portion of the 

curve, see Figure 19. Predicted results for a single such unloading­

reloading cycle are shown in Figure 20. The remarkable similarity 

of these results is particularly significant when viewed in light 

of the complexities of the nonlinear inelastic behavior of the 

region beyond peak strength. The fact that the unloading-reloading 

curve of Figure 20 is 11 open 11 instead of 11 closed 11 as in Figure 19 

is apparently, at least in part, due to the fact that finite sized 

incremental steps are used in the prediction process. 

It is also of interest to consider the predicted behavior 
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for the case where the unloading-reloading takes place prior to 

peak strength, see Figure 21. In accordance with experimental 

observations, (see Section III-A-1) a small but observable 

hysteresis loop is present (a result of damage to some of the 

particles). 

In his experimental study, Wawersik observed two fundamentally 

different types of behavior, i.e., somewhat ductile and 

catastrophically brittle (he referred to rocks exhibiting these 

behaviors as Class I and Class II, respectively). Tennessee 

Marble II (Figure 13) is of the first type and Solenhofen 

Limestone of the second. The uniaxial stress-strain curve 

obtained by Wawersik for the limestone is reproduced in Figure 22; 

utilizing the parameters given in Figure 23, the results shown 

in Figure 24 were predicted with the model. 

Because of the limited number of different stress and strain 

histories considered, and because in fact the experimental results 

were not for plane strain, any conclusions drawn from the above 

comparisons of model predictions with experimental observations 

must be treated as very tentative. 

Nonetheless from the results presented herein, and others not 

reported, it would appear justifiable to state that the model has 
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the demonstrated capability of capturing, with a fair degree of 

accuracy, the behavior of rock for at least relatively simple stress 

and strain histories; and that these capabilities will be significantly 

enhanced once certain modifications are introduced (e.g., dependence 

of the measure of damage on the mean pressure, use of a non-straight 
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failure envelope, etc.). 

A really convincing substantiation of the model will, however, 

only be possible once the model is incorporated into a finite 

element program, and used for the analysis of actual rock structures 

for which carefully taken measurements are available. 

Finally, it is of interest to consider the "structural peak 

strength envelope" predicted by the model, i.e., the envelope of 

the Mohr 1 s circles for peak strength conditions. Plots of several 

such Mohr 1 s circles are given in Figure 25; an expanded view of the 

area near the origin is given in Figure 26*. Also shown in these 

figures is a plot of the average (taking into account the concept 

of the integrity factor, e.g., see equ. (8)) failure envelope (see 

equs. (14) and (15)) used at the particle level. Except for the 

tensile stress region the two are nearly identical; thus, indicating 

that a measurement of one can be used to predict the other. Thus, 

if the peak strength envelope is parabolic one would expect the 

macroscopic failure envelope to be parabolic, etc. 

E. DETERMINATION OF MODEL PARAMETERS: 

The final task of the characterization procedure is the 

calibration of the model, i.e., for the rock mass of interest, the 

determination of numerical values for the several parameters which 

describe the representative volume, i.e., c(B), f(B), at, etc., 

(see Section III-C-1). 

* These plots are based upon the assumption that at peak strength 
the stress normal to the plane is the intermediate principal 
stress; an assumption whose implications are not immediately 
obvious. 
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It is envisioned that this process will consist of three steps: 

a) The determination of the basic macroscopic rock properties, 

such as cohesion (see Figure 10), friction, variability 

(see Figure 4), etc., from fundamental observations of rock 

behavior in simple laboratory tests. 

b) The use of the properties, determined in the previous step, 

for the prediction of the behavior of laboratory samples 

subjected to complicated stress and strain histories. 

These predictions would be compared with laboratory measure­

ments, and the parameters determined in the previous step 

modified* in order to improve the 11 fit 11 of the data**. 

c) The use of the properties, determined from the above two 

steps, in the prediction of the behavior of large scale 

rock structures for which experimental results are 

available. If necessary, the parameters would again be 

revised in order to yield the best comparison of analytical 

and experimental results. It is expected that the histogram 

of the integrity factor will be the quantity that will require 

* There is currently considerable effort being expended on the 
development of systematic means for making such revisions, e.g., 
see Collins-74. 

** The concept of revising the "fundamental" properties determined 
in step 11 a11 in light of the results of steps 11 b11 and 11 c11 is 
justified by the following consideration: While the basic 
parameters, which describe the fundamental aspects of rock 
behavior (e.g., cohesion), are introduced from a consideration 
of the mechanics of rock behavior, they may ultimately be treated 
as merely arbitrary parameters which describe a proposed model. 
As parameters, which describe a proposed structural characterization 
model, they should ultimately be selected to yield the best 
agreement with experimental observation of rock behavior at the 
structural level. 
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the greatest revision. 

To date, the only effort that has been expended on this phase 

of the research is the gathering together of some published data 

concerning values of the basic parameters, see Appendix D. Upon 

completion of the three-dimensional model, the major research effort 

will be concentrated on this calibration task. 



IV RECOMMENDATIONS FOR FUTURE WORK 

The research and development which is required to complete the 

overall project (see Section II) may be categorized into five main 

steps: 

a) The improvement of the plane strain model. 

b) The incorporation of the plane strain model into an 

existing two-dimensional finite element program, and 

the evaluation of the overall effectiveness of the 

resulting program. 
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c) The extension of the model to the general three-dimensional 

case, and the incorporation of the results into an existing 

three-dimensional finite element program. 

d) The development of a systematic procedure for determining 

the model parameters. 

e) The substantiation of the ability of the model to 

represent the important structural characteri~tics of 

rock masses. This verification will include the comparison 

of analyses of large scale rock structures with available 

experimental measurements. 

The execution of these five steps will, of necessity, require 

a certain amount of iteration, e.g., discrepancies between 

experimental and analytical results observed in step 11 e 11 may lead to 

a revision of the basic model (step "a"), etc. 

At this point in the project, it is possible to list those items 

that need to be covered in the initial step of the continued research 

effort, i.e.: 
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a) The modification of subroutine PROP to include the effects 

of residual stresses, a maximum of three planes of weakness 

(instead of two as is now the case), a more realistic 

description of the behavior of joints (e.g., including 

dilatation effects, the initial state of the joint, etc., 

Goodman-72), a more accurate failure criterion (e.g., a 

parabolic Mohr's envelope), the effects of pore water 

pressure, and print statements to indicate, at various 

stages of the analysis, the degree of rock damage. 

b) The development of a more rational definition for the 

measure of damage B (see Section III-B-3); of a better 

understanding of the process which governs fragmentation; 

and, possibly, a more accurate description of the rubble 

phase. 

c) A study to determine the importance of accounting for rate 

effects, temperature effects, size effects, variability of 

the stiffness parameters (E and v for isotropic rock) and 

the coefficient of friction, and the nonlinear effects caused 

by closing of pores at very low stress levels. 

d) The determination of the effect of the number of intact 

particles (NODIS) on the economy and accuracy of the model. 

e) A study of the desirability and feasibility of revising the 

basic assumptions underlying the use of equ. (3) and of 

Table l. 



V CONCLUSIONS 

The basic conclusions drawn from this research project are: 

a) The development of a comprehensive characterization of 

the structural properties of rock masses, in terms of a 

representative volume, appears to be feasible. 

b) The representative volume described in this report appears 

to be capable of representing, in a qualitative fashion, 

the general characteristics of rock behavior for a state 

of plane strain. However, several relatively straight­

forward revisions are needed in order to improve the 

quantitative aspects of the representation. 
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c) The proposed characterization for rock masses is significantly 

more advanced than any other currently available model. 

d) The process of incorporating the subroutine, that has been 

developed for evaluation of the proposed model, into existing 

finite element programs appears to be relatively a simple 

task. 

e) A general three-dimensional model could be developed as an 

extension of the plane strain model presented in this report. 

Conceptually this development is relatively straightforward, 

although the algebraic and numerical difficulties will be 

substantial. 
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VII APPENDICES 

A. DETERMINATION OF FAILURE PLANE ORIENTATION 

In this appendix the procedure for determining the minimum 

positive value of the quantity k defined by equ. (26) is established. 

Because this task is related to the problem of finding principal 

stresses, it is relatively simple to demonstrate that there is always 

one or more such minima, except for certain very specialized cases, 

e.g., case of a hydrostatic stress state in an isotropic rock. 

Ignoring for a moment the fact that theoretically k should not 

be negative, a minimum is sought by setting the derivative of equ. 

(26) equal to zero, i.e., 

Set 

Where 

Let 

Thus 

k(e) = u(e) 
vTeT 

dk = O = u v - UV 
de v2 

u 

g(0) =UV - UV 

g(8) = 0 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

The expression for g is a strongly nonlinear function of e and 

thus is solved by iteration. In order to ensure that this process 

will converge to the correct result, a relatively good initial 

approximation (8
0

) is first determined. 
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Supposing for a moment that the total stress history is proportional 

(as noted in Section 11-B, this is seldom true), the stress increment 

can then be expressed in the following simple form: 

!::.ax t:.ayN !::.TXYN 
(cS 

N ) . --- = = 
ax cryN TxyN N 

Equ. (25) then yields: 

v = (c - u) cS 

I I I 

and v = (c - u) cS 

For this special case equ. (A-3) yields: 

I I 

U C - U C = 0 

I 

If c = 0 (isotropic material) the above equation yields: 

I 

u = 0 

Utilizing equ. (24) gives: 

or 

tan 20 = 
0 

a -a 
f X y -rxy - n 2 

(J -(J 

f x Y+nT 2 xy 



The above expression has two roots of interest, i.e., 

and 

0 = l Tan-1 
o 2 

II I 

0 = 0 + TI/2 
0 0 

{ I 
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The values of k, corresponding to each of these two angles, are 

calculated (the special considerations involved in this determination 

are described later in this appendix) and the one yielding the lesser 

value is used to define 0
0

• 

The Newton method (e.g., see Carnahan-69) is used to solve equ. 

(A-4); 0
0 

is used as the initial estimate. Each iteration of the 

Newton method requires the following calculation: 

Iteration is continued until the change between two successive 

iterations is less than approximately one degree (because of the 

inherent uncertainties involved in the characterization of rock, a 

more accurate determination is not justified). 

When using this solution method, care must be taken to avoid the 
I 

neighborhoods of angles for which g (0) = 0 (i.e., a maximum or minimum 
I 

point for g}. If g (0) = 0 or if it is sufficiently small to make 

l0;+l - 0il ~ 2.0 rad., then in order to move from this neighborhood 

and continue the iteration in an orderly manner, 0i is arbitrarily 

changed by± 0.4 rad. The plus sign is used if it gives the larger 
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The values of k, corresponding to each of these two angles, are 

calculated (the special considerations involved in this determination 

are described later in this appendix) and the one yielding the lesser 

value is used to define 0
0

• 

The Newton method (e.g., see Carnahan-69) is used to solve equ. 

(A-4); 0
0 

is used as the initial estimate. Each iteration of the 

Newton method requires the following calculation: 

Iteration is continued until the change between two successive 

iterations is less than approximately one degree (because of the 

inherent uncertainties involved in the characterization of rock, a 

more accurate determination is not justified). 

When using this solution method, care must be taken to avoid the 
I 

neighborhoods of angles for which g (0) = 0 (i.e., a maximum or minimum 
I 

point for g). If g (0) = O or if it is sufficiently small to make 

l0i+l - 011 ~ 2.0 rad., then in order to move from this neighborhood 

and continue the iteration in an orderly manner, 0i is arbitrarily 

changed by± 0.4 rad. The plus sign is used ~fit gives the larger 
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value of v(e) (i.e., denominator of equ. (A-1)) and vice versa. If 

such a situation arises more than three times during the iteration 

process, it is taken as an indication that a minimum does not exist, 

and therefore all angles are equally critical; at this point the 

iteration process is stopped and the last value of ei is arbitrarily 

used. 

Once the critical value of e is determined it is then necessary 

to calculate the corresponding value of k. Because of the condition 

that k ~ 0 and because the limitations placed upon the permissible 

particle behavior modes (Table 1) may have artificially prevented a 

failure from occuring in the previous increment, this calculation 

involves some additional considerations beyond the straightforward 

use of equ. (A-1}. 

For non-failure conditions (i.e., equ. (23) not satisfied) the 

11 reserve strength 11
, Rs, against fa i1 ure can be measured by the 

expression: 

R = u - kv s 

At the beginning of the increment k = 0 and u is therefore the reserve 

strength (it is thus also the reserve strength at the end of the 

previous increment). With the relationships of u and v to Rs in mind, 

the values of u(e) and v(e) are calculated and the following 

interpretations placed upon their signs: 

u > 0.0 - no tendency for failure at end of previous increment 

u ~ 0.0 - failure prevented in previous increment by limitation 

of Table l 



v > 0.0 - tendency for particle failure during this increment 

v ~O.O - no tendency for particle failure during this increment. 

The above considerations lead to the following specifications 

for the value of k: 

v <O.O, set k > 1.0 (indicates no failure during this increment) 

v ~ 0.0 and u ~O.O, set k = 0 (failure at beginning of increment) 

v > 0.0 and u ~ 0.0, set k = u/v 

To this point, the question of the value of the parameter n 
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which appears in equs. (18} and (21) has been ignored. Three values 

must be considered, i.e., n = 0 (tension failure) and n = ± 1 (shear 

failure). The requirement that both n = ± l be considered is apparent 

from a consideration of Figure A-1. 

The computational steps outlined in this appendix are performed 

three times, i.e., for n = 0, + 1, - 1; the corresponding values of 

k are compared and the smallest selected as the critical value (the 

corresponding angle is the critical angle). 

At this point, some consideration needs to be given to the fact 

that for certain situations there is a non-uniqueness involved in 

determining the critical shear failure plane (e.g., see Figure A-1; 

theoretically, fractures on the planes defined by n = ± 1 are equally 

likely). Practically, this problem is not apparent because the 

numerical scheme used to determine the values of k always indicates 

one value higher than the other (due to round-off-error and incomplete 

convergence), i.e., an arbitrary selection is made of one of the 

orientations over the other. Because, for each of the particles, the 
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orientation of failure plane for 71=1 

---'-------1-...,_,4,--1---------..... CJ" 

...._..LL---.... orientation of failure plane for 7J =-1 

Figure A-1 Mohr Envelope for isotropic Material; Failure in Uni-axial Compression. 



sequence of operations are performed in the same order they all 

experience for a given increment the same bias in this selection 

process. This process may be viewed as an arbitrary selection 

for the first particle and a resulting influence of this first 

selection on those for the remaining particles. This process can 

be likened to what happens in the physical event. In the physical 

situation, the orientation of the first crack is influenced by 

arbitrary factors, such as initial imperfections, and the remainder 

by the bias introduced in the stress field due to the presence of 

the first crack. 
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0(10048 
C)00049 
0000!">0 
000051 
000052 
000053 
\1000!>4 
000055 
CiO0056 
000057 
000058 



CE2,2,3PM~) = 0,0 
crz,3,,,M~> = x~u•0,s 
GC JC 25 

20 REAL(5,802> <<CEZCI,J•M">•J=l,3),1~1,3),A~G,RATZ(M~) 
215 OC ~O T • 2,3 

DC JO J=Jd 
30 CE2tl,J,MN) = CtZ<~•l•M~) 

IF(!T~P .tG. C) GO TC 50 
WRllEC~,905)~~G,RATLCMN>,<CCEZ<I,J,MN>,J=1,3),J=1,3) 

50 Ni::f\c,q:i7cMl'IH-1 
DC 60 !11111,~ 
REAC(5,~01) "CfZCI•~~,,~cczc1.~~>-sIGlOZ<I•MN),THSZCI,MN) 
WR11ECf,9tt) I•SIGTOZ<I•~N),THSZ(l,MN> 
T._,Sdl,t<!N) = THSZCI,~:N)*C,0349066 
M = "Cr.ZC!,Mf\) 
REAC (5,RQ2) (CVZ(l,J,M~>,CSLZCI,J,MN),~=1,M) 
WR!Jl(f,906) (CVZ(l,J,M"),CSLZ(l,J,MN),J=l,M) 
M="lFlCI,t'.N) 
REAL (5,802) CFVZ(l,J,M~), ~Sl<I•J,MN>,~=1,Ml 
WRIHU,,9lA) 

60 ~RllEC~,906) CFVZC I,J,M~), f SZ<IPJ,MN),J=l,M) 
t,i, = I\Cf'\IS2Ct-1"> 
REA~C5,ij02> (POPZ<I,MN),VALlCI,~~),I=t,M> 
Wf;llEC~,903) 
W~l1E(6,9~4) (VALZ(J,MNJ,PL~Z<l•~~)•I=1 ,~) 

C 
C lRH,SrCRt-1 (~TtiLTIH:PlC Pfil.JPl:.fHIES TU ><•Y AXl:.S 
C 

IF(.111\G .FG. c.o> GC lO 99 
AI\G ~ ANG*,03~9066 
SA a SJN(ANG) 
C/J :; crs<ANCi> 
cs<l,J) = 0,5•<1.~+CA) 
CSC!,~) = 0,5•<1.~•CA) 
CSC1'3) = •Sfl 
csc,,1, = csc1,2> 
cs<,,2, = csc1,1> 
cs<,.J, = SIA 
csn,o = o,5,q;11 
CSC3,:2) s"'O.~•SA 
CSC3d) = CA 
OC 15 J=b3 
DC I':: I =1,3 
DL = O.O 
0( 73 K=J•3 

73 DL ,ii Cl 1+CE.Z(.Je~,MN>•CSCL1>1\) 
75 CF.11(.,;,t l : Cl 

nc ec 1 = 1,3 
flC tC; l = t,3 
D L :; <; , C 
oc n J=t,3 

7 7 D L = C IJ + r S C 1 , J ) • C P A ( J , L > 
80 C[2(J,t,Mh) ~ GU 

DL ~ c.~•ct.~-CA+(1,0+CA)•RATZC~I\)) 
X~LL = G,5*(1,C+CA+(\,O"CA)•RATlC~I\)) 
M = I\CCHI,~I\) 
DC t5 J=1~M 

85 CV2(1\,J,Mh' ~ CVZCl\,J,M~>•X~UL 
SJGlCl(~,~N) = XMUL•SIGTOiC~,M~) 
RAT~(~N) = CL/XMUL 

B-2 
000059 
(;00060 
000061 
OOC062· 
()00063 
OOOQc,t, 
000065 
000066 
000(167 
C00066 
000069 
000070 
000()71 
000072 
000073 
000074 
000075 
()00076 
000077 
000076 
000079 
00006(1 
000061 
000082 
000063 
OOO\lb4 
000065 
000066 
000087 
000088 
G00089 
(i00090 
000091 
000092 
()00093 
ooooc,11 
()00095 
(;00096 
000097 
000098 
000099 
()00100 
()00101 
0001(;2 
000 UJ3 
000104 
000105 
000106 
000107 
000108 
C00109 
cocuo 
000111 
COC112 
uoo 113 
0001111 
000115 
U00116 
000117 
000118 



99 C:CI\IHUl 
REH.RI, 

C 
C tl\lllALJZl P~lPERlV ARRAY& FOR EACH ELFMEI\T 
( 

C: 

120 ~" 11 lC 
N C t-. F " t-. fHi P Z ( tJ ~! ) 

NCtIS = NLJnlSZ(M~) 
R/il = R1HZ(t,,~) 
DA ► ~Al = DA~FTZl~~> 
N:: J\CNP+l 
[)(1 124 1=1,t,; 
SIGlt(J) ~ SJGTuzcr,~N) 
NCFtll ~ h0~7(l,MN) 
N(Clll ~ ~OC2(I,MN> 
l~S(l) = 1HS2(l•M~) 
DC 124 ..;=1•5 
Fv<,,~, ~ rv2c1,J,~I\J 
FS<!•J' = FS2(1,J,~I\) 
CVC!,J) ~ CVZ(l,J,~~) 

12~ CSL(I,J) e C5LZlt,J,~N) 
t1C 126 J:d,3 
OC 126 J=ld 

126 CE(!•~) = CltCI,J,~I\) 
OC 12€ l=1,I\CC1::i 
PCFtl): POP2(1,MN) 

128 VAL~l) = VAL2(1,MN) 

B-3 

C Silt CF THE C~IGTNAL FRAGHl~TEt ~AT[RIAL PARTicLl ESTABLISHED 
C 

( 

FPllt< • leO 
OC !29 1=1111\Ct.,lS 

129 FPA~ :: fPAR•PlP(I) 
Jf(FfAP :tr. c.o) FPAR=O.o 
OFrAR 111 "•0 
XU~ • CfC1,2) 
X~L = n,5•CCEC1,t>+C~C2,2))•XLA~ 
BLK~CC = XlA~•XMU/3.0 

C lfdllAI JZE. Stt'PLE STRAlf'; 5lAll A~u PARTICLE. STATt. STO~AGE 
C 

DC l 3 2 l = 1 ,3 
DES( P = OoO 

132 fSC!> = O•O 
OS = FS<l,2) 
DC 135 I=1•~CCIS 
f\JCFfC( [) 11: l\iCJ,P 
DC 134 J=l,2 

!3~ T~A(I,J) ~ T~S(J) 
oc 135 J=!,3 
SIGHI,J):: (.:.0 
OSlGF<I,J)=O.( 
SLl1.t'(l,J):11 ,.0 
OSL!C~( !,.J)=o.o 
ostFC I ,,J)'ll0,C 

135 SEF{IeJ)=•t.v 
lF<~fL~ .EQ. 1) RtTLRN 
tCf\1 = ICI\H·t 
WRlltC1) tSPCFCI},I:1,NST~) 
R[TLR" 

000119 
000120 
000121 
000122 
000123 
000124 
000125 
C00126 
000127 
000128 
000129 
000130 
4.)00131 
()00132 
000133 
()00134 
()00135 
000136 
OOOtJ7 
000138 
(100139 
000140 
()00141 
()00142 
OO(lt 43 
(i00144 
(100145 
000146 
(100147 
000148 
OC0149 
()00150 
000151 
000152 
000153 
()00154 
000155 
000156 
000157 
000158 
000159 
0001b(I 
000161 
(JOOH>2 
()00163 
000164 
OOC165 
000166 
000167 
000168 
CJOC1o9 
000170 
000171 
000172 
000173 
000174 
000175 
QC0176 
000177 
000178 



C 
C 
C 

C 
C 
C 

C 
C 
C 

190 

193 

2CO 

'0 '5 
206 

207 
210 

220 

250 

CALCLLATI~N CF lNC~E~ENlAL fROFtRTttS 

IF(~ELM .EQ, 1) GO TC 195 
Jf(!CI\T :tr. l\tLM) GC TC 193 
ICf'l 111 0 
REl'l!I\C 1 
ICI\ I • IC"1T+t 
REAL(l) CSPCFCl),1=1,NSTR> 
BACI\SFACf t 
JFC!C .GT, 1) GG TC 250 

UPLATE PARTICLE SlATE ~ BlGINJI\G ~F NE~ 11\CRlMf~l 

DC ;d(l I=l,NCCIS 
NCff 11: I\OFPO<I> 
JFC~CFP .ta, O) GO TG 206 
OC ,05 J1111,I\CFP 
SllC~Ct,J>•SLJD~Cl•J>+DSLlD~<I•J> 
SEF{l,J)m:OSlPCI,J)+ SEP<I,J) 
NCFfA(T) 1111 NCFP 
OC ,C7 K•t,3 
SIGF<l,K)g SIGPCJ,K)+OSlGPCl•K> 
cct-1 nm: 
OC i2C K = 1,3 
ES(~)= ES<K) + OES(K) 
FFA~ = FPAR+CfPAR 

B-4 

CAltLLATION [f lNCR~MlNTAL PROPER1TES• FDR A GIVEN ITERATION 

OFPA'1 s O,O 
VCLt a ES<I >+ESC2) 
VCLf a VOLA+C[SPC1)+CESPC2) 
BLK~Cf:J 111 13LK~OD 
IF(~GLR .GE. c~o> bLKMDB=o.c 
FPA~SlC1) = eLKMDB*VCL8 
fPA~STC~) = FPARSTCl) 
FFA~SlC3) ic C,(; 
OL: C,O 
If(vCLR .GE, C•v .At\C. ~CLf •Gt. v.0) GU lu 257 
Jf(~CLr .LE. UeO) GC TO 252 
DL 3 •~s(VOLF1<vnt~~voL&)) 
GC re :,57 
I F ( ~ C L F e LT • (, • ~. ) G l' l rJ 2 !:> 6 
DL: APS(VPLP/CVULf•VOlb)) 
GC H :,57 
Ol = 1.C 
BL"~t~ = UU•fLKrGV 
0( gf.C K::1,3 
OESO.) = Cf.SHI<) 
XLSlk) :: (,.,() 
DC ~tt L11:.1o3 
CS(l\,L) :: l',C 
OS =O.~•C.S 
DC 7£0 J1:d,t-.CClS 
NCH·= tdHPACI) 
N(fF[;(J):: t-.(FF 
ClO ~C3 j\=1,3 
OSL!C~Cl,~): O,V 
OSlfCI,k) = CeC 

000179 
000180 
000161 
000182 
000183. 
OOCl184 
000185 
000186 
000187 
00()188 
000169 
000190 
000191 
000192 
CJ00193 
000194 
C00195 
c.>00196 
(J00191' 

.000198 
000·199 
000200 
0002.01 
000202 
C00203 
0002011. 
000205 
()00206 
OC-02<.,7 
000208 
000209 
000210 
000211 
COCJ212 
000213 
000214 
000215 
000216 
000217 
00()218 
()00219 
()00220 
()00221 
000222 
000223 
000224 
(l0t225 
C,002g!6 
()00227 
000226 
000229 
000230 
000231 
00()232 
000233 
000234 
00023'5 
()00236 
000237 
000238 



B-5 
r .. ~<"> Ill lHl>Cl•"> C00239 

203 XLF(k) & o.o 000240 
1c=1 000241 
pp:f CH IO> 000242 
)(Jfqliir.VJH l t(;) 000243 
N ffl C 000244 
PF =c.o (J00245 
HP : C 000246 
P2 : c.o ()00247 
NS ill C 000248 

C 000249 
C LElff1tA1Nl I\(,. OF C Pl I\ CRA<-t<.S Ui f'A~TlCLf 00025() 
C 000251 

lf (i'CFP .H~o·<i> r.G TC 3C9 000252 
DC ~C4 J=l•"tFF 000253 
JF(HFC!,J> $ L f:. • c.c> Gl TL 3 () lj 00()254 
N1111 I' ♦ 1 ()00255 
NCUl\li::J 000256 

3 C ll C 0, 1 I I\ l E 000257 
Pl ::;, c.c (104)258 
NS iii " OCC259 
OSU· S \J : CloO 00026() 
Sti\10) ;; (.. 0 0002b1 
S/l\1{2) = (i. 0 000262 
Stillt 3) ::; 0,0 OCi02o3 
JF(~•1)309,3,~,3h2 000264 

C lttiSllC fd:.SPCI\Sf:. "' I\ f; CPEN CRACKS 0002b5 
~oq P1 ::: 1. (l 000266 

Gl IC ~60 000267 
C EL~STlC t,ilSPCt-SL .. Ct-.£ CPU-. CHACK 000266 

314 P2 I;; 1 • (! 000269 
J=I\LLC1> ()00270 

31'' SIG ht-. go; 0,0 000271 
S l G I\ S = (1. 0 000272 

~lfl r1,:::1t-S<..i> OO<i273 
r. A i= C C S < Hl> 000274 
Sill=SHfi~) OOC275 
AF< ! ) = 0,5*'1-l)+CA) 0()0276 
ABC,) g; 0,5,q l •O .. Cll) 000277 
A 8 ( J ) i!'! SA 000276 
8 (1) Ill •0,5•~A 000279 
0(2) Ill •A(1) 000260 
R ( 3 ) = CA (j()()281 

0( 322 K111 J, 1 0002b2 
OLl Ill 0,0 000263 
Ol2 ~ r.o 000284 
oc .: 2 C l-=J. d (J002b5 
D l 1:. Cr<K11l)*P[HL)+L:L1 000266 

320 DL2~ crcl<'PL>• R(I )+CL2 00(1287 
AH~> l!il Md ()00268 
Xtdll g:, o.o 000289 

322 DC I< ) I: () U2 ()00290 
)(I(}! 2 l!il o,o 000291 
Xl<I~2 ~ o,o 000292 
DC J25 K=1o3 ()00293 
Xl<ll1 = XK 111 ... Afth)*At:l(K) 000294 
XK112 = XKT1~ + AB<K)• IHK) 000295 

3 25 XKI,2 = XKI22 ... tl(K )* (.; ( K) OOC296 
D L 1 fl! ,.OICXkill•Xkt2~"XK11~•Xkll~) 000297· 
DL2 :;i XKJ11 000298 



C 

C 

XKI!l = •XKJ22*0U1 
XKI12 = XKl12*llU1 
XK122 = ,.(JU2•CU1 
OC J3C K=ld 
HCkJ = •AfCK)•XKI11 •D<K>•XKI12 

330 X~(K) =•Af(K)•XKI12 •OCK}*XKl22 
OLt = rsrrsv 
oc 340 1<=1,a 
DC 335 L=ld 

335 CPB(K,t) :11 CfCl<,L)'"AfCK>•H<L>•Cll~>•XtHt.> 
OLt ; lllJ1 +P2*HK>•OlS<K) 

340 XLPLk): •CXMJll•AVCkl+U(~)*XKl12J•SIGNN 
1 "(XKI12•Af(KJ+O(~)*XKI22J•SIGNS 
OSlFCl,J) = CL1 +XKttl•SltiNNiXKlt~•Siti~S 
1FC!f8 .r~. 1) GO TC 700 

~COIFY HlSPUhSE If CRACK CLOSlS 
IF <SEP(J.J)~CSEP(I,~) .GL, o.c) G~ TO J60 
NS = I\~• t 
P2F =•P2•CSlPlI,J)tCSLPSV)/CDSEF<l,J)•rSEPSV) 
Pt ::: F? .. P2P 
P2: F?f 
DSEF<I,Jl ~•SEPCJ,~) 
GC lC ~60 

342 P2 = l.O 
343 Jt : l\r.U< 1) 

Tt,,1 = TbS(Jl) 
CAl = r.CSCTb1) 
SAl 111 ~IN(Tf-<1) 

B-6 

DE~C m o.S•(C1•0•CA1)*SAV(1)+(1.o•cA1)•SAV(2)+sAl•SAV(3)) 
OE5C III o.5•<<1.Q•CA1)•SAV(1)+(1,C+CA1)•SAv{2)~SAl•SAV(3)) 
OE" = o.5•C(t•O+CAt)•DlS(l)+(l,O•cA1)•CES(i)+SA1•0ESC3))•P2 
OESl = o.5•((\eOMCAl)*OlS(1)+(1,0+CA1>•cEs(2)•5Al•OES(3))•P2 
J2 .i l\f)l.;(21 
DTb: THS(J2)qlH1 
CCH· :: COSCOH·) 
DLl\i = 2.o•<r,Es1+0Eso>1<1,0Rco1b) 
DLl\l 111 OEh+OEI\C•Q,5•C1.0+CDlh)•ULN2 
IF<~CT~ ,LT, ~~997~4) GG TU 353 
SEf~=SFP<I,J1)+USlP(J,Jl) 
If(5EPP +CUN1 ,GE. UeO ,ANC, ~fP<I,~2)+0UN2 eGE, CeO>GO TO 353 
Ol ~ Cfl\+Cfl\C+D(s1•cEso ~ 
JfCSEFP +CUNI ,Ll, S~PCl,J2)•~uN2) GO TG 346 
01..;hi: •StPCI,J~) * .999999 
OLt-1 111 OIJ .. OUl\2 
IFC::iEFP .q,;l 11"i1 .GT. O,(J) GO 1C 353 
DLl\1 = •StPP • ,999~99 
OLI\.: Ill DU"'OlJl\l 
GC tc 3S~ 

348 DLhl m qSlPP • .999999 
01..;f\<£ = tJIJ"'OUl\1 
IFC5EF<I,J2)+CUN2 .GT. 0-0) GO l( 353 
DLI\~ = •S£P<r,J2) • .999999 
0 L ~ ! = C II ., 0 lJ I, 2 

353 osti,;(I,JJ) = CSEP(l,Jl) +OLN1 
DSEf(I,J2) = C5lPCI,J2) +DL~2 
IF<!FB .fQ, C) GO lC 354 
IFCSEF(!PJ2)+CSL~(l,J2) ebl• O,O)GP TU 700 
OE~~•CS£PCY,J2)•S[FCI,J2) 
DSf.FC!,J2)=•s~P(J,J2) 

()0()299 
000300 
000301 
()0()302 
()003()3 1 

00()3041 
000305· 
()()0306 
(lOCl 307 1 

000306 1 

000309 
(100310· 
000311 
0()0312 1 

000313 
()00314 
000315· 
000316 
000317 
000318 
()00319 
000320 
()00321 
Ci00322 
000323 
COCl324 
000325 
()00326 
(i00327 
000328 
OO<l329 
00033() 
0003lt 
000332 
()()0333 
()()()334 
000335 
COC336 
000337 
00()338 
000;339 
oocf)tto 
000·1'41 
coo 342 
000343 
00034'1 
000345 
000346 
000347 
OO<i348 
000349 
co035o 
OOC351 
000352 
(100353 
000354 
0OCl355 
000356 
000357 
000358 



C 

C 
C 
C 

C 
C 
C 

C 
C 

GC 1( 700 
354 DC 355 JJ=t,~ 

J=f\CL<JJ) 
P3C.,.Jh 1,0 
IF<SEP(l,J)+rSlP(l,~) .Gla 0,0) G~ TO 355 
NS :; "~"'1 
P3C~~>=~sEP<t,J)/DSEFCJ,J) 

355 CCf'111\Ut 
P2 = C.o 
lF(f\S .Gr. 2) GL TC 36v 

B-7 

t-'CJCIF'1 RlSPl)I\SF. IF CNI:. CR MUFH CRACI< tlCS[ 
OL .:i FH1) 
I< l : 2 
JJ a l 
Jf(LL .LT- ~3(2>) GC TO 3~7 
KL a 1 
DL .i F'.H2> 
JJ ;i 2 

357 J ~ I\CUCKL) 
OStrSV = OS[P(l,J)*DL 
L=l\~L(J~> 
DSEr<I~L> =•SEP<J,L) 
P2 :a laO"" DL 
NS= 1 
GC IC 311 

lLASTIC PURTIG~ rF 11\tAl~lNTAL PROPERTIES 

36C OC J65 t<=-1,3 
OC :65 L=!,3 

365 CPA(k,L) = Pt•CE(K,L)+P~•LFH<K•Ll 
IFC~S .~ft h> GL TC 700 
IFC"S .GTe 1l Gu TC 700 

SLltlNG CR CRACK f Pk~ATICI\ (UR RlOPlNING) RESPOI\S[ 

DC 37C K = 1d 
SP(!')=SIGPCJ,t<) 
DSP(K): 0 0 0 
OC 37() L=ld 

37C osF(k) = CSP(l<)+cPA(K,L>•olS(L) 
S 1 ;i; S P C 1> 
S2:; SP(2) 
512= SP(3) 
DS1 =C!SFCl) 
[)Sci =CSP(2) 
OSLi•C~fC3) 
NCAf\G ,:: NGtP 
IF<~CFP olO. C> GO TC 510 

Sl-.AHCH FCF PCSS!RLf rAILldH. PLANE 1111 • 

CONSIGl~ PRl~lOUSLY DEFINlD PLANlS 
oc ~cc J=d,f\rANG 
Uf\=5E.F< I ,J) 
XKC., h1 ,0 
If(Lf\ .GT. o.c,~o TC 500 
us=sLINtJ,J> 
,.I J .J :a.., 
JJ= .. 
IF< .. ~ .GTo ~rf\F+1) JJ=NCf\~+1 
CALL l~TP<JJ,C,F,SIGT,US,Uf\J 

000359 
000360 
000361 
000362 
000363 
0003b4 
000365 
000366 
000367 
000368 
000369 
OOCJ370 
00()371 
OOCJ372 
()0()373 
000374 
000375 
<iOCJ376 
()00377 
000376 
C00379 
C00360 
000361 
000362 
000363 
0003tl4 
"00365 
000366 
000387 
000368 
0003ti9 
000390 
()00391 
000392 
000393 
000394 
()()0395 
()00396 
()00397 
000398 
C00399 
000400 
000401 
000402 
<iOC403 
(lOC404 
000405 
000406 
()00407 
()OOIH>8 
()00409 
()(10410 
000411 
()00412 
000413 · 
000414 
()00415 
()00416 
000417 
(100418 



IF < .., • I E • N CJ I\ F ) <J Cl H: 4 1 <i 
C = C•)'!N1G 
S I Ci 1 r: S J G T • )( H l(; 

410 CSV(wh=C 
fS\J(Jh:f 
SIC IS(J)s:SJCi'T 
rt,, : Tl-,S(J) 

Clt-c 11: rUSl 'fi-;2) 
STI- &-: SlN(Tt-;2) 
SA\l(\J) 11 1.0 
SI\S = ~,5*<S2mS1)•Slh+S12•tlH 
TS~S=SNS+D.~•CDS2•CS1)•Sl~ •ust2•CTH 
lF(1Sl\5 .lT, C.O) SAVlJ):•1.0 
s : o.o 
Cf1 ;;. STGT•F 
DC l.13() ~r.;1,2 

8-8 

)(Id, a )(K~ 
U=t~•f•C,5*(S1+s2,•(f*0,5•CS1•Si)•S*S12)*CTh·cF•S12•S•o.s•cs1-s2)) 

1 •ST~ 
V=F•C.~•CLSl+fS~)+CF•o.5•(US1•CS2)+S•CS12>•CTH+(f•DS12•s•c.s•cns1 

l •r,S?))*STH 
Xl<S 111 1COOO, 
If(L .r,[. o.c) Gr TC ~22 
IF'- oGt. O,r) X~S ~ ~.C 
GU IC 428 

~22 If'('v oll• 0,C) GO TC 42b 
Xl<S = U/V 

42fl S = SAVLJ) 
1130 CP I/ii C 

XI<(.,.) = YI<~ 
tf()(l<S .L To ~ld>I) <,f~ TO 4(l(i 
SA\ltJ) • (;,O 
XI<(") = ~I\N 

4110 S = SAVCJ) 
P :: XK(J) 
If( F ,LT. ,001) GO TC 540 

~00 C(l,JU..Ut 
IF<~CFP .t::Q, 3) GO TC 515 

510 NCA~G s NUAI\G + 1 
C 1.0Ct, fCn t-.L\'I FAILURE FLAr,.1:. 

C = C'4ChOfliP+1,1)w)<ll'.TG 
F:: FVOdll\P+1,1) 
Sitil :::: SIGTO("ONP+l)~ XlhlC 
CSV~f\Gtl\f-) = t; 
f'S\1(1\C/lf',f,) = F 
SIGJS{N(ANG) .. SIGl 
CAL~ CRTA~G(!1,s2,s12.os1,LS~,os1~,f ,C.5IGT,RAT,XKC ,s,,~2} 
SAVU-,CAtd,) = S 
H·S\I\CAI\G) : TH2 
Xl<{I\CAHi) = YkC 

515 P .i 1.0 
C ClCIQL ul\ CRlll~AL (If A"Y) rAlLURl PLAhE 

DC 520 J ~ 1,1\DANG 
IFC~k(J) •Gl, P ) GC TO 52C 
JJ..i = J 
S 111 S AV C ,J) 
p :u )<K(J) 

5 2 0 C C I\ I I f\L1 t. 
IF(F .Gf, 1,C) GU lC 700 

540 J 111= ..i .. J 

CO<J419 
000420 
000421 
000422 
000423 
000424 
CC0425 
000426 
()00427 
000426 
000429 
00()430 
COC431 
C004.32 
000433 
OOC434 
000435 
000436 
000437 
000438 
C00439 
C00440 
000441 
()00442 
(J(J<J44 3 
000444 
000445 
000446 
tO<Jll47 
()00448 
000449 
000450 
()004!>1 
000452 
000453 
000454 
OOClli55 
()00456 
()()0457 
000458 
000459 
ilOC4cQ 
000461 
0()0462 
000463 
000464 
00()465 
000466 
0(104«>7 
000468 
t00469 
000470 
000471 
0004172 
000473 
000474 
0001175 
000476 
0001477 
000478 



C 
543 

545 

555 

560 

565 
575 

577 

8-9 
JJ Ill J 
tF<~~ .GT, f\r~P+t)yJ = NGNP+l 
Tl-2 = THS(J) 
en· i: CUS(Th2) 
ST'" 111 SHHTh2) 
S~h :0,5•< Sl+S2+P •C05l+DS2) +CS1•S2+(CS1•DS2)•P >•CTh)+CS12+P • 

l CSt?>•SH 
IF(Sf\f\ .GT. t.ot•SIGTO(JJ)) S=o.o 
PB a 1.0•P 
IF<~ ,Ll. ~CFP> GU TO 543 
NCFI- a t-.Clf P+t 
NCFFC(t) = t-.CfP 
l~A(I,NGfP) = 1H2 
JF<s •EG• OeC> GO TC 600 

SLIOI~G FESPC~Sl 
CB= CSIJ(J) 
re a rsv<J> 
IF(F .fQff o.o> CB= S•<CS2•Sl)•0,5•STH+s12•CTH)+fB•<0,5•(S1+S2) 

l •o.s•cst•S2)•Cl~•S12•STH) 
DC 5115 Klli:1113 
D ( I< ) = 0 • 5 • ( C P A C I< , 1 ) '" C PA ( I\ , -: ) ) ,,. S T t1 • C P A ( I< , 3 ) • C T ~J 

AE(l) = nO,S•<F~•<l,O+Clh)•S•S1~) 
AEC,) e ~o.~•CF~•<l,O•CTh)+S•STr) 
AE(j) 11: "'lF"b•Slh+S*CTH} 
Uf\ a C,O 
Sl-'E = SLICt,,(J,J) 
DC 565 l<k 111 1,tC 
St-'E a 5t-'P+DS 
DSEaCS 
CALL lNTP(JJ,CF,FF•SIGTF,S~l,U~) 
IF<~ oGTff NG~F)CF=CF*XI~Tb 
A F C l ) :,; .,. 0 • ~ • ( r f * C 1 • 0 + C T h ) • S * S T t, ) 
AFC()= •t.~•(Ff•<l.O•CTh)+S*STh> 
Af(i) Ill ~<FF•STH+S*CTH) 
OC ~50 K;J,3 
OL = 0,0 
OC 5il8 L=ld 
DL III Cli+CFACL,l<)•IHCL) 
B(I<) Ill Cl! 
Xl<l II o.r 
DC II! er-CB 
flC 555 Ka:1,3 
DC a Cr+(Af(K)•ABCK))•C~P(K)+P•CSrCK)) 
XKI = Xl<J+Af(K)*DC~) 
XKl 11 1.n1XKI 
DS a '"r.C 
OC ;6C ~=1,3 
OS~ cs~r(K)•ClSCK)•FP 
rs II! CS•)(lq 
DS IA APS( OS) 
DL=IES((CS•OSE)/(CS+.u~oooc~coc1>> 
IFCCL ,LT, ,03) Gr TC 575 
os=cse+J .o•ccs•osB > 
IF(LS .LT, o.c> rs=c.~ 
('Cf'llHl't:. 
CC :77 KJ:1,3 
XLF(k) = •nc~c<K)•Xl<J 
DC ~77 Lr.-l,3 
CPB(k,t J = CFACK,L)•C<K>•btLJ•XKI 
OC: 579 K=l,3 

CO<l479 
CO(J480 
OOOIUH 
000462 
000463 
000464 
(100465 
000466 
(;00'467 
0004cH! 
(10()469 
000490 
000491 
()0()492 
QO<lll93 
000494 
000495 
000496 
000497 
000498 
000499 
000500 
000501 
000502 
0005(i3 
000504 
000505 
0005()6 
000507 
000506 
()00509 
00()510 
()00511 
()00512 
000513 
000514 
OOC515 
000516 
000517 
C00518 
000519 
000520 
()00521 
000522 
COC523 
()00524 
OC0525 
000526 
000527 
C00528 
C:00529 
CQ053C 
00053t, 
C00532, 
C; OCiS 3 3 · 
000534 
000535, 
0(10536 
000537 
000538 



Ol m XI PCIO+SP(I\) 
OC 578 L=1,3 

578 DL a CU+fCPACk,L>•Cl,O•P~)+CPR<K,L)*PB)*CES(L) 
579 OSIGFCJ,~) = Cv 

8-10 

DL • c.s•<OSlGP(I,l)+OSIGf(l,2J+(USlGP(l•1>•DSlGP(I,2))*CT~)+ 
, CSIGP<l,3>•STh 

IFCCL .LE, CF/Fr> GU TO 560 
S III C•u 
GC lC l,OO 

580 DSL!C~Cl,J>=r.s 
DC 59C K=l•NC-NG 
IF<SEF<l•k> •Llo O•O> GV TU ~90 
OL a C,O 
DC 5€2 L:1113 

!: 8 2 0 t; ;:i; C ti + P C L ) • C SU S • 8 C l > + U E S ( L > • l 1 , O • P > ) 
OSEr(lpK) = rsEPCI•~>•P•cu 
JF(qCSEPCl,K) ,GT. SEP( I,K))OS[P(l,Kl•SEPCI,K) 
GC IC 5983 

590 CCI\ I 1"1 1£ 
595 IF(~EFCI,J) .LT• •Q,9) DStP<I,J) = 1,0 

G( IC 70l' 
C CHACKI~b ~ESPGI\SE 

too ns1:.rsv = o.o 
IF(5(F(I,J) ,Ll,•0.9}DS[Fsv=t.o 
SIG~S = •C0.~•<&2•Sl+P•<OS2•0Sl))*SlH ♦ (S12•P•OS1~>•CT~) 
SIGill\ :: nSNI\ 
NS a 1\5+1 
P2 a FP 
!Pf. = 1 
IF(~S .lG• 1) GU TC 318 
N = 2 
DC d!5 Ksl,3 
SAVCK)=SPCK)+P*USP<K) 
XLFtKh: .. SAVCI<) 
OC t85 L=l,3 

68!5 CPE\1<,t.) = Cf;(l<,L) 
DSlf(I,J) = rsEfSV 
NCLO) m J 
OC t:9<; 1<:l11tv(ANG 

69P IFCSEFCI,K) ,GT, U,t) NLL(2l=K 
J2=hCL(2) 
OSEf<I,v2>~L5lP<I,v2>•P 
OCi t92 1<=2,3 
OC t92 L==Ko3 
DL ~ CPB(l,K•l)/CPB(Kmt•K•l) 
SAv(l) a SAVCL)•SAvCK•1)•UL 
IJC t:92 ~=l\d 

e92 CPBtl•M) = CFECL,M)@CPB(~•l•M)*LL 
SAV(3) = siV(3)/CPf.(3,3) 
oc c94 1<;;1,2 
DC t93 L~l•K 

E93 SAV{3•K) ~ s,v<3•K)•SAV(4•LJ•cFBC3•K,4•L) 
e9~ S-Vl3•K) = SAv(3•Kl/CPRC3•K•3•1<) 

nc e:97 1<=1,3 
OC t97 L,n:1,3 

697 CPE(K,L) = O.~ 
GC 1C 31.13 

C 
C ACC[LhT FUP L(SS OF ~ATlNlAL FhG~ PAR1JCLL UY FHAG~ENlATIC~ 
C 

C 005 39• 
0005440 
ClOQ5~1 1 

000542, 
000§431 
c,0~ 11 ~4 1 

OOO~f,65· ~P~g~6 000 ,,,, 

opp.~re 
000,~9 
00~~~0 
OOcJ5;, 1 
009$$2· 
ooq~~3 
().• .0. p 5.'. ~.; 4 
0005~5· 
Q00~56 
0005$7 
ClQ~,~8 
oo'o~59 
00~5f>O 
0005(61 
()00562 
000563 
"0()564 
000565 
()00566 
OOC567 
00()568 
000569 
C00570 
000571 
00(1572 
OO<l573 

·uot1574 
000575 
000576 
000511 
000578 
OOC.1579 
00058() 
t00581 
()C,(1562 
0005t13 
00()5ij4 
000565 
00()5ij6 
ooostn 
OOC5t,6 
000589 
00()590 
COC59l 
000592 
000593 
000594 
00()595 
000596 
000597 
000598 



70C IF(CA~RAT .le. o.o) GU lC 72~ 
FFA!;H ::: O.O 
FPPt,If ::: C,C 
£1( 710 K=ld 
fPP~lE = fPARI~+SLlC~<I,~) 
FP~hJF = FPARIF+SLIC~(I,K)+CSLlC~CI•K) 
If(~lf(I,K) .GT. ~1.0) fFAR1H=fFAHJ8+.c~/DAMHA1 

710 JF(~[f( 1,1\)+CSf f'C 1,1~> .Gi. "'1.0HfJAHif::t FAf.lH·.(j,/OAMf;AT 
PFB~FF•CfXP<~cAMRAT•FPAHIU)*O,CS+o.95) 
PP ::;pp•(FXP(•CA~RAl*fPARlf l*O.GS•0.95) 
[)FF = Pf P"'PP 
DFFAR = nFPAR+GPP 
DC /2C K=ld 

720 XLS<K) ::i XLSCl<)'"Dflf*(SJGP(I,K)"fPARST(K)) 
C 

8-11 

C FUR~~JICN llF CC~POSIT[ [LASlIC•SLICIVG•CRACKlNG RlSfO~SE OF PARTICLE 
C 

725 PA :: 1.0•FR 
11( / 4 0 K = l ,3 
XLS(!<) = XLSCl<)+PP*XLP<K) 
re /41.] L=ld 
CFA(l<ol) = CFA(K,L>•FA+CPU(K,L>•PU 

C CL~BINI~~ UF PARlICLE OEhAVlUR 10 U81Alh 
C CO~FUSITE PRUPlRTI~S Oi SAMPLE 

C 

740 CS(~,L) : CS<~,L)+CPA(K,L)*PP 
OC t45 K:::1,3 
OL:: XI.PO,) 
OC i43 L:o:1,3 

743 CL = CU+CFfdl<,L)•DE.S(L) 
745 nsJ~F<r,~, = cu 
7 6 0 C ct, I 11\ t I E 

C ACCCLI\T FCR F~AGMEI\TEO PARllCLE 
C 

DL = (~PAR+0FFAR)*BLKM0I\ 
CS(l,1) = csct,1)+1:L 
csc1,2, = CS(t,2)+CL 
cs<~,1, = csc2,1J+CL 
cs<t,2J ~ csc,,2>+CL 

C ~AK~ PRUP~HTllS SYM~ElHICAL tf REQUIHlC 
IFC!S'tfJI\ ,F:Q. f) GC TO 76u 
or:: 175 1=1,3 
OC /75 ..,:::ld 
CFA\I,J) = CS(J,J) 

775 XLS(I) = XLS(J)+0.5•<Cs(I,J)•cscJ,J))•rtSlJ) 
QC 177 l=ld 
DC 177 J=-ld 

777 CS(J,,.;) = 0.'3•<CP/:dI,J)+CPA(J,1)) 
780 JF<"EL~ ,l\f. 1) ~RllE(l )CSPCPCl),1:::1,~STH) 

fiElLFI\ 
E I\ C 

Of)059c, 
00060C. 
0006<>] 1 

ooo6ot 
C00603 
0006(111 
(100605 
000606 
000607 
<J0060F 
0006CiS 
C006lo 
000611 
(;00612 
000613 
COC6lll 
00061~ 
()00616 
{)00617 
COQ61ti 
000619 
OO<l6£G 
(JQ06C:1 
00062,' 
0006C:3 
0006~/j 
000625 
CO06~t) 
0(10627 
OOC6c!t' 
OOC629 
00063(: 
000631 
C0063~ 
OOC633 
t) 006 J If 
C0063~: 
(;006;:fr 
C006J7, 
CC063H 
C00639 
(i0C64c· 
C0064l 
t.:OC64;; 
{J00643 
t,C064t; 
00064r: 
c., 0064 6 
CC.C64 7 
l)0(,64F 
tOC64\ 



B-12 

C 
C S L B R C L T I N £ T C l r-. Tf. R P C L A TE. S 1 R E.. I\ G l H P A R A t-' E H. R S 
C 

C 
C 
C 

C 
C 

cc~~(~ /b1/ ICNT• SPCP(l), SLJUM(20,3>, 
1 CSLlr~<20,3), SlPC20,3), CSEf(2~,J), SlGPC20,J), OS1GP<20,3), 
t: HAC::>0d), ~(if PAC20>, "L1f PLJC2(i), llF.Sc3J, t.5(3), l~OF(3), FVCJ,5>, 
3 F5C3p5), ~CC(3), C\/(3,5), CS (3,5), SIGTOCJ>, THSl3), PCFl20), 
4 \i~L<,o>, CE(3,3)• ~ONP, ~lJIS, HAT, os, FPAR, ~LKkOC, CA~RAT, 
5 CrFAR 

C 11: C\i(J,1) 
SIG I ::: SIGTOC. .. ) 
F = F\i(Jd) 
IFC~~ el T. •Ce9) RtlLR~ 
S I G 1 ::: Cl 11 0 
NL : ~rec~, .. , 
DC .;CCL= 1,1\L 
YF(~S ,GT. C~(J,L+l)) GO TU 3ca 
C::: cv,~,L)+(CV(J,L+1)•C\i(J,L))•<us•csc~,L))/(CS(J,L+1>•cscJ,L)) 
GC 1C 350 

300 CC"11"lil 
C 11: CVfJ,f\.l+1) 

350 NL• "rf<J) •1 
()C 4CC L=l,M 
IFCLS .GT, FS(~,L+l)) GO TU 400 
F = F\i(J,L)+(FV(J,L+t)•fV(J,L)}•Cus•FSCJ•L))/(fS(J,L+l)•FS<~,L)) 
RE1Lfl~ 

1100 cc~, HH~ 
f :::: FVCJ,t-;L+1) 
RF.:l~f;" 
f ti.C 

SLB~CLTINl TC CALC~LATE ~USl LIKELY FA!LLRl PLAhl 

DI~t~ST(N SA(3),TH(3)PXKS(3l,kKl2J 
SA(l) =0,0 
SAC.d:::. 1 .o 
SA<.ih•l.O 
01 ~ o.s•csx-sn 
02: c.S•CSX+sv, 
D3 ~ C.5•COSX•DSY) 
04 a C0S•<DSX+DSY) 

LLCf TU CC~SlClk FOSSIELf TE~S!C~ FAILURE AhO 
T~f PCSS18Ll Sh[Ah FAILURE 

nc Joe J=t113 
Xl<Sl..,)::10vOO. 
S•S/l(,J) 
X 1 ~ F • t 1 + S* S )( Y 
D X l = F * r 3 + S • I, S X Y 
X2 13 t •Sl<Y"'S*L1 
M<2:i;f •r.SX'l'"'S-A(;3 

I~J11AL ESTIMAlL 
T~~~t1A~2CX2-Xt)•3.1415926~ 

000650 
000651 
(100652 
000653 
000654 
CC0655 
000656 
000657 
C00658 
C00659 
(){)()660 
000661 
000662 
000663 
000664 
OOC6b5 
C00666 
000667 
000668 
C00669 
OOC670 
000671 
C00672 
000673 
OOC674 
000675 
COC676 
V00677 
C00678 
000679 
000680 

000681 
000682 
000663 
(i00684 
000665 
0006ij6 
000661' 
C006ti8 
0006t19 
C00690 
000691 
cov6c,2 
000693 
0006'i4 
(;00695 
00061;6 
000697 
000696. 
(JCCJ699 
G00700 
0001u1 
000702 
OOC703 



C 

0( llC ~=1,2 
Tr2ulr?+3,141~9266 
C Tl-:. CC S l TH?) 
Slh=SH(lh?) 
C:= C \I 
IF< ... rG., 1)C ==sr,q 
C = c•o.~•(l.(+tThf(l.u·CltJ•RtT) 
UsC•F•r~ ~x1•CTh•X2*STr 
V•F•C4 +CX1•Cl~+OX2•STr 
x1<0>=1ooco. 
JF(L .~l. o.c)GO T( tco 
JF<v .GE, o.o>X~c~>="·~ 
GC IC 110 

100 HCv .LE. o.c) li(l TC 1H) 
Xl<(~hU/V 

11('1 CCl\lll\1:1: 
1 F C )( I< ( 1 ) • I. T • X K C 2 ) J TI' i = l ht:'" 3 • 1 LJ. 15 <; 2 b 6 
l<Cf\pq; 

C Sfll~CI- FPk HC[l nY r,,fANS LJI- NU-.TCt.S H£Tt,;C[; 
C 

DC d;t; 1=1,JC 
r.1t-,;;CC~<Th2) 
S l r = S H l Tf, 2 ) 
C=Cv 
JFC .. ofG, 1)C =ST•f 
CP a C•(RAT•1,t)•Slr 
CPF = ?,O•C•C~AT•1.0)•Clh 
c = c•0.5•<1.c+crH•c1.o•c1~>•HAT> 
U=C~r•o2 •Xl*CTH •X2*Slh 
V= F*Cll +cx1•CH1+1.)X2*STH 
UP=CF+?,O*(X1•STH•X2*CTH) 
VF=~2,C•C~Xl•S1H•0)2*CT~) 
UPP•CPP+4eO*CX1•CTl-+X2•STH) 
VPfg•4.0•COX1•CTh+~X2•STh) 
ot::1r2 
OLl:.iLFP•V'"U•vFP 

C AVCID ~AX. OR ~lh• P(If\1 
tF<LLl .Nt, Cot)GU TC !3C 

12~ IFC~Cf\T ,lO, 3)GO TC 290 
KCI\ l=i+KOI-.T 
Ot.;2 • C, il 
VF=F•C4+DXt•cCS(TH2+0U2)+~X~•sl~(TH2+CL2) 
V B : f ·A l) I.! + fl X 1 * C C S ( T H 2 .. C tJ 2 H Li X t * S I 1, ( 1 H 2 .., D L ~ ) 
IF(~F .LT, Vf)OU2=•0L2 
Tr2~lt--?+flU2 
Ge I c ::ioo 

!30 Olr= •<UP•V .. L*VP)/Cll 
(F(AESIVTh) .Gl. 2.c)GO Tu 125 
T r 2 !ii C L + I) H 
OL=AtSCTj,-j2 .. r;I.J) 
IF<LL .LT. oC3~) GC TO 29~ 

,OO CCf\ I Bl 1l 
~90 H·C.,)::i:Ti--,2 

IF<L ef.£, 0,C)GC Tl 298 
JF(~ .(,[, C,C)X~S(J)=o.o 
GC 1C 30(; 

29~ IF(~ oLEo 0,CJ GO TC 300 
XKS(J)=L/\1 

30C CCf\ I 11\1,1:. 

B-13 
()C,070/t 
000705 
00()706 
0007U7• 
OOC708 
000709 1 

OOCi710 
OOC711 
~OC712 
000713 
000714 
OOC715 
cot716 
co<i717 
000718 
OOC719 
C007£0• 
0007~1· 
000722 
00()723 
(;00724 
OC0725 
OOC726 
000727 
000728 
()00729 
CJ0()7J(l 
000731 
000732 
()00733 
000734 
000735 
()00736 
(100737 
000736 
OOC739 
000740 
oo<:74t 
000742 
000743 
000744 
000745 
CJ00746 
000747 
000748 
0007149 
000750 
000751 
()00752 
000753 
000754 
000755 
()00756 
C007~7 
C00758 
000759 
C007b0 
()()()761 
<iOC762 
COll763 



XKC:Xkq 1) 

L=l 
C ~ELECT CRITICAL VALLE 

DC 410 l\=2-3 
JF{,111\C .tf... )(l<S(N))GC TL ll!O 
IFCL+I\ .rG. ~ .A~D• XKC .Ll. 1.04•XKSC3)) GO TG 410 
L= I\ 
XKC=X~~CN) 

~10 CCl\111\H: 
11-C=THL) 
sc=sA<1 > 
RElLFI\ 
F I\ C 

B-14 
OOC764 
CC0765 
COC76f: 
COC767 
00076/l 
tOC7#J~ 
00077{' 
C00771 
000772 
()00772 
C(.1077b. 
C0077': 
tit-C77t: 



B-15 

PROGRAM EVAL 

C 
C P R C G R At 4 T L E V A I. U A T [ C H A H A (; l l R I 2 I\ T Hl ~ t,- C I., ( L S f OR S I t,1 p L E S T R E S S A t-, V 
C STRtJt-, hI~TLJnilS 
C 

C 

Olt,'tf',SIUN TI1Lf (12>,SEV(6,20),CSCb,bl,JFf(6),EC6),XLS(6), 
1 Sl~{6),V(6),CVS(b),Ot(6),V8(6),rv1<6),0V(6),0~t(6),C(6,~}, 
~ XL(6),nStLC6),0S16FC6),UlPl6),ClQ(6),CVCP(6),lNVSTft6}~DESC6) 
3 ,c£2(3),CS2(3,3)•xLS2(3) 

C FCF~AT STATE~ENT 
C 

C 

C 
C 
C 
C 

C 

eoo rcR~Al C6I1,J1,j,6E10.2,?FS.1> 
eat fCR~AT (12A6) 
£1C? fCR~Jll CJfdi,j,6E.1C,2) 
~Ot F(F~AT (1h1, 2rX,12A6) 
~02 FCfi~Al l/5X,•slHAI~/STRlSS HISlURY COhTHCL'/8X, 9 CO~P0hENT NO,', 

l tll0/16X,•tFF =',6I10/13X, 9 EhVSTF =•,6X,1P6ll0,2//5X, 
2 'tthVERGFhCE fACTrR ~••tPE15.3,5x•'CChV[RGlNCt LIMIT =••1FE15,3) 

S03 f(R~Al(///5X,'SEGN[~l =', JJ,3X,'N~IS =',I3,3X,'V1 =',1PE10.2,3X, 
1 •v2 ~•,tPEtc.2,3X,'V3 =',1PEl0,?,3X,•V~ =•,t~E10.2,3x,•v~ =•, 
ir; !FE10.2,3)(,'V6 =•,1Pf.1o.i'.,///1X,6Hlt-..C h0,5X, 9 SIG .. X•,t>)(,'f.•X',li)( 
3 11 'SJG'"''l' ,6):, 'E•Y' ,6x, 'SlG"'Z' ,6x, 'E."'Z' ,5x, 'SJ(j .. X'V' ,5x, 'E·xv• ,5x, 
~ 'SIG•XZ',5X,'F.•X2',5X,'Sl~•YZ',5X,'f•Y2'/) 

9C4 rcR~Al(I~,4X,1P12E1G.2) 
S06 rcR~Al (1X,'l~l SA~PLl IS "'u LC~Glp STABLE', 4X,'AVG ERRCR = ., 

l US.~) 
S07 rr~~Al<lX,'l~E SAMPLE HAS COMPLEll:.LY LOST ITS INlEGRllY') 

Xlfti-,G = t.OH2C 
1 (1 I ~ l L F = (1 

REA( (t:;,f1 01,rl\P=700) lllLI:. 

~RllE Ct,~01) TITLE 

f:STAF:LlSH TYPE OF SlRfSS AND STflAll\ hlSTORY 
REf.L (5,~00) CJFF(I ),J::1,6),lTYPE,ct.NVSTfll >•t=l116)11CCNfAC,CONLt.il 
WRl!EC6,90?)CJ11I=l,6),Clff( l>,I=t,6),<E~VSTF(I),1=1,6),CCNFAC• 

1 CtNLHl 
IF<iTYPE •fQ, () GO 10 15 

CALL CHARACTFFIZATIC~ RCUTl~E FGR PURPOSE OF REAOl~G IN ~ATERIAL 
PfiCfE1'TI[S 

CALL PPCP(l,c,o,c,Cl,cS,XLS) 
GC IC ?O 

15 CALL FPCrct,c,t,c,Cl:.2,CS2,XLS2) 
GC IC 30 

l~YTIAL17l ARRAYS 
20 CALL FPUP(?,1,t,t,(t,CS,XLS) 

GC IC 35 
3(' CALL FPCP(?,1,c,1,01:.2,cs2,XLS2) 
3'5 DC ~C J:=1 ,6 

f(I).: C.O 
SIGU) = (J,c,, 
V(l):: 0,0 

000001 
llOOOO, 
ocoou:c 
o oooc.i ,. 
(;0000: 
00000( 
000007 
OOOOuf 
(J000CiS 
COCO 1 l 
()00011 
OC0012 
000012 
C0001t. 
OOOO1~ 
00001( 
COOOli 
OOOOlf 
O0OO1s 
Ci0002( 
000021 
00002;; 
00002: 
Q OVC2 t. 
00002~ 
00002<. 
00002, 
C0002l 
00002': 
000031 
00003' 

C0003: 

GOOO 3: 
0000 3: 
000(13_ 
00003, 
00003, 
000031 
C0003~ 
OOC04< 
00004: 
lJ oo O 4, 
00004. 
cocci., 
oot04'. 
00004( 
(;0004, 
00004, 
00004 · 
00005i 
00005: 
00005: 
oooo~: 



C 

()\ISCI> = 0,0 
OE<!>= •l.CCG1 
IF(J ,GT. 3) Cf(}) =o.o 

4t'I CCt\J1"t1l 
N~~.ll 1111 80 
IC'v" = 0 
I : O 

C P~CFCRTIO"ATE LGADI"G SlGMl~T LGCP 
C 

50 DC tC J:t,6 
60 VBC.,,) = V(J) 

K(t\1 111 0 
REAC (~,8t2) t\SlC,f\~IS,<v(J),J=l,6) 
IF<"SEC ,lQ. ~> GU TC 10 
IShF 11: ISTEF,.1 
W~lJf(f,903)JSl£p,"~IS,(V(J)PJ=1•6) 
ou: : f\'t,,IS 
OL1 11: 1,0/!H;,2 
DL i; 0,0 
R = C,O 
DC IC J=t,6 
O\ll(~) = V(~)•V~CJ) 
OV(.,,) = OVT(J)*OU1*1,00Q001 
ovC(..i> • o.t 

C rSTAeLISH STfiAI" lSTl~AlE rUR FlRSl lNCRl~ENT OF 
C IGfiVHG SEGl'ENT 

c' 

IF CCVSCJ) 1EG, o.O) GO TU 70 
R Iii fi+r.v(J)/CvS(J) 
OL a CIJ+1 ,O 

70 CGf\ l If\UE 
IF (CL ,EG, C,O) GC TO ~O 
R = fi/f'1L 
GC IC 90 

80 R = loCl 
90 IF (fi ,LT, 0,0) n~o.S•R 

OC 12C K = 1,t: 
IF<tFFCK) ,t-.E. 1) GC TO 100 
OECtd :: O\l(K) 
GC IC 12C 

100 OE(K) = ~ECK>•R 
120 CCf'1 If\1 11:. 

C I"C~E~Ff\TAL LCALJJNG LOOP 
C 

C 

150 DC !80 K=1•6 
18C DES(K)r::i.;E(K) 

C ITE~ftlTCN LOCP 
C 

DC 14CC J=l•2C 
IC 111 ..i+IOI/R 

B-16 

C CALL (HARAcTERIZATILN ~LLlJNE TC P~EOicl INcREMl~TAL 
C rHnPERll[S 

IFCJT)P~ ,FG, 1J G~ TO 20~ 
DF.2(1) = Df<U 
OE2t2) = I.Jf(2) 
Of.2(3) :: I.Jf(ll) 
CALL FPCP{3,1,C,,JC,CE2,CS,,XLS2) 
D C l e 5 " = 1 , ti 

(}000!)4 
000055 
000056 
0000~7 
00005B 
()00059 
(100060 
000061 
000062 
000063 
C00064 
COC065 
()00066 
C00061 
000068 
000069 
()00070 
000071 
CJ00072 
000073 
000074 
()00075 
000076 
~00077 
000078 
000079 
COOOtiQ 
()00061 
C,00062 
000063 
000064 
000065 
()00066 
(100067 
000066 
000069 
000090 
000091 
000092 
C00093 
()00094 
(100095 
000096 
000097 
000096 
()00099 
(i00100 
000101 
(}00102 
000103 
OC01()4 
000105 
(;00106 
000107 
000108 
OOC1Cl9 
000110 
000111 
000112 
Ci oo 113 



)( L S ( t-. > • 0 , C 
OC Hl5 ~=J ,o 

ta, CS(~,~,• o.o 
DC 19() l\~t,2 
)(LS(f\) = XLS2(N) 
CS(~,41 = CS2CN,3) 
CS(q,f\) ~ C~2<3,~) 
DC 190 t--=1-'2 

190 cs<~•~l = CS2CN•~> 
XLS(ll): XLS2(3) 
CS(4,4) = CS2(3,3) 
GC lC ?30 

200 CALL fROP(3,1,o,1c,tE,CS,XLS) 
.C ACCCLhl FOH SPf.ClfllU SlRAI~S 

230 oc ,sc l'it:1•6 
[l[P(f\) = l,;[(f\) 
00 g4C ~•1,6 

240 ccf\,~> = csc~.~> 
C(f\,f\)aCC~,f\)+[NVSlFC~> 
XL(f\) = XLSCJ\) 
DSltiC"' E OV(f\)•XL(Nl 
OS1<if{N) = Lvnn 
If (IFr(N) .Ee. 0) GC TU 250 
CCf\,td = XLAJ;G 
OSlGCf\) = XL~~G•U\l("l 

25C DSl~F<~J = USIGlN) 
C SULVE fUR If\CRE~l~1AL ST~lSSES AhC S1HAINS 

()( ii:75 t>c=t'11ll 
IF(CCf\•l,~•1) .NE, o.o) Gu TU 260 
wJ;lif. (6e907) 
GC 1C 430 

260 OC ,75 JJ=N,6 
R = CCJJ,~•l)/CCN•l,f\•t> 
OSl(i (JJ> = CSIG CJ~>• R•CSIG (f\"1) 
DSl~F(JJ) = CSlGPCJJ) • H•DSIGf(f\"1) 
DC .i!75 K~t-.,6 

~75 cc~~•k) = C(~~·K)•R•CCN•l,KJ 
OE (6) = DSIC: (6)/C(6,6) 
DE,~6) = OSJGFC6)/C(6,6) 
OC JCO "=2,6 
I< = 7 .. N 
OC i9(.l JJ•K,5 
OSI~ CK)= O!IG Ck) • Clk,JJ+l)*Cl CJJ+i) 

29C OSI~P(K) = D~JGPCK> • C(K,J~•1>•UtQlJJ+l) 
OE CK>= OSIG (K)/~CK,K) 

300 DEG(K): OSIGF(K)/CCK,K) 
OL ll o.o 
DC 31C t--:d,6 
srv,f\,J) = CFF<~> 

310 DL u CU+AUSCCE(~)) 
C fhECk FUR CCf\VEHGtNCE 

Olt-' = 0,0 
DO 32C f\=1,6 

320 DL~: nLM+AbSC Of{f\)•DEPC~>> 
OL = Llit-'/DU 
J J :$ ..; 

IF<~L .LT, Cf"LMT) ijC TG 4~0 
OC J3C f\::1,6 

330 OE(~)=rtPCN)+CONFAC•COE(hJ•O[P<~)) 
400 CC~lHl'f;. 

B-17 
00011/f 
CiO<ll15 
000116 
000117 
000116 
000119 
00012(! 
000121 
000122 
000123 
()00124 
(l00125· 
(100126 
00<1127 
C00128 
000129 
C0013G 
COC131 1 

000132· 
()001~3 
000134 
000135 
000136 
()00137 
000138 
OOCl139 
000140 
(10()141 
OC0142 
(:00143 
000144 
000145 
000146 
000147 
00014B 
000149 
()00150 
0001~1 
0001~2 
000153 
00015~ 
OOCl155 
COCl156 
OOCl 157 
()0() 158 
()0()159 
c;00160 
<i0016t 
000162 
oop16J 
C00164· 
000165 
CJ00166 
000167 
0001613 
CiOCll69 
CiOCl170 
GOCl171 
U00172 
COCl173 



C FATLL~E TO CCNVERGl • ~Alt INCRE~E"l SJZE 
oc 410 "1::1,l: 
P~<~> = nv<">~c.5 

410 OE(~) = P.£SC~)*0,5 
KC~ I = Kf'l/',T+ 1 
IF (KCNT ,EG, 15) GC TO 420 
JC\lti = 1 
GC IC 150 

B-18 

C FATLL~E TO CGNVlRGL EVEh ~lTH RtCLCEO J~CREMEhT SIZE 
420 hRllE (6,906) 0~ 
430 REAC (5,~02) ~SlC 

IF (t\SFC •EG. 9) GC TO 10 
GC IC LJ3C 

C CLNV(~GfO •ACO l"CHlMEhlAL VAl~lS 10 T"TAL VALUlS 
C ~t\n F~I~T VALUES 

il40 JC\lt, = (; 
f)C :SC t-;::1,6 
DL ~ XLS(/\) 
nc :co K=t,6 

~00 DL ~ nu+CS(~,~)•DE(K) 
550 SIG(~):: SJG(t\) + CL 

r.c ~cc t-.=t ,6 
EC~)= E<N>+rE<N) 
OEC1,):: 11£00) 

560 O\IC(I\) = CVC(~) + CV(N) 
1 = I+ 1 
W~I l[C~,904) I•lSJG(K),l(K),K=l,c) 
IF ( I ,lo. ~t-'AX) GC TCl 43v 
oc ~ec l\=1,6 

~80 11VS(h) = CV(~) 
C C~FCk TC SEE IF PkOPORllCNAL LrAOING SEbME~T IS CO~PLETlC 

OC :S(l t-,:::1,6 
Jf(ftES(CVC(I\)) .LT. ABS(OVTCN))) ~OTC 600 

~90 C(h 1 Jr\l'l 
f,( l[ '-(; 

too If(~(~T .~QQ c> GO TC 620 
IF c~~ .Gt~ 4) GO TC 620 

C TF ~•FIO CCI\VERGENCES At\C JNCRE~Et\T SI2l PREVJOUSLV 
C PEnLCED I\G~ OCLbLt IT 

DC dC l\=-1,6 
ov<~> = nv<t-.>*2.o 

f10 OE(~)= Qf(~)*2eO 
KCt\J=kOl\1'"1 

C ~AKE ~URE 1h15 11\CRiMEhT Dn[S I\UT EXCEFD SEGMENT SIZE 
t20 nc c25 "=1•6 

O~Cf(I\) = rvc(N}+DV(I\) 
IF(~ES<GVCP(I\)) .GT. ARSCDVlCN))) nV(l\):(CVTtN)•DVC(l\))*1,000001 

f25 CCI\ f 11\tll 
GC lC 150 

7co s1Cr 
E.I\C 

000174 
<i00175 
000176 
C00177 
00017f 
000179 
COOtbc 
000181 
000162 
000183 
()00164 
0001tj5 
C001b6 
C001b7 
<;0016e 
()0018t; 
000190 
(JC0191 
OOC192 
CJ001<i3 
(100194 
OC0195 
00019( 
(;OC 19 7 
000198 
0001 <,<; 
<i0020C 
0002(.il 
(J00202 
()(lC2(13 
000204 
C00205 
(,0020f 
(J002u 7 
0002oe 
000209 
CC021C 
C00211 
(i00212 
000213 
000214 
000215 
C002lli 
Ci00217 
C002te 
00021~ 
C00220 
li00221 
00022:: 
()00223 
0 OCi 2 21. 




