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I ABSTRACT

The reséarch described in this report is the first phase of
a comprehensive proaram for the development of a characterization
for the structural properties of rock masses. The mathematical
expression of the characterization is especially tailored for use
in conjunction with modern structural analysis procedures. The
objective of the first phase of the project is to determine the
feasibility of representing the structural propoerties of rock masses
in terms of the analysis of an appropriate "representative volume":
the results of this investigation are described in detail in the
body of the report.

The current state-of-the-art concerning the understandinag
and description of the fundamental mechanisms of rock behavior
are determined from a survey of existing literature. The
development of a representative volume that captures the most
important of these mechanisms is described. In order not to
unduly obscure the fundamental aspects of this development, the
mathematical analysis of the representative volume is limited to
plane strain conditions.

A subroutine for the numerical evaluation of the proposed
model (i.e., the analysis of the representative volume) is presented.
The steps necessary for the incorporation of the subroutine directly
into existing two-dimensional finite element structural analysis
programs are described.

Comparisons between the predictions of the proposed

characterization and published results of simple laboratory tests




are presented and discussed. Finally recommendations are given
concerning suqqgested improvements of the model and the extension

of it to the general three-dimensional case.

iv




IT INTRODUCTION

A. MOTIVATION AND SCOPE OF STUDY:

The assessment of the degree of safety, the environmental impact,
and the effectiveness of proposed and existing mining operations often
require a quantitative understanding of the structural behavior of
certain rock configurations. In such studies it is either the
reliability over and against rock failure (safety and environmental
impact studies) or the precipitation of rock failure (studies of the
feasibility of‘propcsed mining operations, e.qg., caving) which.is of _
interest. Hence, when the term "structural analysis" is used, the
prediction of structural behavior out to and includina failure, is meant.

The successful performance of a structural analysis requires:

(a) physical and mathematical descripfions of the geometry of
the confiqguration and the environmental history to which it
is subjected, e.q., loads, temperature, sequence of mining
operations, etc.,

(b) mathematical models for the structural response and failure
characteristics of the constituent materials (e.q., rocks,
shoring, etc.), and

(c) an analysis procedure that is canable of predicting the
behavior of the structure given the information from the
above two items.

A consideration of the first item is beyond the scope of the

present study. The development of the finite element structural
analysis procedure has gone a long way towards providing a general

analysis tool (satisfaction of the third item). Unfortunately, for




many rock structures, the capabilities and potential of the finite
element method can not be fully realized because of the deficiencies

in the mathematical descriptions of the structural response and failure
characteristics of the constituent materials; it is to this problem
that this study is addressed.

There have, of course, been numerous experimental and theoretical
studies conducted which relate to the problem of the characterization
of the structural properties of rock (references to a number of these
studies are included in other sections of this report). Unfortunately,
these studies have not lead to the comprehensive description of the
material properties of rock masses that is required for most structural
analyses of mine related rock structures. The inadequacy of available
characterizations is well stated in the following quotes from
Howe-73* and Brace-64, i.e., "Yule marble....does not conform to
any published constitutive equation cited in the literature to date"
and "After trying all possible failure or yield conditions for metals,
as well as failure conditions originally conceived for brittle
materials, most investigators have concluded that no existing failure
law holds for rocks in general, or even for a single rock under
different conditions of loading." The seeming inadequacy of the
experimental information, and the mathematical characterizations
generated to date, are not due to the ineptness of the investigators

but rather due to the exceptional complexity of the problem. Most

* The references referred to in the main body of the report are
listed in Section VII. The references are listed by the first _
author's last name followed by a hyphen and the year of publication.




past studies were of necessity limited in scope to the consideration
of only a few aspects of the overall problem, and in addition many

of the studies were conducted before a full appreciation was develooed
for the extent and completeness of the material characterization
needed for modern structural analysis purposes.

The purpose of the present study is to initiate a program whose
ultimate goal is the development of a characterization of the structural
response and fai]ure‘properties of roék masses that may be directly
incorporated into available advanced finite element analysis procedures;
the results to date of this research are described in the main body of
this report.

A secondary and independent phase of this project is a study of
the fundamental mechanisms of rock behavior in terms of the response
of a particular mathematical model. This research represents a portion
of the doctoral research of one of the student Research Assistants
employed on the project. A summary of this phase of the research,
given in Appendix C, was written independently of the main body of the
report. Thus there is no cross referencing and there may be some
duplication. When the thesis is completed copies will be sent to

the Bureau of Mines.

B. FORM AND SCOPE OF DESIRED CHARACTERIZATION:

The required form and scope of a characterization of the structural
properties of rock is determined by the physical situations to be
analyzed and the analysis procedure to be used. The characterization
| must accurately predict the structural behavior 6f the rock for all

stress and strain histories that will be experienced by all parts of




the several rock structures to be analyzed. Such é precise definition
of the limits of material behavior for which the characterization
needs to be valid are impossible to determine (if prior to performance
of an analysis the stress and strain histories were known there would,
of course, be no need for the analysis). Thus practically what must be
done is to:
(a) provide a characterization for all anticipated stress and
strain histories, and
(b) be prepared to extend the characterization and repeat the
analysis if certain stress and strain histories are predicted
that were'not accounted for by the original characterization.
When possible, in order to avoid the repetitive effort suggested
by "b", a more general characterization than suggested by "a" should be
initially provided. Because of the near impossibility of trying to
anticipate all possible stress and strain histories which might arise in
the analysis of a given complicated configuration, and because of the
equally difficult task of trying to anticipate all possible future
applications of the characterization, it is desirable, if possible,
to have the characterization yield reasonable and consistent results
for all stress and strain histories. Thus in the development initiated
in this study, it is required of the characterization that it should
yield reasonable predictions for all stress and strain histories. Due
to the absence of experimental evidence it is, however, recognized
that for certain states the characterization will at best represent
extrapolations based upon an intuitive appreciation and understanding

of the behavior of rock masses, and thus for these situations only




qualitatively correct results can be expected. Fortunately the
preponderance of experimental evidence has been gathered for those
states which most frequently occur in real situations, and thus the
characterizatioh should give good quantitative agreement for the
dominant stress and strain states.

The importance of accounting for multi-axial stress and strain
states, and for loading, unloading, reloading and non-proportionate
states needs to be emphasized. The multi-axial nature (in contrast to
the simple states often used in laboratory tests) of the stress and
strain states that occur in complicated structural configurations is
obvious. Less obvious, however, is the fact that the internal stresses
may experience unloading, reloading and non-proportionate loading
histories even though such is not the case for the external loads.
This fact can be easily illustrated by a simple example. Consider the
"elastic-perfectly plastic" beam (rectangular cross-section) shown in
Figure la; it is to be noted that at time t] yielding begins at the
left-hand support, and at time t2 two plastic hinges have developed.
Comparing Figures 1b and le, it is'seenvthat although the external
Toad is monotonically increasing some internal material elements
successively experience loading, unloading and load reversal. In
addition, comparing Figures le and 1f it is seen that, although the
external loading is proportionate for some points within the body,
the ratio of the internal stress components change during the loading
history and thus the principal stress directions change. It is thus
apparent, that for all but the simplest structures, that if such

phenomena as nonlinear properties, local failure (e.g., cracking),
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yielding, etc., occur, that even though the history of the applied
loading may be simple, the history of the internal stresses and
strains will usually be very complex.

The most convenient form in which to express a material
characterizatién for use in conjunction with modern analysis
procedures is now described. For a particular spatial location in
the structure and a particular point in the time history (tN-l)’
denote the stress and strain components as [G]N-] and [e]N_1 (for

three-dimensions [o] has the six components Oys Oy Ty Tyvs Tyoo

y® "z "xy® xz

Tyz)*. Denote the change in the strain during the next increment of
time AtN (i.e., tN = tN-] +AtN) as [Ae]N; the accompanying change

in the stress state [Ao]N is expressed in the form:
[a0]y, = [C]y [aely + [L], ()

In general, the matrices [C]N and [L]N are not only functions of

[c] and [e] for t =0+t but also of [Ae]N and [Ao]N and thus

N-1
will need to be established by iteration. It is to be noted that
even though the material may be initially isotropic (and thus several
of the components in [C]1 are zero, etc.) for subsequent increments

the material, in general, exhibits anisotropic incremental properties

due to damage induced anisotropy. The presence of non-zero terms

for all the coefficients of the [C]N matrix, the presence of the [L]N

* Throughout this development the stress components are limited to
the usual components, i.e., normal and shear components; that is
multi-polar components (e.g., couple stresses) are ignored. It
is, however, the authors' opinion that they may be significant for
some composite materials; their inclusion in modern structural
analysis procedures is, however, not sufficiently advanced to
warrant their consideration at this time.




matrix, and the fact that these matrices will, in general, vary
from point to point within the body (even though the body might
have been initially homogeneous) offers no particular difficulties
for general nonlinear finite element analysis procedures. One
feature which can, however, lead to difficulties is that after

the initial loading stages (i.e., once the material begins to
experience damage) the [C]N matrix may not be symmetric. Because,
in general, finite element procedures for structural problems have
been based upon the assumed symmetry of [C]N, and because the
modifications necessary to permit [C]N to be non-symmetric requires
some effort and leads to a very considerable increase in computational
cost, special consideration is now given to this phenomenon.

The matrix [C]N of equ. (1) may be written in the form:
el = [e dy + [c,]y

Where the two matrices on the right are defined as follows (the T

denotes matrix transpose):
[c.]y = +{[c + [c1)
s°N 2 N N
1 T
Now equ. (1) is written in the form*:

[ao]y = [C.1y [aed, + [L ]y (2)

* If it is desired that the incremental properties be "positive
definite" a similar modification may be performed to insure that
such be the case. In other inelastic studies (e.g., see
Hossain-74) it has been found that such a step may greatly improve
the convergence characteristics.




Where
[Ldy = [L] + [C, 3y aedy

It is to be recalled that, in general, [C]N and [L]N must be
established in an iterative fashion; if one is dea1ihg with iteration
"m" of this procedure then the value of [Ae]N used in calculating
[LS]N is the strain increment estimated from the m-1 iteration. The
use for analysis purposes of equ. (2) in place of equ. (1) means,
of course, that one can continue to take advantage of symmetry in
solving the set of simultaneous equations that result from the finife
element method; the disadvantage is that the convergence of the
iteration procedure is slowed; however the overall computational
efficiency of the program should be improved (as compared to solving

the non-symmetric equations directly).

C. OUTLINE OF CHARACTERIZATION PROCEDURE:

The development of a characterization of the structural properties
of rock proceeds from the following assessment of the current state
of the art:

(a) There exists a very large quantity of published experimental
evidence concerning the structural behavior of rock and,
based upon this experimental evidence, a number of theories
have been advanced to explain the various fundamental
mechanisms involved in rock behavior. While this evidence
and the resulting theories are sometimes contradictory and
do not cover many important stress and strain histories,

they can be used to construct a fairly acceptable picture of
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the phenomenalogical aspects of rock behavior.

Based upon the above mentioned evidence a few mathematical
characterizations of rock behavior have been prooosed. It
is the authors' judgment, however, that none of the
characterizations proposed to date are adequate. In the
authors' opinion, this inadequacy is due to the fact that
they were not constructed with the needs of modern finite
element procedures in mind, and thus, have not yielded
characterizations which are valid and reasonable for many
stress and strain histories encountered in finite element

analyses of complicated rock structures.

It is the authors' opinion that the development of a general

characterization of rock behavior should proceed as follows:

(a)

(b)

(c)

(d)

From a careful review of existing experimental evidence,
isolate the dominant characteristics of rock behavior.

For each of the characteristics identified in "a", select
from the several proposed theoretical explanations the one
which appears to be most substantiated by experimental evidence.
Develop a mathematical model based upon the fundamental
mechanisms described in the previous step, and which yie]ds"
consistent and reasonable behavior for those states for

which experimental evidence is lacking. Care must be taken
that this mathematical description is consistent with the
laws of mechanics.

Express the characterization developed in the previous step

in such a form that it may, with little difficulty, be
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directly incorporated into more advanced finite element
structural analysis programs.

(e) Utilize the results of the previous step, in conjunction

with an existing finite element program, for the analysis
of rock structures for which experimental measurements are
available. Such comparisons might lead to the recognition
of shortcomings and inaccuracies in the characterization
which would then be rectified.

Steps (a), (b) and (c) will most surely bring to light many areas
for which additional experimental evidence is needed. In addition,
steps (c) and (d) will point out theoretical and mathematical
deficiencies which need to be remedied. The final step of this
procedure would be to suggest experimental and theoretical programs to
remove these deficiencies.

In the rehainder of this report the progress made towards the

satisfaction of the above outlined goal is described.
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III CHARACTERIZATION OF THE STRUCTURAL PROPERTIES
OF ROCK

When discussing the hater1a1 properties of rock, the level of
observation must be carefully specified, i.e., properties for several
different levels of observation can be distinguished. The levels of
interest for this study are:

(a) microscopic - the level of observation that considers

individual grains, microscopic cracks, voids, etc.,

(b) macroscopic - the level of observation concerned with small

laboratory samples, and

(c) structural - the level of observation concerned with the

gross structural properties of relatively large rock masses.

Because at times, one is required to perform structural analyses
of 1aboratofy samples, a clear distinction can not always be made

between the last two categories.

A. DOMINANT CHARACTERISTICS OF ROCK BEHAVIOR
1. Response and Failure Mechanisms*:

Initial state: In the analysis of a rock structure, interest is

focused upon how the structural material (i.e., the rock as it exists
at the beginning of the period covered by the analysis) responds to
the environmental changes imposed upon the structure (e.g., tunneling

of neighboring rock, etc.). Thus, a distinction must be made between

* The papers referred to in this section are not intended to give a
complete 1isting of the available literature on any one phenomenon
but rather represent the references that the authors found to be
particularly enlightening; additional references are to be found
in Appendix E.
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damage (e.g., cracks) induced in the rock prior to the period of time
considered by the analysis, and the damage induced during the period
accounted for by the analysis (this period is called the "service
period"). In theory, it is possible to eliminate, to some degree,
this rather artificial distinction by extending the analysis back to
include the geological history of the rock, but in practice this is
not feasible.

Thus, what is called the initial or virgin state of the rock
is usually the end result of a long and complicated history of stress
and strain; thus, the importance and necessity of being able to
describe the initial state of the material (including the stress,
strain and damage states) is apparent.

Porosity and discontinuities: There appears to be three distinct

types of discontinuities associated with rock masses and/or samples,
i.e.,
(a) a system of small, generally, spherical voids existing
since the formation of the rock, hereinafter called
pores,
(b) microscopic cracks, often penny-like, which open when a
rock sample is quarried from the parent formation (due
to the relieving of the naturally existing compressive
stresses) and,
(c) macroscopic failure or weakness planes (these p]ahes will
be discussed in the following section). .
For rock samples the second type of porosity appears to be, in

general, larger than the first, it however disappears rapidly upon
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compressive loading. These penny-like cracks are the probable cause
of the nonlinearities observed in the initial stages of loading of
laboratory samples (Handin-63, Brace-64, Murrell-65, Walsh-65,
Brady-70); their closing appears to be essentially an elastic
phenomenon. Because opening of the microscopic cracks occurs
during the removal of samples from the parent rock, the contribution
of their closures to the behavior of intact rock is questionable
(Walsh-65, Bieniawski-67b).

The first two types of discontinuities are, in general,
distributed and oriented in a rather homogeneous isotropic manner

(Walsh-65).

Macroscopic and structural planes of weakness and fracture: Most

in situ rock is permeated by systems of approximately parallel

natural (i.e., pre-existing) planes of weakness or fracture. Such
systems may be due to bedding, or stress induced fracture caused by
cooling, faulting, folding, etc. For a given rock, the number of
such systems appears to seldom exceed four (often there are three
approximately mutually perpendicular sets) (Pomeroy-71). In addition,
stresses induced during the "service period" of a rock structure (due
to loads, etc.) may produce additional systems of fracture planes.

The natural fracture planes may initially be open, filled (with
some foreign material, e.g., clay), or closed; their initial state
will, of course, highly influence their subsequent behavior, see
Goodman-72 for an excellent discussion of this topic. Open and
filled joints contribute to the behavior of the rock in an anisotropic

manner, i.e., their effects are highly dependent upon the direction
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of applied loads. When stress induced sliding takes place along

a closed joint system dilatation also takes place, i.e., the joints
tend to separate. This separation appears to be caused by the

riding of local asperities over one another. Due to differences in
initial smoothness, this dilatation appears to be more pronounced for
tensile induced failure planes than shear induced fracture planes.
The magnitude of the dilatation is also dependent upon the magnitude
of the normal stress which acts across the sliding planes (a large
normal stress tending to shear off the asperities and reduce the
friction).

The post maximum strength region of rock behavior would appear
to be a region of large scale sliding and/or separation occuring along
well established fracture planes. Closed fracture planes continue to
exhibit a stiffness which appears to be a result of sliding friction
(Jaeger-60, Herget-70, Hobbs-70), and thus the rock exhibits a
residual strength even though "local fracture" has taken place
(Hobbs-70). Continued movement along fracture planes appears to have
a modifyfng effect upon the values of the friction and cohesion
parameters.,

Planes of initial weakness require a certain induced stress
state before they fracture, subsequently they can be classified as
fracture planes.

Microscopic cracks: As was noted previously (see comment on porosity

and discontinuities) most in situ rock is permeated by microscopic
cracks (normally closed for in situ conditions). As additional stress

(this stress may add to or subtract from the in situ stress) is imposed
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upon the rock, the behavior of these cracks, their growth, and
the formation of additional cracks appear to be major determining
factors in the phenomenological behavior of rock (Bieniawski-67,
Brady-69, Brady-70).

It has been suggested that relative sliding of opposing
faces of microscopic cracks accounts for the small hysteresis
Toops dften observed in, what otherwise appears to be an
essentially linear elastic response for rock (i.e., when the stresses
are substantially less than the ultimate strength of the rock)
(Walsh-65, Bieniawski—67b). The formation of new cracks, the stable
propagation of existing cracks (i.e., requiring energy input from
surroundings) and the linking of cracks would appear to account
for the highly nonlinear inelastic response in the region near the
ultimate strength of the rock. Because crack propagation is a time
related phenomenon, the behavior of the rock in this region is
rate dependent, and thus the ultimate strength may be highly rate
dependent (Bieniawski-67c, Brady-69). Because the principal stress
directions influence the orientations of new cracks developed during
this phase of behavior, damage induced anisotropy is experienced.
This phase of rock behavior marks a transition between microscopic
cracks and a macroscopic system (i.e., a stress induced macroscopic
system which is in addition to any pre-existing systems) (Handin-63,
Brace-64, Bieniawski-67b). As relative motions of the opposing
crack faces take place (sliding or separation) the cracks dilate,
and thus the material tends to dilate (positive increase in volume)

rapidly even though the mean pressure (average of principal stresses)
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may be compressive (Handin-63, Brace-64, Goodman-72). The
explanation for the sliding induced dilatation of closed cracks
is given in fhe previous section.

Unstable (requires no energy input from its surrounding)
propagation and linking up of cracks would appear to result in the
catastrophically rapid loss in strength which is observed beyond
the ultimate load carrying capacity region,

Finally there is evidence that if the mean pressure is high
eﬁough the rapid crack propagation process is arrested in favor of
a ductile type of dislocation behavior (Handin-63, Murrell-65,
Bieniawski-67).

Initial orthotropic properties: Due to the non-isotropic conditions

that often prevail during their formation (i.e., deposition of
sedimentary rocks, unequal stresses during the formation of
metamorphic rocks, etc.), rocks may possess initially orthotropic
microscopic material properties. This initial orthotropy is to be
distinguished from that induced by subsequent damage or the large
scale orthotropy resulting from macroscopic or structural planes of
weakness or fracture (Jaeger-60).

Pore pressure: Water contained within the pores of rocks can have a

significant effect upon structural response characteristics. When
this water is under pressure it effectively reduces the magnitude
of the normal stresses by the value of the fluid pressure (Handin-63,
Murrel1-65).

Evidence concerning whether or not the presence of water has an

effect upon the value of friction for fracture and weakness planes
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appears to be somewhat contradictory (Handin-63, Goodman-70).

Material variability: (Evans-58, Brace-64, Brady-69, Yamaguchi-70,

Kostak-71) Due to the nature of the formation process and their
composite nature, rocks are highly variable (i.e., inhomogeneous)
materials. Inhomogeneities which occur on a very large scale may be
accounted for by treating the rock as inhomogeneous at the structural
level; inhomogeneities which occur on a small scale must, however,
be considered as part of the intrinsic material properties. As a
result of microscopic and macroscopic variability, long before the
final structural failure of rock, it is permeated with local

failures (e.g., cracks).

In addition, as a consequence of material variability rocks
exhibit "size effects" (Evans-58, Brady-70, Hoagland-73) which must
be accounted for when attempting to correlate the results of laboratory
and field tests (in laboratory studies the variability is often
suppressed by carefully selecting samples from the most sound regions
of rock). The importance of accﬁuntihg for size effects when |
describing material properties to be used in finite element analyses
with variable element sizes is not well understood and needs further
study.

Fragmented phase: During the fracturing process a certain amount of

pulverized material is formed (Handin-63, Brace-64) in the crack.
Initially open cracks often contain foreign material (e.g., soil)
which may be treated as an initial fragmented phase.

Temperature dependence: In general, temperature affects the structural

properties of rock tending to enhance ductility and reduce peak
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strength (Murrel1-65). For many rocks these effects are small and

relatively unimportant for temperatures below 300°C.

2. Some Qualitative Observations of Structural Response Characteristics:
The structural behavior of a rock mass is governed by the
interactive response of pre-existing planes of weakness and fracture,
and the macroscopic properties of the rock itself.
A qualitative discussion of the behavior of pre-existing planes
of weakness and fracture is given in the previous section.
The structural behavior of rock (excluding pre-existing planes
of weakness and fracture) can be qualitatively described in terms of
several zones of behavior (a similar description for concrete is
given by Romstad-74). These zones are illustrated for a simple
uniaxial test of marble given by Wawersik-70, see Figure 2; it
must be remembered that uniaxial stress-strain behavior is merely one
small part of the overall spectrum of behavior. Zone I is very nearly
elastic and is nearly linear for uniaxial tension. It is nonlinear
“for small uniaxial compressive stresses followed by an essentially
linear region (the nonlinearity, for small compressive stress states,
is due to the closing of pre-existing microscopic cracks as described
earlier). Although rock is nearly elastic in this zone, unloading
does exhibit a small hysteresis loop which is attributable to a certain
amount of frictional sliding between opposing faces of the pre-existing
cracks. There appears to be little damage done by loading in this
zone and thus repeated unloading and reloading exhibit little
deviation from the original loading path.

A11 zones beyond the first are characterized by a tendency for



20

=

S
®©
=

e
$owo

(-€)

Figure 2 Typical Stress—~strain Curve for Intact Rock.




21

volume increase even though the mean stress may be compressive.

Zone II is the région from the end of Zone I to maximum strength
where, for relatively low mean pressures, microscopic cracks
propagate and coalesce. For large confining pressures the deformation
experienced in this region may be much larger and more ductile in
nature (Bieniawski-ﬁ?b). It is a rate sensitive region; the
slower the strain rate the lower the ultimate stress capacity. In
this zone considerable damage is done to the material (often
concentrated in a damage zone surrounding an advancing major crack
(Hoagland-73)) of an anisotropic nature. Thus any unloading from
this region generally yields a large hysteresis loop and upon
subsequent reloading the response is anisotropic in nature.

The third behavioral zone covers a post peak strength region
characterised by unstable crack propagation and a rapidly
descending stress-strain curve. For Zone IIl the type of testing
machine and the sample shape has a significant effect upon the
measured results of laboratory tests (Brace-64, Bieniawski-67b,
Kupfer-69, Hoagland-73). Thus there is no general agreement as to
the precise nature of the response in this zone (contrast
Biem‘awski-67b and Wawersik-70). The authors tend to favor the
interprétation of Wawersik-70, i.e., that the behavior in this zone
is for many rocks catastrophic.

The fourth zone is a residual strength region for compressive
stress states; the quantitative laboratory results for this zone
may not be meaningful due to the presence of end effects, etc.

However, this zone has a physical basis since even a pile of rubble




has residual strength for certain stress states (Gardner-69).

For non-proportionate loadings the above described zones may
lose their identity and be of 1ittle value in describing the
behavior of rock. The loss of orderliness, as caused by more
complicated stress and strain histories, in the response of rocks
once they have entered Zones II, III or IV may be appreciated by
consideration of the following example. Consider the several
possible subsequent behaviors of a rock which has experienced a
tensile fracture due to a tensile strain in the x direction and
contrast the different responses to: '

(a) a further increase in the tensile strain in the x

direction,

(b) a reversal of strain so as to close the crack and then

yield a compressive strain in the x direction, and

(c) 1loading of the specimen in the y direction, etc.

B. DEVELOPMENT OF MATHEMATICAL MODEL TO CHARACTERIZE THE STRUCTURAL

BEHAVIOR OF ROCK

1. Representative Volume:

22

The characterization of the mechanical properties of composite

materials has traditionally been based upon the concept of the

"representative volume”" (e.g., see Herrmann-63b). The representative

volume is a hypothetical element of idealized material whose

structural properties are an approximation to the average properties

of the material under consideration; the averaging process is
extended over a volume commensurate in size with the level of

structural interest. For structural analysis purposes the
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representative volume may be treated as if it were homogeneous.
For example, if the structural behavior of steel is of interest,
the properties of the appropriate representative volume would be
equal to the microscopic properties of the steel averaged over a
sufficiently large volume so that the effects of individual grains
and grain boundaries would not be apparent. At the structural
level of observation steel is therefore considered to be |
microscopically homogeneous even though its crystaline nature is
recognized (it could, of course be macroscopically inhomogeneous
due to changes in heat treatment or composition).

For structural analysis purposes the representative volume for
a rock mass should represent the properties on a scale commensurate
with the dimensions of the smallest structural feature that must be
considered in detail. Thus, the scale of observation will be quite
different for the purposes of a detailed theoretical study of the end
effects in a small laboratory test specimen from that necessary for
the structural analysis of a rock structure which may be hundreds
of feet in extent, and for which the dimensions of the smallest finite
element used in the analysis may be tens of feet. It is the objective
of this study to inifiate the development of a characterization for
the structural properties of rock masses, in terms of a representative
volume, that may be used in the analysis of rock structures of
varying sizes. Its use for applications with greatly differing
dimensions, will of course, require different values for the
several parameters which describe the model, e.g., degree of

variability, etc.




24

In order to be able to concentrate upon the main objective of
the current study, i.e., formulation of the basic procedures for
the development of a representative volume for rock masses, two
restrictions were placed upon the scope of the study. 'Firstly, the
development was limited to the case of plane strain. The condition
of plane strain was selected because even though it is considerably
easier to model than general three-dimensions, it still retains
all the salient features of the more general case, and, in addition,
it is an approximation that is often employed in the analysis of
rock structures. Secondly, certain effects were neglected either
because at this point they would greatly complicate the development
(e.g., rate effects) and/or because for in situ conditions they are
of secondary importance (e.g., the effect of the closure of
microscopic cracks on the behavior of rock for near stress free
conditioné).

Representative volumes are, in general, composed of several
different materials or phases (e.g., for steel it cqnsists of grains
with an assortment of orientations, and grain boundaries). The
spatial (geometric) arrangement of these several constituents may
be deterministic (as is the case for a matrix enclosing carefully
placed reinforcing elements) or non-deterministic (as is the case
for the grains and grain boundaries of steel). When the spatial
relationship of the several different phases is non-deterministic
they are usually visualized as being coexistent, i.e., in some sense
they are considered to each occupy the same space (this approximation

may lead to certain undesirable effects, and its modification will
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be the subject of a future study).*

For real materials the interaction of the several constituents
is such that equilibrium and compatibility (with proper allowance
being made for possible cracking) are satisfied. For non-deterministic
models of materials it is generally impossible to simultaneously
satisfy both these conditions. Thus it is common practice to develop
an approximate characterization based upon the satisfaction of one
of these two conditions and an approximation to the other (Hashin-64).
It has been shown by Paul (60) that utilizing one or the other of
these two extremes (i.e., satisfying compatibility and approximating
equilibrium or vice versa) leads to bounds for the properties of the
representative volume. However, because of the additional approximations
used in the formulation of a non-deterministic representative volume,
they are not necessarily bounds for the properties of the actual
material. In addition, even if they were truly bounds of the actual
properties, their use in the analysis of a complicated structure
does not in general readily lead to bounding statements concerning
the results (e.g., stress and strain predictions) of the analysis.
Representative volumes made up of several different strengths of
coexistent constituents, which are required to satisfy equilibrium
yield the prediction that the model reaches its maximum stress
capacity when the weakest constituent reaches incipient failure.
Because this is obviously not true for most composite materials

equilibrium models are seldom used.

* In a sense this approximation is not completely adhered to in the
current study, i.e., cracks can be considered as a separate phase,
and in this study they are not totally considered as coexistent
with the other phases.
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For this study the model will be based upon compatibility
considerations. However, because there is some question (Herrmann-67)
concerning the desirability of utilizing properties which represent
an extreme (i.e., bounds), a future extension of this study will
include an assessment of the feasibility and desirability of basing
the model upon a partial satisfaction of both compatibility and
equilibrium.

Because of the difficulty of representing coexistent phases
pictorially it may be of value, for illustrative purposes, to
visualize the compatible plane strain model as a series of parallel
plates (a corresponding visualization for three-dimensions is not
posSib]e). Each plate represents a phase and the thickness of each
plate is in proportion to its representation in the total volume.
Compatibility requires that each plate be subjected to a strain
state identical to that of the representative volume (including
thickness strain of zero; the simplistic visualization is misleading
at this point). Because of the different response characteristics
of the several constituents, the resulting strésses are not the
same (i.e., equilibrium is only approximated). The stress state of
the representative volume is the average of the stresses of the
constituents (see pictorial representation in Figure 3).

The representative volume for a rock mass in a state of plane
strain is considered to consist of I+l particles.* The role of the

I+1 particles is to simulate the variability of the rock mass. One

* As will be seen later, in a sense each particle may itself consist
of several phases, i.e., intact rock and several planes of weakness
or fracture.
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of the particles (the I+1) accounts for the rubble phase. The
remaining I particles are considered to be rock initially intact
with the exception that they may contain up to three systems of
planes of weakness or fracture, of varying degrees of structural
integrity (the concept of structural integrity is defined later).
The relative proportion (Pi) of each of the I+1 particles must
be initially specified. These proportions may be fixed or be
permitted to change during the course of the representative volume's
stress and strain history. If this option is utilized, as the 1
intact particles experience damage, a certain portion of each is
irreversibly assigned to the rubble phase. This option is included
to account for the fragmentation which may accompany cracking
(Handin-63, Brace-64).

Each of the I+] particTes is required to experience the same
strain state as the representative volume (as was noted before the
desirability of this assumption is open to question and will be the

subject of a future inquiry)*, i.e.,

[ae]; = [ae] i=1->14 (3)
[Ae]i = strain state of particle i
[Ae] = strain state of the representative volume (AexN, AsyN, AnyN)
also Ae,, = Aeyzi = Aez. = be,, = Aeyz = be, = 0 (plane strain)

i

The stress state for the representative volume is given by the

* In the following, for the sake of simplicity, the subscript N
referring to the increment number is not displayed.
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following summation:

IR
(a0l = ] Py [Aol; (4)

Where [Ac] = (Aax, Aoy, Arxy), etc.

I+]
Note ) Py =1
i=1

For each particle the relationship between the incremental

stress and strain is written as (the increment number N is implied):

[AUJi = [C]i[Ae]i + [L]i (5)

Using equs. (3) and (4)

| I+]
(40 = ]

Lopyuren el + )

1

or

I I+]
[ac] = " { 121 P [C]i } [ae] + 121 P [L]i

Comparing this expression with equ. (1) yields:
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I+]

[e1= 3 # e, (6)
I+1

L= 3 Py DL, (7)

Each of the I intact particles is considered to be the
accumulation of rock, of like structural integrity and distributed
(in a non-deterministic manner) throughout the representative
volume. For each of these particles an integrity factor Fi is
assigned. The strength parameters for each particle (e.g., tensile
strength oTi).are then written as the product of Fi and the average
value of the corresponding parameter for the material as a whole,

i.e.,

op, = Fi oy i=1~+1 (8)

Thus, for each particle complete correlation is assumed between the
several strength parameters; this idealization is based upon the
assumption that they are all manifestations of one fundamental
property (herein called structural integrity). The modification
of this assumption would require knowledge of the actual correlations
of these parameters; experimental information concerning such
correlations appears to be scant.

Figure 4 gives an example of a histogram of structural integrity
developed from the variability of the compressive strength of Inada

granite given by Yamaguchi-70. The degree of scatter of the structural
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Figure 4 Example Histogram of Structural Integrity.

31




32

integrity, of course, depends upon the size of the representative
volume (i.e., size effect, see Evans-58, Brady-70, Hoagland-73) or,
more precisely, upon the size of the finite elements to which the
representative volume properties are being applied. Rigorous
accounting for size effects would require knowledge of the
correlation of the integrity factor from location to lTocation in the
rock (a quantity about which very 1ittle is known) and would lead ‘
to the prediction of non-deterministic structural properties. In
general finite element and other structural analysis methods are not,
at this time, sufficiently well advanced to accept such probabilistic
descriptions of structural properties (some exceptions may be found
in the works by Langland-71 and D'Andrea-74). Thus at present

size effects are ignored and therefore the histogram for structural
integrity should represent, as nearly as possible, the variability
of strength properties on a scale commensurate with the level of
observation for which the structural properties are to be used.

The stiffness properties (e.g., initial modulus) are much less
variable than the strength properties, and thus, for the purpose of
this study are taken to be the same for all particles. If, however,
information concerning the variability of the stiffness properties
should become available, and assuming perfect correlation with
strength properties, it could be incorporated into the model with
ease.

At this point the structural behavior of the individual phases

is considered:




2. Rubble Phase:
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Because the main interest of this study is the characterization

of relatively sound rock the rubble phase is considered to be of

minor importance and its behavior is grossly simplified. Should

it become desirable in the future to consider exceptionally unsound

rock, even to the extent that it approaches a granular mass in

composition, then this approximation would need to be revised.

Because the shear resistance of the rubble is small compared to

that of

assumed

the intact rock it is approximated as zero; thus, it is

that the rubble has resistance only to compressive mean

pressures*, i.e.,

(0]}, = [C]g [ae] + [L1

Where:
K/3 K/3 0
[C]R = K/3 K/3 0 and [L]R = [0] (9)
0 0 0
S" K (bulk modu]us)l ] (Ex te, < 0
—_— ) or 2 N > 0
Where K = { 0 ) €y ey >
If the material is initially anisotropic the concept of bulk
modulus has been appropriately generalized by Herrmann-72. For
* Note: Throughout this report the “structural mechanics" sign

convention is adopted, i.e., compressive strains are
negative, etc.




34

simplicity, however, the following approximation is used (the
subscript zero refers to the initial properties of the intact

rock):
K=1/6 (C]] +Cyy * 4C12)0

Because of the relative unimportance of this phase a constant
bulk modulus is used for all compressive mean pressures even though
it is suspected that it is a strong nonlinear function of the mean

pressure (e.g., see Bridgemen-52).

3. Intact Phase:

The intact phase is utilized to represent the majority of the
rock. As was noted in a previous section, the I particles of intact
rock are assigned different values of the integrity factor, F, in
order to simulate the varying strengths of rock contained within
the representative volume., The different strengths are due to
varying degrees of prior damage and/or variability introduced at the
time of formation.

The several concepts used in the description of this phase are
now discussed.

Orthotropic elastic response of sound rock: A1l rock within the

intact phase which has not fractured is assumed to behave as a linear

elastic material, i.e.,*

[ao] = [c], [ae] + L1, (10)

* For the sake of simplicity the subscript i denoting the particle
number and the subscript N denoting the increment number are not
always explicitly noted in this section.
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Where [Ac] = increment of stress for particle i
[ae]’ = increment of elastic strain
[C]e = elastic properties for the sound rock
(L), =0

For an isotropic material (E and v are Young's modulus and

Poisson's ratio, respectively):

A+ 2u A 0

[C]e = A A+ 2u 0
0 0 Mo
where
- E
H 2(T+v
. 2uv
A= Ty

Because it is felt that the nonlinearities (predominantly
an elastic effect) experienced for very small stress levels, e.g.,
the beginning of zone I of Figure 2, contribute little to the
behavior of in situ rock, they have been ignored (see discussion
in Section III-A-2). If in the future it should prove to be
desirable to include this phenomenon, it is felt that this could be
accomplished by expressing the bulk modulus as a nonlinear function
- of the mean pressure (Herrmann-63a).
The nonlinearity of zone II (Figure 2) is basically an inelastic

phenomenon which is a consequence of the local fracturing process
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considered in the following paragraphs.

Transformation of stress and strain components: A preliminary need

for the following developments is the transformation relating the
stress and strain components in the x-y coordinate system (i.e.,
[Ae] and [Ac])to the components in an arbitrary n-s system, defined

"by the angle 6 (i.e., [Ae]e and [Ao]a, see Figure 5)*, i.e.,

lao] = [7] [ac]y (1)
[ae]y = [T [2e] (12)
where
i ‘l (]+ ] . —‘
> (1+cos 20) §-(1-cos 26) -sin 26
[T] = %—(1—005 20) %-(1+cos 20) sin 26 (13)
1 . ] '
7 sin 26 - E—sin 26 cos 26

l -

The inverse transformations, i.e., between [Ao] and [Ao]e,
etc., are obtained by replacing 6 by its negative.

Representation of structural cracks: In the following paragraphs

the term fracture plane is used to denote a system of approximately
parallel macroscopic (sub-structural) planes of fracture. (Under
certain circumstances such a system could conceivably contain only a
single plane.)

In contrast, structural cracks are defined as major cracks

* The reason for employing this somewhat unorthodox notation for the
stress components shown in Figure 5 will be apparent later.




Figure 5

Stress Components in the n—s Coordinate System.
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whose extent and spacing are larger than the minimum dimensions of
the finite elements being uséd in the analysis of the structure.

The treatment of structural cracks may vary depending on whether

or not the crack exists prior to the beginning gf the period of the
analysis. Those structural cracks which exist prior to the beginning
of the analysis, and whose spatial locations are well defined, may

be modeled by joint elements (Goodman-68)*. A structural crack

which develops during the course of the analysis can be accounted

for in one of two ways: Either an attempt can be made to predict

its actual course through the rock by introducing discontinuities

in the finite element grid (e.g., see Pian-71 and Taylor-72) or a
zone of fractured elements (i.e., elements with extensive internal
damage) can be permitted to develop along the approximate path of

the crack (a somewhat analogous procedure was used by Hossain-74).
The characterization developed herein is sufficiently general to
accommodate the latter form of failure prediction and in the authors'
opinions, the second procedure is generally preferable because of the
exorbitant computational cost involved in attempts to trace the
actual paths of advancing cracks by means of discontinuities in the |
finite element grid.

Macroscopic cracks: In the following paragraphs the development of

* It is to be noted that a finite element aligned with a crack, and
having properties suppiied by means of the characterization
developed herein, may in fact be used as a joint element (thus a
program using this characterization would have no need for a special
joint element). The representative volume for such elements would
have one natural plane of weakness with the appropriate orientation
and stiffness properties of the joint.
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macroscopic fracture planes in individual intact particles is
considered in detail. The development of fracture planes in one
or more of the I intact particles, of course, does not mean that
the representative volume has failed; the representative volume
does not have a complete fracture zone until all the intact particles
have deve]oped‘such planes. The appearance of fracture planes in
some of the intact particles indicates that the material is
experiencing inelastic behavior (e.g., zone II or III of Figure 2).
If loading is reversed after oh1y a portion of the I particles

have developed fracture planes, then the representative volume will
exhibit anisotropic behavior as part of its future response
characteristics (careful tests by Wawersik-70 demonstrated such

a phenomenon).

Each of the I intact particles is permitted to contain up to
three systems of fracture planes. These systems consist of a
combination of (zero to three) prescribed pre-existent planes (i.e.,
present prior to the period covered by the analysis) and planes
developed during the course of the analysis. A maximum of three
was selected for the following reasons: In general, it appears
that highly fractured rock contains, at most, four systems of
fracture planes (Pomeroy-71), one of which, most 1ikely, is parallel
to the plane of the two dimensions currently under consideration
and thus ineffectual in plane strain. Secondly, it appears that
for two-dimensions movements along three fracture planes is sufficient
to relieve the stress to such a degree that, for all practical

purposes, it is impossible to develop a fourth fracture plane.
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Finally the computational cost involved in using the model is
dependent upon the maximum permissible number of failure planes.

Because of the different types of discontinuities (fracture
zones) which may occur in rock, e.g., a single well defined crack,
a series of closely spaced fine cracks, a region of concentrated
deformation caused by many unjoined cracks and/or plastic-like
dislocations, the failure criterion used to predict the formation
. of such fractures must be quite general.

Numerous different failure criteria have been proposed for
rock (e.g., see Handin-63, Murrell-65, Bieniawski-67a, Brady-70,
and Herget-70) none of which have proven to be entirely satisfactory
(e.g., see Brace-64, Howe-73). The chief obstacles which have
apparently prevented the firm establishment of a failure criterion
for rock, are its variability, the numerous types of rock, the
difficulty in achieving homogeneous strain and stress states for
even simple test specimens, the lack of acceptable experimental
procedures for achieving multi-axial stress and strain states in
the laboratory, and finally the confusion that exists between the
concepts of a macroscopic and a structural failure criterion (e.g.,
see Bieniawski-67a); between a failure criterion and a sliding
criterion; and between a yield and a failure criterion.

The failure criterion that is needed for the intact particles
is a criterion for the formation of macroscopic fracture planes.
(If one should choose to set I=1 then, depending upon the size of
the representative volume, a gross structural failure criterion

might be required.)
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The two most widely used failure criteria for rock are the
Mohr and the Griffith (or modifications thereof). While apparently
sound experimental evidence has been presented for the justification
of each, it appears to the authors that the Griffith criterion is
somewhat more rational; however, its use does not appear to result
in sufficiently improved predictions to justify, at this time, the
greater complexities involved (e.g., see Brace-64). Thus, for
this study, the Mohr criterion is used. While there appears to be
some evidence that the envelope should not be straight (e.g., see
Brace-64, Murrell-65), it is assumed to be linear in this report
for simplicity. The straight portion is, however, terminated in
the tension region by a tension failure "cut off" criterion. It
is suggested that careful considerations be given to the use of a
parabolic envelope in future work.

It needs to be emphasized that what is under consideration at
this point is a failure initiation condition not a criterion for
sliding once the fracture has occured. Under certain conditions
(particularly for large hydrostatic pressures) such a clear
distinction may not be justified, because it appears that a
considerable amount of deformation takes place across the fracture
zone before it is completely formed (e.g., see Handin-63). This
phenomenon is discussed in more detail later.

The fracture criterion for particle i is written as:

|T6|i = Coi - foi Gei (shear fracture (14)

< /) (15)

or o, =0 (tension failure-note o
6 ty t i 9

i
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Where Ty and oy are the shear and normal stress components on

i i
~the fracture plane. For the sound portions of the rock the parameter

.co can be interpreted as the "internal" cohesion and fo as the
i i

coefficient of "internal” friction, i.e., parameters which describe
a failure criterion but do not necessarily have any physical
significance (for a natural plane of weakness they are the cohesion
and friction associated with the plane). If the rock is inherently
orthotropic then it is to be expected that coi, Oti and foi would

be continuous functions of orientation (e.g., see Jaeger-60). These
functions of 6 describe the variation due to anisotropy of the

sound rock, in addition, there may be discontinuous changes in their
values due to the presence of natural planes of weakness (bedding
planes, etc.); these special values are specified separately.
Because f has a somewhat restricted range of values it is assumed
that it is not a function of 6 (this assumption could easily be
revised). The orthotropic nature of Co. is written as (recall

i
that F, is the integrity factor):

Co. (8) = Fi’ {%-(1 + cos 20) co(x) + %—(1 - cos 28) co(Y) }
j
or
€. (8) = Fico(x) [ %—(1 + cos 26) + %—(1 - cos 28) R ] (16)
i
c (y)
Where R = EgTiT

0
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It is assumed that ¢ and o, are both characteristics of the
same fundamental strength property and thus have the same value of

R (this assumption would be easy to revise), i.e.,
o, (0) = Fioy(x) [ x(1+cos20) + 4 (1-cos20)R]  (17)

The fundamental question that must be addressed at each
increment, for each of the I intact particles, is whether or not
the particle has already developed its allowed maximum of three
fracture planes, and if not, whether or not equ. (14) or (15) might
be satisfied during the course of the increment. If the particle
has not developed its three planes of fracture, two possibilities
for the satisfaction of equ. (14) or (15) are considered:

First, prescribed planes of weakness which have not already
failed are inspected. It is to be recalled that up to three
naturally occuring planes of weakness or fracture may be prescribed,
i.e., 6 specified. The values of Cos Tt and fo for each of these

planes are of course different than the values for the sound rock.*

* If the sum of the number of planes considered in this step, and
the number of existing planes of fracture is equal to three, then
the considerations described in the subsequent paragraphs are
skipped; the reasons for this action is as follows: Because the
magnitudes of c, and o, for the natural planes of weakness are
expected to be considerably less than for the surrounding sound
rock and because the natural planes tend to be mutually perpendicular
to each other, it is anticipated that any non-fractured natural
planes of weakness are approximately perpendicular to the existing
fracture planes. This expectation, along with the condition that
the natural weakness planes are substantially weaker than the
surrounding rock, leads to the conclusion that if any additional
fracturing should take place during this increment, that it would
be along the non-fractured natural weakness planes and not in the
sound rock.
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A pre-existing plane of failure is prescribed as a plane of weakness
with zero strength parameters - in the present analysis all such
planes are considered to be initially closed.

Secondly, for the sound rock the orientation (defined by a
critical value of 8) of a possible fracture plane which would most
1ikely cause the satisfaction of equ. (14) or (15) is determined.
Once this plane is determined, equs. (14) and (15) are checked for
possible satisféction. A critical orientation determined.from this
consideration is called a stress-induced failure orientation as
opposed to the specified orientations of the natural occuring planes
of weakness.

If these two considerations reveal more than one possible
failure plane, failure is permitted to occur on the one which is the
earlier to reach the critical state in the course of the increment
(this failure would, of course, so alter the stress state that the
second would not occur).

The determination of the possible stress induced failure plane
orientation proceeds as follows:

Both equs. (14) and (15) are expressed in a common form, i.e.,
nty=c-fog (18)
For shear failure:

To
5
‘Tei

n:
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For tension failure:

0.’ f= fo.

n=0,c=o0g, f
ti i i

Utilizing the inverse of equ. (11) the above expression is

written in the form:

0 .
n { -X—§~—5 sin 20 + Txy cos 28 } =Cc -

o, to g, - 0
X y X Y i }
F { 5 + 5 cos 20 + TX,Y sin 26 (19)

Expressing the above equation in matrix notation yields:
[Q)T [o] + ¢ =0 (20)

The vector Q is defined as:

- %—[f(] + cos 26) - n sin 26]

—

[Ql= | - %-[fu - cos 26) + n sin 26] (21)

- [f sin 26 + n cos 26]

— -

The questions that must now be answered are, will this equation
be satisfied during the course of increment N, and if so, at what
point in the increment and for what critical value of 6. Denote
the stress state at the beginning of the increment as [o]N—l and the
apparent incremental change as [Ao]N. Assume that during the course

of the increment up to the point of the formation of the fracture
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plane, the'changes in the several stress components are proportional
(this assumption is one of the limiting factors on the permissible

size of the increments), i.e.,
[o] = [o]y_y + k [ad]y 0 <k <1 (22)

Substituting equ. (22) into equ. (20) yields:

u(e) - k v(s) =0 (23)
where

u(e) = ¢ + [ Lol | (24)

v(6) = - [Q]'[ac], (25)
Thus:

k= {Ts (26)

What must now be determined is the value of 6 that yields the
minimum positive value of k (the definition of k, equ. (22), limits
its range to k > 0). The determination of the critical value of ©
and the corresponding value of k is quite involved; the details of
these calculations are given in Appendix A.

Deformation resulting from movement along fracture planes: The

relative movements of the opposing faces of a fracture plane may

be expressed in terms of s]iding and separation (i.e., opening of
the crack). Sliding deformation of a fracture plane is illustrated
for a clean fracture in Figure 6a and a ductile type fracture zone

in Figure 6b. It will be seen later that it is not necessary to
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fracture line ) .
nominal line of fracture

continuous line prior to fracture

6a  Sliding along clean fracture 6b  Ductile fracture

6c Open fracture

Figure 6  Deformation associated with fracture




distinguish between these two types of sliding deformations.
Opening of a fracture is illustrated in Figure 6¢c. The effect
of this deformation upon an element of rock oriented with the

n-s axes is illustrated in Figure 7, in addition, the "equivalent
distributed deformation" of such an element is also shown; this
deformation is given by the following expressions (the primes

denote strain due to movement along a fracture zone)*:

u.d
1 - n -
. AE:n - "‘d_' Un
(1]
Aes =0
" usd

Mes =74 ° Yg

Using the inverse of equ. (12) to transform these strains to the

X-y system yields:

[ae]" = u, [A] + ug [B] (27)
where
[ %—(1 + cos 26)
[A] = %—(1 - cos 26)
) sin 26 ]

* Note that u, and ug are not actual displacement quantities but
rather disp?acements per unit of distance between cracks (i.e.,
strain quantities); the actual opening of a fracture is Up d,
etc. '




element of .roc!(

equivalent element

Figure 7  Deformation of Rock Element Caused by Movement
along Fracture.
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el

-y sin 26

sin 26

PO ot

[B] =

cos 26

Note (see equ. (21)) that [Q] = - f[A] - n[B].

Thus, movement along a fracture zone results in deformation
(i.e., strain) of the representative volume. Such strain is, of
course, not uniformly distributed, as is usually visualized to be
the case for elastic strain, but instead concentrated at the fracture
zones (this concentration of strain is somewhat akin to the
discontinuous nature of the plastic strain in metals that develops
at dislocations).

Mechanics of fractured particles: Procedures must now be established

)

occurs along a fractured zone and their respective magnitudes. In

for determining whether or not sliding (us) and/or separation (un

addition, the state of stress at such a fracture plane must be
investigated.

A little reflection indicates that a particle, having as many
as three fracture planes, may experience several different modes
of structural response, i.e., no movement along fractures, sliding
along one fracture, sliding along one fracture and opening of a

second fracture, etc. In order to simplify the logic of the model

it is important to eliminate from consideration those response

modes which are either impossible or highly unlikely or are expressable
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in terms of other modes*. Within each increment, for a given
particle, only a single transition from one type of behavior to
another is permitted; symbolically this is illustrated in Figure 8.
These two divisions of the increment are called "intervals"., If
the incremental strain changes are relatively small, it appears
that the most 1ikely combinations of behaviors for a given particle
are limited to those listed in Table 1 (in all cases b may range
from 0.0 to 1.0). While it is unlikely, for small strain increments,
that any other response mode will occur, if one should (e.g.,
closure of two fracture planes during the same increment) a small
error will be introduced. However, this error may be corrected in
the next increment (see Appendix A). The logic of selecting, for
a given increment, the proper response mode is discussed in a
following section.

The precise definition of the factor b, used in Figure 8, is

such that the strains for the two response regions are:

Cael, = (1 - b) [aely

[ae], = b [ael,

For particle i in response region a, write the incremental

stress-strain relationship in the form:

(ool = [C]; Leel, + Iy

* For example, the behavior of a particle with three open fractures
can, by the introduction of rigid body motion (accompanied by no
change in the strain or stress states), be expressed in terms of
the behavior of one with two open cracks.
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Response a s Response b
/\ . = "' P ™~
E - time
N-1 N
L (1-hiAy + bAY, |
At
g N -

Figure 8  Symbolic Representation of the Transition in Response
Mode Permitted in a Given Increment.
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Response a

Nature of Transition

Response b

Elastic response
of sound rock

New shear fracture or
renewed activity of
existing closed fracture

Combination
elastic response
and sliding along
fracture

Elastic response
of sound rock

. New tension fracture or
incipient opening of

existing fracture

Elastic response
of rock with one
open crack

Elastic response
of rock with one
open crack

New shear fracture or
renewed activity along

! existing closed fracture

Combination
elastic response
(one open crack)
and sliding along
a closed crack

Elastic response
of rock with one
open crack

Formation of another
tension fracture or

incipient opening of
existing closed crack

Elastic response
with two open
cracks

E]astié response
of rock with one
open crack

| Closure of crack

Elastic response
of rock without
movement along
closed crack

Elastic response
of rock with two
open cracks

Closure of one crack

Elastic response
with one open
crack without
movement along
closed crack

Table 1 - Permissible Combinations of Response for a Particle in a
Given Increment.
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Use has been made of equ. (3); the determination of [C]i , etc.,
a
is discussed in subsequent sections. Noting the definition of

b the above expression is written in the form:

[c1; (1 -b) [aely + [L]

[AU]i
‘ a a a

likewise

]

[Ac]ib [C]ib b[AejN + [L]ib

The total stress increment is the sum of these two expressions,

i.e.,
Ao]. = [Ao], Ao},
[a0]; = [ 031a +1 0]1b
Thus:
[ody = "L O-0)(C]y + LYy} Dol + DLy + L)y
Comparing the above expression with equ. (5) yields:
[C]i = (]‘b)[C]i + b[C]i (28)
a b
L], = [L]. L], 29
[ ]1 [ ]'a + [ ]1b (29)

The appropriate expressions for [C] and [L] must now be
established for each of the possible response mechanisms (including
the effects of the transition to the mechanism, i.e., fracturing
and the opening or closing of the resulting cracks). In formulating

these expressions two approximations are made. A closed joint has
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infinite normal stiffness and a sliding closed joint experiences

no normal deformation. There is good experimental evidence to
refuteiboth of these assumptions (see discussion in Section III-A-1).
Thus an obvious future improvement to the model will be to
incorporate a more realistic description of joint behavior such

as that suggested by Goodman-72.

Response of sound rock: For situations when there is no movement

along any fracture planes the particle is considered to behave
elastically, i.e., obeys equ. (10).

Response with one open crack: Consider a particle with an open

fracture; if this fracture were not previously open it is either
newly formed at the beginning of the interval or the result of the
opening of a previously closed fracture, see Table 1. If the
fracture were open at the beginning of the interval it may remain
open or it may close at the end of the interval.

The total strain [Ae] (the subscript i indicating the particle
number and a or b indicating the interval, see Figure 7, are not
displayed for simplicity) consists of an elastic strain [Ae]' and
a portion due to the relative movement of the faces of the open

crack [Ae]" (equ. (27)), i.e.,
[ae] = au [A] + dug [B] + [ae] (30)
The stress is related to the elastic strain by equ. (10), i.e.,
[a0] = [C], [l

Solving for [Ae]' from equ. (30) and substituting into the above




expression yields:
[a0] = [C], {[ae] - Au [A] - Aug [B] )
Define:
[E] = [c], [AD [0] = [c], [B] (31)
Thus:

[ac] = [C], [2e] - au [E] - Aug [D] (32)

Using the definitions of the [A] and [B] matrices, the expressions
(inverse of equ. (11)) for the normal (Ace) and the shear (ATG)A
components of stress acting across the fracture are written in the

form:
doy = [A]"[40] (33)

sty = [B]'[A0] | (34)

For a fracture continually open the values of Aoe and ATe are
zero; for a newly formed fracture they are equal to the negatives
of the stresses existing across the plane at the time of fracture.
and T
% %
equs. (32), (33) and (34) yields:

Defining o to have the appropriate va]ues‘and using

a0 = AT {[C1 [ae] - au [E] - aug [D] ) (35)
0

0, " (81" {[C] [ae] - du . [E] - aug [D]} (36)

At

56
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Define (note: [A1'[D] = [B]'[E]):

a1'te]  a1Tro]
Ix]= |
Symm. [B]T[D]

Using equ. (31) and the fact that [C]e = [C]Z, equs. (35) and (36)

may be written in the form:

[ duy | [E1'[ae] - Aoy
[x] °

Au [01"[Ae] - arg
’ 0

The solution of these two simultaneous equations yields values

for the increments of deformation of the open fracture plane.

du = [HIT[ae] + vy bog + ¥y b7y (37)
dug = [M17Lae] + vy, bog + ¥pp by (38)
where
mf=-ww”{ﬂT+%2wﬂ} (39)
T = -y, [EDT 4y, (017 ) (40)

Y1y = - XopfDET

V12 = X;o/DET

i
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- 2
DET = X171 Xp2 = (x32)
Using equs. (32) and (35)-(38) permits the expression of the
incremental change in stress in terms of the strain increment and
the negatives of the stresses existing at the time of the fracture,

i.e.,
[a0] =" {[C], - [EICHIT - [DICMIT 3 [ae] - {yy,[E]

+ y,[0] bog - {0 [E] + vyn[D] } bty (41)

Thus, for elastic behavior with one open crack, the

incremental properties are:

[c];, = [€1, - [EILHIT - [DIMIT (42)
[L1ye = = CugqLE] + 9,000 } Aoy =" Ly, lE]
o]
* Uoo[D] } A1y (43)

0

If the value of Au (equ. (37)) is such that the indicated
total accumulated value of u, is less than zero, then the interval
must be appropriately reduced in length (i.e., appropriate value
selected for "b", see Figure 8), so that at the end of the interval
the crack just closes, see Table 1. If the value of separation
at the beginning of the interval is u"N-] and the value calculated
from equ. (37) is Au, (where u * b < o), then the factor

n
N-1
(1-b) of Figure 8 must be such that:

u + (1-b) Au_ =0
nN-1 n
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+
. u"N-] Aun
or =

Aun

Response with two open cracks: Figure 9 is a pictorial representation

of a particle with two open fractures. It is apparent that as long
as both fractures remain open that the particle can experience
arbitrary changes in strain without any accompanying stress, hence

the incremental stiffness is zero, i.e.,
[cl,, = [0] (a4)

The remaining task is to calculate [L]2c (non-zero values would
be due to the formation of one or the other of the cracks) and, for
a given strain increment, the amount of defofmation experienced by
each of the fractures.

Because of the limitation that has been placed upon the
permissible response modes, see Table 1, only one of the two
fractures can be newly formed. If one of the two fractures is newly
formed, denote the stress that existed in the particle prior to thfs
occurence as [o]o. Upon the formation of the second open fracture
the particle is no longer capable of carrying any stress, and thus

[L]2C must be equal to the negative of [o]o, i.e.,

L], = - [o], (45)

This "release" of stress due to the formation of the crack
produces an elastic change in strain (use inverse of equ. (10)),

i.e.,
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dy
8,
)
S,
\ - )
fracture system 2 fracture system 1

Figure 9  Pictorial Representation of Particle with Two
Open Fracture Systems.
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lae], = - [€1]' [o], | (46)

At this point it is convenient to express all strain quantities -
in a coordinate system aligned with one of the fracture systems.
Using equ. (12) the strain of equ. (46) is transformed to the N3-S

system, i.e.,
i T
[ae)y, = [T]y [ae],

The .imposed strain increment [Ae] is also transformed to the

Ny-Sy system, i.e.,
(8] = [T]] [4e]

The total strain increment, [Ae]], is equal to the sum of [Ae]o
1
and the strain produced by the deformations of the two fracture
systems, i.e., Aun R AuS R Aun , and AuS . This latter strain is
1 1 2 2
expressed by using equ. (27) and noting that, relative to the Ny =Sy
system, the angle used in expressing the deformation of the first

fracture plane is zero and for the second is 0 = 6, - e], i.e.*

. 1 ' 1 '
Ae. = Ae tho oty (1 + cos 26 ; A, 5 sin 20 Aug (47)

n n

1 10 1 2 2
- ] | ] N 1

Ae, = be, E'(] - co0s 26 ) hu, + 5 sin 20 Augg (48)

1 1 2 2
0

Mg g =By, o *Aug ¥ A sin 26 + Aug  cos 20 (49)

11 1 10 1 2 2

* It is assumed that there is no interference produced by simultaneous
deformation of two fracture systems.
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Now values for Aun eeo A must be selected to satisfy

1 sy
equs. (47)-(49). Because this involves selecting four unknowns
to satisfy three equations a non-uniqueness is apparent. Thus,
an arbitrary assignment will need to be made for the value of one
of the unknowns; because only rigid body motion is involved in
this assumption, it does not affect the overall results.

The process of satisfying equs. (47)-(49) must yield values

of Aun and Aun such that the total accumulated values of ug

and un; remain greater than zero (if this is not possible thel the
end of the response interval is signified)*. Equs. (47)-(49)
indicate two distinct possible modes of behavior, i.e., the cases

of 6 =m/2 and 6' # m/2. This distinction is not, however, as
clear as it might appear because when a finite number of significant
figures are employed strict equality has no real meaning. What does

have significance is the immediate neighborhood of the equality,
ie., 0 = m/2; in accordance with the convergence limit used in
the establishment of values of 6 (Appendix A) this condition is
defined as cos 28 < -.9976 (i.e., approximately 88° < 8' < 92°).
For the case of 8 = m/2 (i.e., cracks approximately
perpendicular), because sin 28' ~ 0.0, the last terms of equs. (47)
and (48) are, for reasonable values of Ausz, small and generally
unimportant. Thus, for all practical purposes there is no
arbitrariness in the selection of Aun and Aun as they are defined

1 2
by equs. (47) and (48). Hence, the non-uniqueness is removed by

* Amoung the history items that must be calculated and stored for
each particle are the values of U for each fracture system.




completely eliminating the last two terms of equs. (47) and (48)

by requiring that Aug = 03 solving equs. (47)-(49) in this
2
manner yields:

o= —2— [ae, - e ] (50)
2 1-cos 26 1 1,
1 ).
Au, = Ae - be - E'(] + cos 20 bu (51)
1 1 1 2 |
0
M. = Ay - Ay - du_ sin 26’ (52)
51 M35 M35, N2
(0]
also  Aug =0 (53)
2

For the case of 6 # /2 (as defined previously), a first
attempt is made to remove the non-uniqueness by using equs. (50)-
(53); if the predicted values of Aun] and Aun2 do not close either
of the cracks, the search is over. If, however, one or both of the
cracks is predicted to close an attempt is made to remove the
non-uniqueness in some way that does not produce this effect.

For the alternative selection, equs. (47) and (48) are added,

i.e.,

Au_ + Au = Ae_ - Ae + Ae. - Ae (54)

If the result of the attempt to use equs. (50)-(53) predicts that
crack "2" is the first to close, then the non-uniqueness is removed
by arbitrarily requiring crack "2" to "very nearly" close, i.e.,

set

63
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Au = - u + 3§

where u, = previous width of crack "2"

2
§ = very small number (e.g., 10'8)
Equation (54) now yields:
Ay = Ae - Ae + Ae. -~ Ae +u -6
M M ", 51 510 N2

If this value of Aun is not sufficient to close crack "1" then
1
the search is over. If, however, a closing of the crack is indicated

it is arbitrarily required to very nearly close, i.e., Aun1 = - un]
+ 68, and the length of the interval is adjusted (i.e., a transition
to a situation of one open crack is produced, and the appropriate
value of b for equ. (28) is calculated) so that the solution of
equ. (54) closes crack 2, i.e., Aun2 = - unz.

In contrast to the assumption of the above paragraph, if the
initial use of equs. (50)-(53) should predict a closing of crack
"1" instead, then the steps of the previous paragraph are carried
out with the subscripts 1 and 2 reversed.

For the case of 6' # n/2, once values for Au_ and Au_ are
n n

, 1 2

determined, Aug and Aug may be calculated from equs. (49) and
1 2

(47) or (48). As the model is now formulated, these values are

not required and therefore are not computed.

Response when sliding occurs along a closed fracture zone: To

determine whether or not sliding deformation will occur along a

closed fracture, an appropriate sliding criterion must be established.
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Conceptually this criterion is to be distinguished from the failure
initiation criterion discussed previously (Jaeger-60, Murrell-65,
Herget-70). A Mohr criterion is also used for the sliding criterion
(other criteria have been proposed, e.g., see Murrell-65, Hobbs-70).
This criterion is, however, defined by different values of Ops Cs

and f, i.e.,
n Tty = ¢ - f ooy (55)

Where fs is the coefficient of sliding friction and Cg is the
residual cohesion (for the present study ots is taken to be zero,
however, for the representation of ductile type fracture zones,
it may be desirable to modify this assumption).
The utilization of similar criteria, for the phenomena of
failure initiation and subsequent sliding, is important in order
to be able to account for the fact that the transition from fracture
to sliding deformation is not always easy to distinguish. The
precise occurence of this transition is somewhat nebulous for the
following reasons:
a) The fracturing process may proceed rather slowly; e.g.,
consist of the gradual Tinking up of numerous small
cracks, e.g., see Handin-63, Herget-70,
b) Continued sliding may reduce f due to the breaking of
asperities, e.g., see Goodman-72,
c) If the value of Og is large, then a clean fracture may
not take place, instead a zone of ductile type deformation |

develops (for which, obviously, cg >> 0), e.g., see Handin-63,




Murrell-65.
The transition from the fracture (equ. (18)) to the sliding
criterion (equ. (55)) is accomplished by writing both as a single

equation with variable coefficients c and f, i.e.,

n 1y = c8) - fl8) o | (56)

Where ¢ and f are prescribed functions of a measure of damage
(evidence of such damage dependence may be found in the works of
Handin-63 and Hobbs-70). Obviously forg =0, ¢ = c0 and f = fo’
and for very large values of 3, ¢ = Co énd f = fs; the variation
of ¢ and f for intermediary values of 3 is a matter of conjecture
and must be the subject of future study. An example of the type
of functions used by the authors for c(8) and f(8) are given in
Figure 10.

The nature of the measure of damage, 8, must also be the

66

subject of future study. A preliminary consideration of experimental

evidence and intuition suggests a function of the history of the

normal pressure and the relative sliding displacement of the opposing

faces of the fracture, i.e.,B =8 (06, usd). For the sake of
simplicity, the following definition has been used in the current

study:

w
it

) aIAuSI (57)

{;1 u, = 0
0 u >0

where o
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A
fo \
ff |—m— — — - ——=
=B
c
A
®0
point of crack formation
O P — _
B

Figure 10  Typical Curves for ¢ and f.
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Thus, the measure of damage has been taken as the sum of
the absolute values of the sliding deformation incréments (Aus)
that have occured when the crack is closed. This assumption is
predicated on the concept that the greater the sliding deformation,
the more complete is the fracture (break down of cohesion) and the
smoother (due to polishing and grinding) the fracture faces. It
would be more realistic to use the actual displacement usd instead
of the sliding deformation Ugs this would, however, require a
prediction for the value of the fracture plane spacing d. The
prediction of d for fractures along planes which are not natural
planes of weakness needs further investigation.

In addition it appears that the value of g should play a
more prominent role in the calculation of B (justification for:
this statement is given in a later section). In particular,
indications are that large compressive values of Oq tend to prevent
the formation of well developed fracture zones and, hence, for a
givén amount of sliding deformation should result in a reduction
in the value of 8 (this trend would probably be reversed once a
clean fracture has developed). Thus, one of the first revisions
of the model that will be undertaken in the continuation of this
research is to develop a more rational expression for the damage
measure 8.

Because it is possible to write both the fracture and sliding
criteria in a single equation, there is no need, as long as the
appropriate value of 8 is used, to distinguish between the formation

of a new fracture and the sliding deformation of an existing closed
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fracture. ,

The initiation of sliding may occur at any point during
increment N; once it has begun, due to the inherent instability
caused by the decreasing values of ¢ and f (see Figure 10), it is
assumed that it continues to the end of the increment, see Table 1.
The value of the damage at the beginning of the interval is denoted
as Bb and at the end of the interval by BN'

Equ. (56) must now be expressed in incremental form. It is
first written in the form of equ. (20) (where c and f are

appropriate functions of damage), i.e.,
[ T -
Ql'fc]l +c=0 (58)
When the sliding begins equ. (58) yields:

[} [o], + ¢, = O (59)

Where [Q]b (equ. (21)) makes use of the values of fy (defined by
Bb) and [o]b (the stress state at the beginning of the sliding
interval). At the end of the interval equ. (58) yields:

[l [oly + ¢y = O
or

(1} [oly + [4Q17 [ody + ¢, = 0 (60)
where

[aQ] = [aly, - [Q],
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Subtracting equs. (59) and (60) gives:

Q] [80] + (401" [o]y + &c = 0

or [Q]g [ac] + Bc = 0 (61)

where B&c = Ac + [AQ]T [o]N , (62)

Equ. (61) is the incremental form of the failure-sliding
criterion; its adequacy is based upon the assumption that the
interval is sufficiently small so that within the interval the
left-hand side of equ. (58) may be expressed as a linear combination
of the values at the ends of the interval.

During the interval, the strain due to the elastic response
of the rock is denoted by [Ae]' (expressed either by equ. (10) or
(41)*; denote the appropriate matrix of incremental properties as
[C]'). The remainder of the total strain [Ae] (denoted by a double
prime) is then due to the sliding deformation of the fracture plane,

i.e.,
[ae] = [ae]' + [2e]"’

Using equ. (27) (note: any strain due to a possible open

crack is taken care of by equ. (41), and hence is included in

[2e]'):

[ae] = [pe] + dug [B]

* If equ. (41) is used because the open crack cannot be newly opened
the [L] matrix is zero, see Table 1.
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or

[ae] = [2e] - bu, [B] (63)

The relationship between the stress [Ac] and the elastic

strain [ae] is:
[a0] = [€]" [e]’
Using equ. (62) to eliminate [Ac] from the above expression yields:
[a0] = [€] { [ae] - Aug [B] }
Define:
[61 = - [c]' [B] (64)
Thus:
[a0] = [€]" [8e] + aug [6] (65)

The magnitude of the sliding deformation, Aus, is determined by
satisfying the incremental fracture-sliding criterion, i.e.,

equ. (61):

[Qlf “Lc] [2e] + aug [6]} + Bc = 0
or

Aug = - & "{Ac + [o]l [c]' [l }

where
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_ 1
N —
(a1} [6]

Because the right-hand side of this equation contains Ac which

depends on [o]N, a quantity which is not known a priori, and

because ¢ and fN are dependent upon the value of Aug (see equ. (62)),
the value of Aug must be established by iteration.

Substituting the above expression into equ. (65) yields:
[a0] = [c]' [2e] - £ [6] ~(Bc + [Q)] [c]' [ael }
or (using equ. (64))
[a0] = {[c]' - &£ [6] [Q)] [€1'} [2e] - € e [6]

Thus the stiffness properties [C]_ for the case of sliding of
s

a closed fracture is:

[cl, = [c1' - & [6] [a]] [c]' (66)

The loss of strength [L]S due to reduction of sliding resistance

along the fracture plane is
[L] = - & & [6] (67)

It needs to be emphasized that iteration is required to
establish Cyo fN and [o]N which are needed in the calculation of
Ac. That is, the quantities Au and [Ac] are estimated and used
to predict Cyo etc.; these values are in turn used to produce Aug

and [Ac] which are compared to the estimated values, etc.
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Fragmentation of intact particles: Some fragmentation of sound

rock may occur as a consequence of stress induced damage (see
discussion in Section III-A-1). As this fragmentation takes place
a certain amount of material is transferred from the intact phase
to the rubble phase (see discussion in Section III-B-1). In the
absence of sufficient experimental evidence to quantitatively
describe this phenomenon, an arbitrary assumption is made for

the purposés of this exploratory study. It is assumed, that during
increment N, that the change in value of the relative proportion

of particle i (i.e., P,, see Figure 4) is expressed by the following

i
equation (a negative value indicates loss of material due to

fragmentation):

=Dy =D

Y.
=P M (e "o "M 1 (68)

Where: Dr - a prescribed parameter measuring ease of fragmentation

vy - a measure of the damage that produces fragmentation
Mx - the maximum fraction of material that may be lost
from the particle due to fragmentation (currently in
the model M, = 0.05).
The fragmentation damage measure y was selected to be equal to
4959 times the number of fractures in the particle plus the sum of

Dy

the measures of damage B (see equ. (57)) for each of these fractures.
This definition of y was selected in an attempt to account for the
fragmentation which occurs when the fracture first forms, plus any
"additional fragmentation which results from sliding deformation of

the closed joint.
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The arbitrary nature of the above expression is apparent, and
thus, at this time, use of this feature should be restricted to
eXp]oratory studies.

Determination of particle behavior: At this point, the equations

have been established which describe the various particle behavior
mechanisms jisted in Table 1. Thus the [C]ia, [C]ib, [L]ia, [L]ib
matrices which describe the response of the particles for each of
the two intervals represented in Figure 8 and which enter into
equs. (28) and (29) are given by equ. (10) or (42) or (44) or (66)
and by (10) or (43) or (45) or (67). The factor b, which defines
the boundary between the two intervals of Figure 8 and which enters
into equ. (28), is determined from either equ. (26) or from the
considerations relative to the closing of an open fracture.

The one item that remains unexplained is the description of
the sequence of steps for determining which of the behavioral modes
described in Table 1 is to be used for a given paftic]e. The logic

of this selection process is shown in Figure 11.

4, Composite Behavior:

The calculation of the incremental properties for the
representative volume utilizes the results for the rubble phase,
i.e., equ. (9), the results for the several intact phases, i.e.,
equs. (28) and (29), and equs. (6) and (7).

It is to be kept in mind (see discussion in Section II-B)
that all the calculations of the previous sections are based upon
an assumed knowledge of the strain increment [Ae]N which, of

course, is not usually known a priori. Hence, the composite
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Determination of number (NC) of
open cracks in particle
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NC=0 NC=1

A B
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g open crack- °
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Check for formation of new \\ [
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crack - Calculate value of b ® If NC=0 ®) §-
/_u \ ,./\\ ‘ $
ﬁ9/' Yes \ M Yes “ilo / D:v
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Calculation of Particle Properties, Equs.(28) and (29) ‘

Figure 11  Logic for Selecting Particle Response Mode

(See Table 1)
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properties for a given increment must be established in an iterative

fashion,

C. COMPUTER PROGRAMS FOR MODEL :

It is apparent from the description of the model that numerical
evaluation is not a simple operation and thus, even for the simplest
cases, requires the use of a high speed computer.

Two types of applications of the model are of interest. Initially
it is of particular importance to be able to use the model to predict
results for simple laboratory tests. The second type of application
is the primary use for which the model was developed (see discussion
in Section II-B), i.e., to provide the incremental properties for
finite e]emenf analyses of rock structures. Both of these needs
were taken into account during the development of the two computer
programs described in this section.

A computer subroutine (called PROP) has been prepared for the
evaluation of the incremental properties of the representative volume
for rock masses. This subroutine is so formulated that it may, with
little difficulty, be directly incorporated into existing finite
element programs for use in plane strain analyses of rock structures.
The required characteristics of the finite element program are
discussed in Section II-B. In addition, a small program for
predicting the results of simple laboratory tests is given (called
EVAL). This program makes use of the subroutine for the calculation
of the properties of the rock. The use of these two programs is

described in the remainder of this section.
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1. Subroutine PROP:

The purpose of this subroutine is to calculate incremental
properties for rock masses (based on the analysis of the representative
volume). Throughout the development of this subroutine, the authors
drew upon their extensive experience in the development and use of
finite element programs, in an attempt to make the subroutine as
compatible as possible with the more advanced of the existing
two-dimensional finite element programs. While, to date, the
authors have not had the time to incorporate the subroutine into
one of their existing programs, it would be a relatively simple
operation and is high on the agenda for the continuation of this
research.

The logic of the subroutine follows very closely that presented
in Figure 11, and thus does not require further discussion. In
order to simplify this exploratory investigation, certain sophistications
regarding dimension changes, dimension checks, print-out concerning
the nature and scope of damage in the rock, etc., have not been
included, but instead left for future work.

»The listing of the program is given in Appendix B. The necessary
steps for incorporating the subroutine into a finite element program
are now described.

The call to the subroutine is:

CALL PROP (INTR, NELM, ISYMN, IC, DESP, CS, XLS)
The first four arguments are integer variables; the dimensions of
the three arrays are DESP(3), CS(3,3) and XL(3).

Two preliminary calls must be made to the subroutine in order
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to enter material properties and to initialize history and property
arrays for each of the finite elements. The formats for these
calls are:

1) The first call is for the purpose of causing the subroutine
to read the sets (one for each different type of rock) of
parameters which describe the characteristics of the
representative volume. The reading and echo printing of
these parameters is done within the subroutine; the formats
for the read statements are described later. For this
call the only argument that has significance is INTR which
must be assigned the value of 1.

2) The second call is for the purpose of establishing the
auxiliary storage arrays for the properties and damage
history of each finite element. This call must be executed
for each of the rock elements, i.e., NELM times (the
precise nature of the sequencing of these calls is described
later). For this call the arguments of interest are (the
material number must correspond to the appropriate rock |

type identification number described in the first call):

INTR = 2
NELM = Total number of rock elements
IC = Material number of element

After these two preliminary calls are completed the subroutine
is ready for the prediction of the incremental properties for each

of the rock finite elements; these predictions take place within the
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incremental-iterative analysis loops (see discussion in Section
II"B).
For each iteration of each increment the subroutine is called

NELM times; the definitions of the arguments in the call are:

INTR = 3
NELM = Total number of rock elements

0 if the subroutine is unsymmetrical form, equ. (1)
ISYMN = to return the material{

1 properties in symmetrical form, equ. (2)
IC = Iteration number (note: the first iteration of each

increment must be numbered 1, i.e., IC>1)
DSEP = Estimate of strain increment, i.e., [Ae]N of equ. (1)+
CS = Predicted incremental stiffness properties, i.e.,

[C]N of equ. (1) or [CS]N of equ. (2)
XLS

Predicted incremental strain independent stresses

i.e., [L]N of equ. (1) or [LS]N of equ. (2).

The first five arguments are, of course, values provided to
the subroutine by the calling program, whereas, the last two are
incremental properties calculated within the subroutine and returned
to the main program.

Within each iteration PROP must be called for each of the

NELM elements; these calls must be in precisely the same order as

was the case for the 2nd preliminary call.

The input of material parameters (read by the subroutine

¥ The current development is for plane strain, thus the three
components of [Ae]N are le, , Aey , and Any .
N N N
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during the first preliminary call) is according to the following

format:

A. Control Card (I5):
Col. 5: NOMAT ( <4)* -number of different types of rock

B. NOMAT sets of cards describing the rock types
1. Initial Card (415,E10.3)
Col. 5: MN (<4) -material number (i.e., rock type
identification number)
10: NONP ( <2)** -pumber of natural planes of |
weakness
14-15: NODIS ( <20) -number of intact particles
(denoted by the symbol I in Section III-B-1)

0 isotropic rock
20: ITYP =

1 orthotropic rock

21-30: Dr-parameter used to control fragmentation of

of intact particles (see equ. (68)).

* Indicates dimension limit.

*% The limit of 2 for the number of natural planes of weakness is
in contradiction to the final decision concerning this limit
(i.e., 3) as stated in the main body of the report; time did
not permit the modification of the subroutine to reflect this
decision; in the authors' judgment there should be very few
instances when this will be a detriment. In addition, contrary
to the statement in the main body of the report, time did not
permit the inclusion of residual stress effects.




2. Elastic Properties Card (8E10.2) - see equ. (1)
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- ITYP
Cols 0 1
1-10 E C]]
11-20 v C12
21-30 C]3
31-40 C22
41-50 C23
51-60 C33
61-70 ¢ (in degrees)*
71-80 R (see equ. (16))

3. NONP+1 Groups of cards giving strength parameters (first
NONP are for the natural planes of weakness, the
last group is for the sound rock):

a) 1Ist card (215,2E10.3):
Col. 5: NOF (<5) -numbér of points defining the
function f(8) (see Figure 10)

10: NOC (<5) -number of points defining the

function c(B) (see Figure 10)

11-20: o,-tensile strength

t
21-30: 6 -orientation (in degrees) of natural
plane of weakness (see Figure 6); left

blank for sound rock

* The Cy1> Cy2s . properties are given for the preferred
d1rect1ons X -xz, tﬁe angle ¢ is measured from the x axis to the
Xq axis.
1
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-b) As many cards (8E10.2) as needed to describe the
function c(B) (see Figure 10)

Col. 1-10: C4

11-20: B]
21-30: c,
BNoc

c) As many cards (8E10.2) as needed to describe the

function f(B) (see Figure 10)

Col. 1-10: f,
11-20: B]
21-30: fz

BnoF

4. Description of Integrity Factor - As many cards (8E10.2)
as needed to give the distribution function for the

integrity factor F (see Figure 4)*:

Col. 1-10: P]
21-30: P2
Fropis

This completes the input of the parameters which describe

* The proportion of the rubble phase is automatically assigned,
NODIS
=1- 7 P,

P
i=1 !

.., Proprser = Prat




the representative volume,

The subroutine makes use of one auxiliary storage unit in a
sequential operation. In the subroutine this unit is labeled "1"
and treated as a tape unit (it can, of course, be a disk simulation
of a tape unit). Special provision is made so that this auxiliary
storage is not used when NELM = 1, i.e., when the subroutine is
used in the analysis of simple laboratory samples. The storage
réquired by the subroutine for COMMON/B1/ may be used by the main
program, for other purposes, prior to the 2nd preliminary call; the
storage for the second common block is required by the subroutine
for the period beginning with the first preliminary call and ending

with the completion of the second preliminary call.

2. Program EVAL:

In order to evaluate the effectiveness of the proposed
characterization for the structural properties of rock, that is
embodied in subroutine PROP, it is necessary to incorporate the
subroutine into an analysis program. Because the preliminary
evaluation was limited to simple laboratory tests it was not
necessary to use a general finite element program. For the sake
of economy the following special analysis program applicable to
simple laboratory tests was developed.

The program is capable of considering simple three-dimensional
states; its use in this phase of the research is, however, limited
to the plane strain case. The program can treat any combination
of prescribed histories of the six stress and/or strain quantities,

i.e., prescriptions of the histories of (cx or ex) and (oy or ey)

83
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and . . . (Tyz or sz)' The only restriction placed upon these
histories is that during the course of the analysis the prescribed
quantities cannot be changed, e.g., at some point ih the analysis
a change from a prescription of o, toa prescription of €y is not
permissible. During the last stages of this research effort this
restriction was found to be somewhat inconvenient and will be
removed early in the next phase of the research program.

Denote two of the six quantities to be described (e.qg., Oy
or ., and o or ey) as f and g. Now, although time is not

Y

explicitly involved in the characterization, and hence in the
analysis, for the purpbse 6f describing the stress and strain
histories it is convenient to introduce it. Thus the prescription
of the histories of f and g can be thought of as a prescription
of the functions f(t) and g(t). For the purpose of this analysis
the histories are described by a series of linear segments, e.qg.,
see Figure 12. The histories are prescribed by successively
giving values for f], 9y3 f2, 9o etc.

The effects of friction between the testing machine and the
sample may be included in the analysis in a very crude fashion
by requiring that a stress be developed to oppose strain. This
option is invoked by prescribing non-zero values for the environmental

stiffness factors, ENVSTF(I). For example, if Ty is prescribed to

Y
be h(t) and ENVSTF(4) = k4 then the actual shear stress which is
developed is h(t) - k4ny' The last term may be used to crudely

simulate the development of a shear stress, due to friction, on the

ends of the sample.
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Segment 1 Segment 2

Figure 12

Segment 3

Examples of Prescribed Functions.
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Program EVAL is based on a standard incremental-iterative
analysis procedure for nonlinear problems. This procedure is
well documented in many places (e.g., see Taylor-72) and thus
need not be described here. Within each iteration, program EVAL
calls subroutine PROP for a prediction of the incremental structural
properties of the rock. The required degrée of convergence is
controlled by the specified maximum value (CONLNT) for the average
error in the strain increment estimate used in the calculation
of the incremental properties. The rate of convergence may be
improved by using an appropriate value for the convergence factor
"CONFAC"; the improved estimate of the strain increment is written

in the form:
/\ .
[AE]N = [Ae]N_1 + CONFAC {’[AE]N - [Ae]N_]}

If the iteration scheme fails to converge within twenty
iterations the program automatically halves the increment, and
the iteration scheme is repeated. In a given analysis, if this
halving procedure takes place more than fifteen times, it is
taken as an indication that the problem is unstable and the
analysis is aborted with the statement, "Sample is no longer
stable". Once the halving procedure has been used, if the
iteration scheme at any time converges in less than four iterations,
the increment is doubled for the next step.

The listing of the program is given in Appendix B; the use
of the program is described below:

A. Title Card (12A6):




Col. 1-72:

B. Control Card

Col. 1:

10:

11-20:
21-30:

61-70:
71-75:
76-80:

Information to be printed as the heading of
the output
(611, 14, 6E10.2, 2F5.1):

IFF(1) = { ?f if {/gxi prescribed
X
IFF(2) = é ?? if §2y§ prescribed
Y
IFF(3) = { ?i if 52 *1 prescribed
_ {0 P T .
IFF(4) = { ]{ Y y& prescribed
Xy
. IFF(5) = { ?i if {'5 i prescribed
IFF(6) = { ?} if {.iyzi prescribed
yz
e = { 9 for {g D1 PROP Subroutine
ENVSTF(1)
ENVSTF(2) environmental stiffnesses
ENVSTF(6)

CONFAC - convergence factor

CONLMT - convergence criterion

C. Material Properties - At this point the properties of the

rock are supplied to Subroutine
PROP (see description of input for
PROP)

* For plane strain IFF(3) = IFF(5) = IFF(6) = 1 and the histories
of €55 Yyz° sz are prescribed to be zero.

** The use of the current subroutine PROP requires that ITYPE = O.

87
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D. History Cards (1X, 14, 6E10.2), for each history segment
(see Figure 11) the following card must be
supplied

Col. 2-5: NMIS - minimum number of increments to be used
in this segment*
6-15: Value of o, or ex** at end of segment
16-25: Value of oy or ey at end of segment

26-35: Value of o, ore, at end of segment

36-45: Value of t,, or v ., at end of segment

Xy
46-55: Value of Ty

Xy

2 O Yy, at end of segment

56-65: Value of Tyz or sz at end of segment

E. End Card (I1) - Number 9 punched in Col. 1.

The above sequence (A-E) of cards is repeated for each analysis

and placed in the data deck consecutively.

D. NUMERICAL RESULTS:

Some representative results predicted by the model, for simple
stress and strain histories, are given in this section. These
results were obtained by using the two programs described in the
previous section,

Unfortunately, a state of plane strain is very difficult to
achieve in the laboratory, and thus no experimental results for this

state were located in the literature. In order to develop some feel

* The automatic halving process previously described may result in
the use of a greater number of increments.

** The determination of which of the values of o or €y is being
supplied depends upon the value of IFF(1), etc.
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for the appropriateness of the proposed model, the results are
qualitatively compared to experimental results from cylindrical
tri-axial tests. There is, of course, no reason to expect
quantitative agreement between these two states, but one would expect
similarities in their general characteristics. Thus, if the model
can be made to predict results which are similar in nature to measured
cylindrical tri-axial data, it is a strong indication that the model
has the capabilities of predicting real rock behavior. From the |
Tlarge number of predictions made with the model, a few of the most
interesting are briefly discussed below.

0f the experimental results that the authors located in the
literature, those due to Wawersik-70 appear to be the least influenced
by the characteristics of the experimental apparatus (in light of
recent studies of the importance of end effects in tests of concrete,
Kupfer-69, the authors suggest that even these results may be rather
highly influenced by such disturbances). Figure 13‘reproduces from
Wawersik's paper a series of stress-strain curves taken with different
confining pressures. Values for the several parameters which define
the model (see Section III-C-1) were selected so as to give a stress-
strain curve (zero confining pressure), for plane strain, that
qualitatively agrees with the one given in Figure 13 for cylindrical
tri-axial conditions. Because of the quantitative meaninglessness
of comparing plane strain and cylindrical tri-axial results, no attempt
was made to select the parameters to obtain good quantitative agreement.
The values of the model parameters are given in Figure 14; the predicted

behavior for zero confinement pressure is given in Figure 15. It
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must be emphasized that the parametric values, given in Figure 14,
were selected to simulate cylindrical tri-axial results with a
plane strain model, and thus are not correct values for the rock
(i.e., values that would be used for actual plane strain conditions).
When viewing these results, two facts should be kept in mind.
First, the detailed shape of the descending portion of the experimental
curve may be as much a product of the test arrangement, sample
properties and test equipment as of the fundamental characteristic§
of the rock. Second, the local variations in this portion of the
analytical curve are, to some extent, dependent upon the sizes of
the increments used in the analysis. Thus, once the peak strength
is exceeded, only the general nature of the curves are of interest.
The comparison of these results suggest that the model has the
capability of capturing the general one-dimensional stress-strain
characteristics of this particular rock. While Wawersik does not
report any lateral strain (or volume change) measurements, the
predicted results are in good qualitative agreement with observations
made by other experimentalists, e.g., see Walsh-65 and Bieniawski—67b.
Utilizing the same parameters, Figure 14, the predictions given
in Figure 16 for pressurized plane strain tests were obtained. A
comparison of Figures 13 and 16 illustrates a shortcoming of the
model which was previously alluded to in Section III-B-3. The model's
prediction of strength loss (descending portion of stress-strain
curve) is a consequence of the reduction in ¢ and f values (see
Figure 14) as a function of 8. The poor correlation between Figures

13 and 16, for large values of confining pressure, is explainable by
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the fact that the model, as now formulated, does not account for an
apparent decrease in the damage rate for high confining pressures.
An indication of the validity of this assertion is found in the
following study.

The ¢ and f curves (Figure 14) used in the prediction of the
results reported in Figure 16 were modified so as to make them
decrease less rapidly with increases in the value of B, see
Figure 17 (in actuality what is needed is to modify the definition
of B, equ. (57), so that for higher mean pressures it accumulates
more slowly). The revised predictions, for 2000 psi confining
pressure, are shown in Figure 18, With further revision, the
predicted results could have been brought even more closely into
line with the observations. A comparison of Figures 13, 16 and 18
demonstrate the importance of the proposal to make the measure of
damage (8) a function of the mean pressure.

Wawersik also gave experimental results for the case when
the load is cycled from a point on the descending portion of the
curve, see Figure 19. Predicted results for a single such unloading-
reloading cycle are shown in Figure 20. The remarkable similarity
of these results is particularly significant when viewed in light
of the complexities of the nonlinear inelastic behavior of the
region beyond peak strength. The fact that the unloading-reloading
curve of Figure 20 is "open" instead of "closed" as in Figure 19
is apparently, at least in part, due to the fact that finite sizgd
incremental step$ are used in the prediction process.

It is also of interest to consider the predicted behavior
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for the case where the unloading-reloading takes place prior to
peak strength, see Figure 21. In accordance with experimental
observations, (see Section III-A-1) a small but observable
hysteresis loop is present (a result of damage to some of the
particles).

In his experimental study, Wawersik observed two fundamentally
different types of behavior, i.e., somewhat ductile and
catastrophically brittle (he referred to rocks exhibiting these
behaviors as Class I and Class II, respectively). Tennessee
Marble II (Figure 13) is of the first type and Solenhofen
Limestone of the second. The uniaxial stress-strain curve
obtained by Wawersik for the limestone is reproduced in Figure 22;
utilizing the parameters given in Figure 23, the results shown
in Figure 24 were predicted with the model.

Because of the limited number of different stress and strain
histories considered, and because in fact the experimental results
were not for plane strain, any conclusions drawn from the above
comparisons of model pfedictions with experimental observations
must be treated as very tentative.

Nonetheless from the results presented herein, and others not
reported, it would appear justifiable to state that the model has
the demonstrated capability of capturing, with a fair degree of
accuracy, the behavior of rock for at least relatively simple stress
and strain histories; and that these capabilities will be significantly
enhanced once certain modifications are introduced (e.g., dependence

of the measure of damage on the mean pressure, use of a non-straight
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failure envelope, etc.).

A really convincing substantiation of the model will, however,
only be possible once the model is incorporated into a finite
element program, and used for the analysis of actual rock structures
for which carefully taken measurements are available.

Finally, it is of interest to consider the "structural peak
strength envelope" predicted by the model, i.e., the envelope of
the Mohr's circles for peak strength conditions. Plots of several
such Mohr's circles are given in Figure 25; an expanded view of the
area near the origin is given in Figure 26*. Also shown in these
figures is a plot of the average (taking into account the concept
of the integrity factor, e.g., see equ. (8)) failure envelope (see
equs. (14) and (15)) used at the particle level. Except for the
tensile stress region the two are nearly identical; thus, indicating
that a measurement of one can be used to predict the other. Thus,
if the peak strength envelope is parabolic one would expect the

macroscopic failure envelope to be parabolic, etc.

E. DETERMINATION OF MODEL PARAMETERS:

The final task of the characterization procedure is the
calibration of the model, i.e., for the rock mass of interest, the
determination of numerical values for the several parameters which
describe the representative volume, i.e., c(B), f(R), oy etc.,

(see Section III-C-1).

* These plots are based upon the assumption that at peak strength
the stress normal to the plane is the intermediate principal
stress; an assumption whose implications are not immediately
obvious.,
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It is envisioned that this process will consist of three steps:
a) The determination of the basic macroscopic rock properties,
such as cohesion (see Figure 10), friction, variability
(see Figure 4), etc., from fundamental observations of rock

behavior in simple laboratory tests.

b) The use of the properties, determined in the previous step,
for the prediction of the behavior of laboratory samples
subjected to complicated stress and strain histories.

These predictions would be compared with laboratory measure-
ments, and the parameters determined in the previous step
modified* in order to improve the "fit" of the data**.

c) The use of the properties, determined from the above two
steps, in the prediction of the behavior of large scale
rock structures for which experimental results are
available. If necessary, the parameters would again be
revised in order to yield the best comparison of analytical
and experimental results. It is expected that the histogram

of the integrity factor will be the quantity that will require

* There is currently considerable effort being expended on the
development of systematic means for making such revisions, e.g.,
see Collins-74.

** The concept of revising the "fundamental" properties determined
in step "a" in light of the results of steps "b" and "c" is
justified by the following consideration: While the basic
parameters, which describe the fundamental aspects of rock
behavior (e.g., cohesion), are introduced from a consideration
of the mechanics of rock behavior, they may ultimately be treated
as merely arbitrary parameters which describe a proposed model.
As parameters, which describe a proposed structural characterization
model, they should ultimately be selected to yield the best
agreement with experimental observation of rock behavior at the
structural level.
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the greatest revision.

To date, the only effort that has been expended on this phase
of the research is the gathering together of some published data
concerning values of the basic parameters, see Appendix D. Upon
completion of the three-dimensional model, the major research effort

will be concentrated on this calibration task.




110

IV RECOMMENDATIONS FOR FUTURE WORK

The research and development which is required to complete the
overall project (see Section II) may be categorized into five main
steps:

a) The improvement of the plane strain model.

b) The incorporation of the plane strain model into an

existing two-dimensional finite element program, and
the evaluation of the overall effectiveness of the
resulting program.

c) The extension of the model to the general three-dimensional
case, and the incorporation of the results into an existing
three-dimensional finite element program.

d) The development of a systematic procedure for determining
the model parameters. |

e) The substantiation of the ability of the model to
represent the important structural characteristics of
rock masses. This verification will include the comparison
of analyses of large scale rock structures with available
experimental measurements.

The execution of these five steps will, of necessity, require

a certain amount of iteration, e.g., discrepancies between
experimental and analytical results observed in step "e" may lead to
a revision of the basic model (step "a"), etc. |

At this point in the project, it is possible to Tist those items

that need to be covered in the initial step of the continued research

effort, i.e.:




a)

b)

c)

e)
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The modification of subroutine PROP to include the effects
of residual stresses, a maximum of three planes of weakness
(instead of two as is now the case), a more realistic
description of the behavior of joints (e.g., including
dilatation effects, the initial state of the joint, etc.,
Goodman-72), a more accurate failure criterion (e.g., a
parabolic Mohr's envelope), the effects of pore water
pressure, and print statements to indicate, at various
stages of the analysis, the degree of rock damage.

The development of a more rational definition for the
measure of damage B (see Section III-B-3); of a better
understanding of the process which governs fragmentation;
and, possibly, a more accurate description of the rubble
phase.

A study to determine the importance of accounting for rate
effects, temperature effects, size effects, variability of
the stiffness parameters (E and v for isotropic rock) and
the coefficient of friction, and the nonlinear effects caused
by closing of pores at very low stress levels.

The determination of the effect of the number of intact
particles (NODIS) on the economy and accuracy of the model.
A study of the desirability and feasibility of revising the
basic assumptions underlying the use of equ. (3) and of

Table 1.
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V. CONCLUSIONS

The basic conclusions drawn from this research project are:

a) The development of a comprehensive characterization of
the structural properties of rock masses, in terms of a
representative volume, appears to be feasible.

b) The representative volume described in this report appears
to be capable of representing, in a qualitative fashion,
the general characteristics of rock behavior for a state
of plane strain. However, several relatively straight-
forward revisions are needed in order to improve the
quantitative aspects of the representation.

¢) The proposed characterization for rock masses is significantly
more advanced than any other currently available model.

d) The process of incorporating the subroutine, that has been
developed for evaluation of the proposed model, into existing
finite element programs appears to be relatively a simple
task.

e) A general three-dimensional model could be developed as an
extension of the plane strain model presented in this report.
Conceptually this development is relatively straightforward,
although the algebraic and numerical difficulties will be

substantial.
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VII APPENDICES

A. DETERMINATION OF FAILURE PLANE ORIENTATION

In this appendix the procedure for determining the minimum
positive value of the quantity k defined by equ. (26) is established.
Because this task is related to the problem of finding principal
stresses, it is relatively simple to demonstrate that there is always
one or more such minima, except for certain‘very specialized cases,
e.g., case of a hydrostatic stress state in an isotropic rock.

Ignoring for a moment the fact that theoretically k should not
be negative, a minimum is sought by setting the derivative of equ.

(26) equal to zero, i.e.,

k(o) = 8L (A-1)

Set

- du
Where u = a—e-

Let g(e) (A-3)

il
=
<

¢
=
<

Thus g(e) =0 (A-4)

The expression for g is a strongly nonlinear function of 6 and
thus is solved by iteration. In order to ensure that this process
will converge to the correct result, a relatively good initial

approximation (60) is first determined.
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Supposing for a moment that the total stress history is proportional
(as noted in Section II-B, this is seldom true), the stress increment

can then be expressed in the following simple form:

At
(6 = o S "YN)
o o T !

*N IN N

85Ty = § [0l

Equ. (25) then yields:
v=1_(c-u)s

and v = {c - ul) S

For this special case equ. (A-3) yields:

uc-uc =0

]
If ¢ =0 (isotropic material) the above equation yields:

Utilizing equ. (24) gives:

0,~0 o,~-0
X Y ; - oy XY =
(f 5=+ N Txy) sin 26, (f Ty =N 77 ) cos 20, =0
or
o,-0
f Tyy ™ n-i%?JL
tan 260 = S {0
T A
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The above expression has two roots of interest, i.e.,

_ 0y -0
6 = %‘ Tan™! {' Ty 7" 72
) o -0
XY
f 5 +n Txy
H 1
and 60 = eo + /2

The values of k, corresponding to each of these two angles, are
calculated (the special considerations involved in this determination
are described later in this appendix) and the one yielding the lesser
value is used to define 6o

The Newton method (e.g., see Carnahan-69) is used to solve equ.
(A-4); 8, s used as the initial estimate. Each iteration of the

Newton method requires the following calculation:

g (6)

Iteration is continued until the change between two successive
iterations is less than approximately one degree (because of the
inherent uncertainties involved in the characterization of rock, a
more accurate determination is not justified).

When using this solution method, care must be taken to avoid the
neighborhoods of angles for which g'(e) =0 (i.e., a maximum or minimum
point for g). If g'(e) = 0 or if it is sufficiently small to make
> 2.0 rad., then in order to move from this neighborhood

|e -0

i+l il
and continue the iteration in an orderly manner, ei is arbitrarily

changed by + 0.4 rad. The plus sign is used if it gives the larger
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The above expression has two roots of interest, i.e.,

o, -0
, fr -n Y
o_ = %— Tan™! XY 2
0 . -0
X Y
f > +n Txy
and 6; = eo + /2

The values of k, corresponding to each of these two angles, are
calculated (the special considerations involved in this determination
are described later in this appendix) and the one yielding the lesser
value is used to define 60.

The Newton method (e.g., see Carnahan-69) is used to solve equ.
(A-4); 0, is used as the initial estimate. Each iteration of the

Newton method requires the following calculation:

g(6;)

Iteration is continued until the change between two successive
iterations is less than approximately one degree (because of the
inherent uncertainties involved in the characterization of rock, a
more accurate determination is not justified).

When using this solution method, care must be taken to avoid the
neighborhoods of angles for which g.(e) =0 (i.e., a maximum or minimum
point for g). If g'(e) = 0 or if it is sufficiently small to make
18547

and continue the iteration in an orderly manner, ei is arbitrarily

- eil > 2.0 rad., then in order to move from this neighborhood

changed by + 0.4 rad. The plus sign is used if it gives the larger
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value of v(8) (i.e., denominator of equ. (A-1)) and vice versa. If
such a situation arises more than three times during the iteration
process, it is taken as an indication that a minimum does not exist,
and therefore all angles are equally critical; at this point the
iteration process is stopped and the last value of ei is arbitrarily
used.

Once the critical value of 6 is determined it is then necessary
to calculate the corresponding value of k. Because of the condition
that k > 0 and because the limitations placed upon the permissible
particle behavior modes (Table 1) may have artificially prevented a
failure from occuring in the previous increment, this calculation
involves some additional considerétions beyond the straightforward
use of equ. (A-1).

For non-failure conditions (i.e., equ. (23) not satisfied) the
"reserve strength", Rs’ against failure can be measured by the |

expression:

RS =y - kv

At the beginning of the increment k = 0 and u is therefore the resérve
strength (it is thus also the reserve strength at the end of the
previous increment). With the relationships of u and v to RS in mind,
the values of u(6) and v(e) are calculated and the following

interpretations placed upon their signs:

u> 0.0 - no tendency for failure at end of previous increment
u <0.0 - failure prevented in previous increment by limitation

of Table 1
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v > 0.0 - tendency for particle failure during this increment

v <0.0 - no tendency for particle failure during this increment.

The above considerations lead to the fo]]dwing specifications

for the value of k:

v <0.0, set k > 1.0 (indicates no failure during this increment)

v > 0.0 and u <0.0, set k = 0 (failure at beginning of increment)

v >0.0and u > 0.0, set k

u/v

To this point, the question of the value of the parameter n
which appears in equs. (18) and (21) has been ignored. Three values
must be considered, i.e., n = 0 (tension failure) and n = + 1 (shear
failure). The requirement that both n = * 1 be considered is apparent
from a consideration of Figure A-1.

The computational steps outlined in this appendix are performed
three times, i.e., forn =0, + 1, - 1; the corresponding values of
k are compared and the smallest selected as the critical value (the
corresponding angle is the critical angle).

At this point, some consideration needs to be given to the fact
that for certain situations there is a non-uniqueness involved in
determining the critical shear failure plane (e.g., see Figure A-1;
theoretically, fractures on the planes defined by n = = 1 are equally
likely). Practically, this problem is not apparent because the
numerical scheme used to determine the values of k always indicates
one value higher than the other (due to round-off-error and incomplete
convergence), i.e., an arbitrary selection is made of one of the

orientations over the other. Because, for each of the particles, the
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B o

Qorientation of failure plane for Mm=1

> o
—— ~~ orientation of failure plane for M=-1

Figure A-1  Mohr Envelope for Isotropic Haferial; Failure in Uni-axial Compression.




A-7

sequence of operations are performed in the same order they all
experience for a given increment the same bias in this selection
process. This process may be viewed as an arbitrary selection

for the first particle and a resulting influence of this first
selection on those for the remaining particles. This process can
be 1ikened to what happens in the physical event. In the physical
situation, the orientation of the first crack is influenced by
arbitrary factors, such as initial imperfections, and the remainder
by the bias introduced in the stress field due to the presence of

the first crack.
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DC 128 J=1shCLIS 000143
PCFCI) = POPZCLeHN) 600144
128 VAL(I) = VALZ(TIsMN) 000145
¢ 000146
¢ STzt CF THE CRIGINAL FRAGMENTECD MATERIAL PARTIcCLE ESTABLISKED 000147
¢ 000148
FRPAR 5 1,0 600149
DC 129 I=1shCLls 600150
129 FPAK = FPAR=FLP(1) , 000151
TFUEFAR "ETe Cot) FPAR=0.0 000152
DFFAR = 0e0 000153
XLAV 8 CE(1,2) 6C0154
XML 28 N S« (CE(1ot1)+CE(202) )X AN 000155
BLKWCED = XLAMSXMU/3,G 000156
¢ 6CU157
¢ INDWIALIZE SAMPLE STRAIN STATE ANL PARTICLE STATE STORAGE 000158
¢ 660159
' DC 132 ] = 1,3 000160
DESCT) = (o0 000161
132 £SCL) =2 0.0 00162
ns = FS(152) 000163
DC 135 1=1shCCIS ¢o0164
NCFFCCTIY & NOWP 006165
DC 134 J=1,2 000166
130 THACISY) = THS(J) c00167
DC 135 y=le3 000168
SIGF(Iad) = 6,0 0CC169
DSIGF(Tod)=0,¢( 600170
SLILV(TseUdE (o0 000171
DSLEICM(Toud=g,eC 000172
DSEF(Lou)=0,( 000173
135 SEFCIsJ)Emt,9 000174
IFCNELM LEQe 1) RETULRN 000175
ICMNT & [CANT+9 GCO176
WRITECS) (SPCFCI)»Is1eNSTK) 000177

RETLRA coQi78




| B-4
c 000179

C CALCLLATIUN CF INCREMENTAL FROFERTTILS 000180
¢ 00016¢
190 1F(NELM oEQe 1) GO TC 195 000182
IFCICNT S€Te NELM) GC TC 193 » 000183
IChY = ¢ 000184
REWING 1 . 000185
193 JCM| = JCNT#+9 . 000186
REALCLY (SPCP(1)sI31sNSTR) 000387
BACKSFACE 1 ¢o0c168
195 IFCIC . G6Ye 1) GG TC 25¢ 000189
¢ 000190
C UPLATE FARTICLE STATE = BEGINING UF NEW INCREMENT 000191
¢ 000192
€00 DC 210 I=1sNCLIS , 000193
NCFF =& NOFPDCI) 000194
IFCNCFP o804 0) GO TC 206 c0C195
DC €05 J=laNCFP 000196
SLICM(YoJ)=SLINMITed)¢DSLICNM(Tsy) 00197
€05 SEF(I1,J0)=DSEF(Isd)* SEP(Ird) . 000198
206 NCFFACY) = NCFP 000199
DC ¢C? Ks=i,3 000200
€07 SIGF(lok)® SIGP(IoKI+DSIGP(1oK) » 000201
210 CCMIINUE 4 000202
DC €20 K = 1,3 00203
€20 ES(Rk) = ESCK) ¢ DES(K) 000204
FPAR = FPARLCFPAR ' 000205
C 000206
¢ CALCULATICN Cf INCREMENTAL PROPERTTIES™ FOR A GIVEN ITERATION 0caz¢r
c 000208
250 DFPAR = 060 000209
Vele = ESCI)+ES(2) 000210
VCLF s yOLBeCESP(1)+4DESP(2) 000211
BLKNCE = BLKVMOD 0oC212
IFCYyOLR oGEe CoeQ) BELKMDB=(oU 000213
FPARST(1) = BLKMDB®*VCLR 000214
FPARST(Z) = FFARST(1) 000215
FFARST(3I) = (.0 0002136
DL = 0,0 00217
IFCVCLR oGEe oy oARNCe VOLF oGEs 0.0) GU TO 257 WODERY:]
IFCVCOLR oLEe (e0) GC TO 252 000219
DL & ARSCVYOLF/C(vDLE=VOLE)) 000220
GC 1C 287 000224
€52 IFCYCLF oLT, Celi) GC TD 256 goc222
DL & APSCVOLP/CVOLF=YO0LE)) 000223
6C 1€ 957 000224
56 DL 8 1,( . 006225
¢57 BLEKWDN = DUsELKMGOD 000226
DC e€C K=1,3 Go0227
CES(E) = CESF(K) goc228
XLELK) 8 (.0 000229
DC &€C L=3e3 000230
260 CS(heL) = 0o 000231
DS (o H¥[ & ce0232
DC 766 J=1shCCIS N 000233
NCFF = NGEPACT) u00234
NCFFLCY) = NCFF 00C023%
D0 3C3 kelsd : 000236
DSLICKMCLsK) =2 Qo0 000237

DSEF(Yok) & Col - 000238




[ Mg X 4]

Cad
<
ad

325

THE(K) 3 THA(Yek)
XLFC(R) = 0,0

it=]

PPsFCFCID)
XINjGavap LIL)

Na(

PE 2(.0

IFE 8 ¢

P2 = €,0

NS = C

LETERMINE NG, OF CPEN CRACKS TN FARTICLE

IF(ACFP EQe-CG) U TC  3CY
?E(Egﬁ JEYoN(FF
% ( l XY ) EL 3 N :

Nab a1 oLEe CoC) GL TL 304
NCLCNDdey
CCMTIMGE
Pi = ¢.C
NE = N
DEEFEY
SAV(L)
SAVER) Go0
SaAvLd) e 0
IFON=1)30Y93140302

ELASTIC KESPFONSE = No CPEN CRACKS

G.0
€0

g 8 61 B

P = 1,0

GL 10 360

bs ead ELASTIC RESPUNSE = CNE CPEN CRACK
Jeht L (1)

SIGhN = 0.0

S1GpS = Q.0

b ThH= RS ()

CARCLS(TH)
SARSINITH)Y

AEFCL) = Qe5%(¢1e(+(
AE(e) = 095*(303"823
AB(I) = SA

B{1) = =0,5«¢4

B(2) = =R(Y)

R(3) = CA ,

NC 322 K=iald

DL = (0

DLZ = 0.0

DE 920 Le=led

DLias CPeKeLDdapBOL)*L
DL2= cr&xpL)ﬁpé<f;+tt
AF(r) = DUI

Xklll = 0,0

D(K) = [U2

XK1LlZ2 = 0,40

XK1z = 0.0

DC 325 K=103

1
P

XKIL1 = ¥KT119 ¢ AF(R)*AB(K)
XKI12 = XKT1Z + ABCK)* D(K)
XiTe2 = XKTIZ22 +  B(K)* L(K)

DLY 8 1, 0/(XKII1xXK]2Z"X € y
DL2 = ¥hIbl 1 K1le#xXK]leg)

000239
000240
000241
000242
000243
00G244
(00245
000246
000247
000248
000249
000250
000251
000252
000253
000254
006255
000256
600257
(00258
¢eC259
000260
000261
000262
060263
c00264
000265
006266
000267
000268
000269
060270
000271
000272
006273
000274
006275
000276
000277
000278
000279
€00268¢
600281
000262
¢00263
600284
(00285
000286
000287
C00268
0002869
000290
000291
000292
000293
000294
(00295
600296
006297
000298




330

338

XK1}l = =xKJ22%QU1

Xk112 =  XKIte*Duyi

Xkl1é2 = . LUZ2aLUY

DC 33C K=1,3

H(K) = =AF(K)#XKI1t *D(K)#XK]{2
XMOK) =@ AP (K)AXKTILZ2 =D(K)I*XK]I2Z

‘DL1 = DSEPSYV

DC 340 K=1.3

DC 335 L=1,3

CPBCKoL) 3 CECKpLI=AF(KI®K(L)=D(KIeXM()
DUl = UUi +P2¥K(K)*DES(K)

340 XLP(K) = =(XKII1*AF(KI+DCRI*XKILZ).SIGNN

342
343

353

1

_ OXKEI2%AF (KO 4D (KI*XKI22)*STGNS
DSEF(I.y) = [CL1 +xxlllt81uNN4XK112*sfuhs
IFCIFE oEGe 1) GO TC 700

o MODIFY RESPOMSE JF CRACK CLOSES
IF (SEPCTI»J)4+CSEP(Iru) oGLe G,C) GN YO 360 ot
NS = ANS=t
P2F ='P2*(Str(InJ)*DSlPbV)/(DS&F(loJ)'PSCPSV)
P1 = Fo=p2P

P2 = F2¥F
DSEFC(Isy) =oSEP(Ts)
GC 1C 360
ELASTIC RESPOMSE = TwG CK MORE OPEN CRACKS
Pe = 1,0
Ji 3 ADUCL)

THL = TKS(J1)
CAl = CCS(TK1)
SAl = SIN(THK1)
DENG = Q3% ((1a(+CAL)IXSAVILI+(1,C"CAL)*SAVI2)4+GAL%S
AV(B))

gg:c € (, Z*((l cU=CAL)&SAV(L)+ (1 ,C+CAL)#SAV(2)»SALaSAV(3))

3 0o 2%((1eG+CALI*DES(II+(1,0=CAL)+CES(2I+SAL*DES(3))2Pe
DES) = 0.5*((1-0-CA1)*otstl)+(1.o+CA1)*oEs(Z)-sAI*DES(3))t$§
J2 & NDhLC2)Y
DTH 2 THS(JZ)=TH]
CCTr = COSCDTH)
DLRNZ = 2,0%(LESLI+DESO)/(1,0"CDTE)
DUNL = DEN+*DENC=0 S%(1,0+C0TH)*LLN2
TFOCDTH oLTe =e997%4) GG TU 353
SEFF=SFPULJ1)+USERP(TsJl)

TF(SEPP +LUNY oGEe UoslU oANLe SFEFP(I2y2)+DUN2 oGEe {40)GE TO 353

DL 2= CEN+CENC4DESTI*LESQ

IF(§EPP +CUNT LT, SEPCLrg2)+LunN2) 60 TO 348
DUhZ 8 =SEP(1,J2) % ,999999

DLML = DU=DUNZ

IFCSEFP ALDUNT 46T 0e0) GO 1C 333
DLNI B8 =SLPP t ,999999

DLMZ = DUSDUNI

GC 1C 353

DLNL = =SLFF t 5999999

DUNg = CU=DUNMY

DUNg = =SEP(T1,J2) % ,999999

DLMNL = CueDULN2

DSEF(T,J9) = LSEP(Iedl) <+DLN)

DSEF(1s42) = LSEP(I»J2) +DULN2

IFUIFE FGs €) GO TC 354
IFCSEFC 2 d2)+LSEP(Lryd) obLke (o@D TL 7CO
DENs=LSEP(Y»y2)=SEF(1sde)
DSEF(I»u2)==SEP(]I»uR)

000299
0003¢0
600301
000302
000303
000304
c00305
000306
000307
060308
c00309
00031y
00031y
000312
€00313
(00314
000315
600316
000317
000318
¢00319
000320
000321
(00322
000323
00324
000325
000326
00327
000328
000329
000330
0003314
000332
000333
€00334
000335
¢c0C336
¢00337
000338
000339
000340
0003@1
(00342
000343
000344
000345
000346
c00347
(00348
000349
000350
00C351
000352
00353
000354
000355
000356
000357
000358




e EaRai

(2N o]

354

355

357

i7e

GC 1C 790
DC 355 yu=t
JehLLCgy)

P3Gyl 1,0
TFCSEFCLaJd4nsEP(Iey)

NS =2 hS=1]

B-7

» 2

oGEo Us0) GU TO 355

P3C,u)==SEPCT,J)/DSEF(ed)

CCNTINUE
P2 & (.
IFINS ,GF

DL = F3(1)
KL = 2
JJ = 1
TF(LL
KL = 1
DL = F3(2)
Jd 3 2

QLTO

J ® NOUCKL)

2) GL TC 36y
MODIFY RESPONSE TF CNE CR MURE CRACK CLCSE

F3(2)) GC TO 357

DSEFSV = DSEF(1eJ)®DL

Lehil(Jg)

DSEFCIaL) ==SEP(),L)

P2 =
NS= ]
GC IC 317

1.0 =

CL

ELASTIC PURTICN 0F INGREMENTAL PROPERTIES

DC 365 K=1.3

DC 365 L=1l»
CFA(Ksl ) =
IFINS oNE,
IFCNS .GTe

DC 37¢ Kk =

3
P1*CE(KaL)+PExLFH(KsL)
NY GO YC 700

1Y 60 YG 700

SLILCING Cr CRACK PORMATICN (UR REOPENING) RESPONSE

1.3

SFlr)=sTGF(TeK)

DSP(K) = 00

¢

0C 37¢ L=1s3
DSF(K) = DSPCKI+CPA(KeL)®pES(L)

S1 = SP(Y)
S 3 §P(2)
Si1e= $P(3)

DSt =LSF(1)
Nse sLSP(2)
nSizeLsPr(3)

NCANG = NCFP

IFOANCFP

DE S5C6C U=l
UN=SEFC(]sd)
XK(,)=1,0

IF(Lf\ oGT!

ok Qs

¢) 60 TC 51¢
SLARCH FOHE PCSSIRLE FAILURE PLANE ==
NEANG CONSICER PREVIOUSLY DEFINED PLANES

6.C)G0 TC 500

USBSLIPNMET.U)

JddE
JJE

IFCGLu oGTe

NONF+1) JJ=NChp+1

CALL INTP(JUsCrfaSIGToUSIUN)

000359
000360
000361
000362
000363
000364
000365

000366
000367
006368
000369
000370
000371
000372
(00373
000374
000375
600376
000377
060378
€00379
000380
000361
000362
000363
000384
000385
000366
000387
000368
000389
00390
000391
000352
000393
000394
000395
000396
600397
000398
€00399
000400
000401
(00402
60C403
G0C404
000405
000406
g0cao?
6co04a08
$0040G9
V00410
0004131
000412
00413
000414
000415
000416
000417
$00418




410

422

428
430

i
i

IFC, olEe NOUNPIGOD TU 410
C = Ca¥YINTG

SIGI=SYGTs XINTG
CSV(u)=(

FsV(J)ef

SICIS(J)=s8YGY

Thke 8 THS(J)

CTk = cUS(THZ)

STH = 8IN(THZ)

SAV(y) 8 1.0

SKRE B8 0o5%(S2281)%S5Th+§12*(1H
TShNEBSNS+C o Sa(DS2=L81)%8TH +USI24(CTH
IFOIEMS (LTe Cat) SAV(J)==1.0

§ = Ce0

CF = 8STGT+F
DC 43¢ kelsi
XkN = ¥K§&

UsCroFa(,5%(S14+82)° (F*0e5* (818 )+8*S12)*CTH"(F*S12=520,5%(51=82))

% 8§ TH

VeF ol oS5 (LS140Se)+(Fr( 5% (LS1aL82)45+0512)*CTH+(F#DS12=S*(C,5+(DNS1

“f§2)I®SETH
XkS = 10000,
IFCL oGEs 0oC) GO TL 422
IFlv eGhke 040) XKS & 44C
GL 1C 4z8
IFCY olEe 0eC) GO TC 428
XKS = /v
S = SAvV(J)
CF s €
XKC,) = YKS§

TFOXKS (L Te XkN) G 7O 440

SAV(J) = (.0
S = SAV(Y)
P = XK(J)

IFC F olLTe »0GO1) GO TG

CChTINGE

IFCNEFFE oEQe 3) GO TC 518

NCANG = NUANG + 1

LCCK FCk Mew FALLURE FLAMNE

C = CVINONP®I 1 )uXINTG
F = FVIMNONP+1,1)

SIGI = SIGTOCNDONP+L )% XINTC

CSV(NCENG) = ¢
FSV(NCANG) = F
SIGIS(NCANG) = SIGT

Call, CRTANG(S19S52,5120D51,0S2,0812stpCe85]G6GTsRATSXKC ’S{Th2)

SAVINCANG) =& §
TES(NGANGY = TH?
XKINCANGY = ¥u(
P s 1.0

CECIDE UM CRITICAL C(IF ANY) FALLURE PLANE

PC 220 J = 1.NOANG
IFCXKCY) oGy P ) GC TO
Jdv B J

S = SAV()

P = XK(J)

CCNITINUE

TFCF oGFe 148) GU TC 700

NERE NIV

B-8

¢ou4l9
000420
DL YA!
000422
00423
0e0424
¢ceazs
000426
0C427
(00428
006429
0004390
¢00431
00432
000433
00Ca34
000435
000436
000437
000438
¢0C43$
€00440
0004414
(00442
000443
000444
00445
000446
00447
00448
¢c00449
000450
000451
000452‘
000453
00454
000455
006456
060457
000458
000459
00046qQ
¢0C461
000462
000463
000464
t00465
g004a66
000467
000468
00469
000470
000471
gooarz
000473
000474
000475
000476
000877
Q00478




B-9

Jd o= 00479
IF(uy oGTe NCANP#+1)ud = NONP+L 0004860
The = THS(J) ¢gog4d
CTF = €CS(Th2) 0004862
ST 2 SIN(Th2) 000483
SMN 50 ,5%( S14S2+F w(DS1+40S2) +(51=824(LS1=D52)#P )aCTH)I+(S12+P » 000484
) £S12)*STtH ‘ 004865
TFCSNA aGTe GCoO1*SIGTOCJJ)) S=0.0 000486
PE 2 1.0=P , 00487
IFC, elbe NCFPF) 60 TO 543 000468
NCFF = NOFP+1 (00489
NCFFLCI) = NCFP 000490
: TRACIPNGHFP) = TH2 . 000491
43 I1F(S oFQs 0eC) GO TC 600 600492
¢ SLIDIKG FESPUNSE 000493
CB = CSv(J) ' 000494
FB 3 FSV(Y) 000495
IFCF oF@e 0¢Q) CRs S%((S52=S1)#0 S5uSTH4S12%CTH)4FB*( 0 5%(81452) 000496
i +05%(S1282)#CTH+S12%8TH) c00497
DC 545 K=ie3 000498
545 D(K) 2 (0o5¢(CPA(Ks1)*CPA(R®E))*STH=CPA(K®»3)*CTH 000499
ARCL) = =Qo5a(FR*(1,04CTHI=S*STk) €00500
AB(2g) = =052 (FBx(1,0=CTH)*+S*§TH) 000501
ARC3) = =(FEwSTh+S*CTH) 000502
UN 3 €,0 0005G3
SVE = SLICM(I,4) 000504
DC 565 kks1s1( 000505
SVE = SpP+DS 000506
DSEaLS$ : 000507
CALL IMNTPCJUJoCFoFFoSIGTF oSMHEPURN) \ ¢06508
IFC. oGTo NGNFICF=CFRXINTG C0C509
AFCE) 5 0 52 (FF2(1,0¢CTH)=S*STH) ¢oC510
AFC2) = =(oS5n(FEr(1,0°CTH)I+5*STh) 0oCS11
AF(:) = =(FFaSTH+S*(TH) ¢oCS512
DC 550 Kele3 000513
DU s o0 000514
DC 548 L=1.3 00C518%
€48 DL = CU4CFA(LsKI®AF(L) 00516
550 BCK) = LU 000517
XKI = Qo0 cco0518
DC s CF=CB 000519
Ne 355 k=1,3 000520
DC = COOCAF(KIZAR(K))*(SF(K)+P*[SF(K)) c00521
858 XK1 2 YKI®AFCK)*D(K) 000522
‘ XKl & 1.08/XK] €0C523
CS = =nC 000524
DC S6¢ K=1.3 000525
560 DS & LS“P(K)#[ES(K)*FPR 000526
LS = CSaXk]) 000527
DS 2 ARS( DS) c00528
DUSAES((LS™DSE)/(DS+aGO00GCUC0CL)) 00529
IFCCL oLTy o03) GC TC S75 €0053¢
DS={SE+) ,0*(S"DSK) 000531
IFCLS LTe 0,C) [S=Cet c00832:
565 CCANTIMUE ‘ 606533
875 [C 577 Kmis3 000534
XLF(k) = =DCeL(K)eXxK] 000535
BC €77 L=ls3 000536
877 CPE(Kel ) = CFALK,L)*CC(KIabB(L)eXK] 000537
DC 579 Kels3 006538




e N o ¥ el

DL = XL PCKI+SP(R)
DC 578 L=1,3

S78 DL 3 CU+CCPACKsLI*(1,0=PB)+CPR(KsLI*PRI*CES(L)

579 DSIGF(Y»K) = [U

DU 3 C,.5#(NSICP(Is1)+0SIGF(1+2)4(USIGP(1¢1)=0USIGP(T:2))%CTH)+

’ CSIGPCIo3)%STH
IFCLL ,LEs CF/FF) GU TO %560
S 8 Gey
GC 1C 60O
580 DSLICMCI»J)=LS
DC 59C k=12NCANG
IFCSEFCIok) oLEe QeQ) GC TU 590
DL = C,.0
DC S82 L=1.3
€82 DU s CUSH(L)I#«(SUS*B(LI+DES(LI#(1,0=P))
CDSEFCI1ok) = [SEP(Iek)*P4CU
TFCaCSEP(TIok) oGTe SEPC(IsKIIDSERP(L1oKYZSEPCISK)
6C 1C 598
890 CCNIINGE
8§95 TFCSEFCIsy) oLTe =0,5) LSEPCIsy) = 1,0
GC IC 700 ‘
CRACKING RESPCNSE
€00 DSEFSY = 0,0
IFCSEFCInd) oLTe=0.9)DSEPSVE1,0Q

SIGNS = =(0,5a(52=S14P#(D82=DS1))*STH+(SL24pP2DS12)0CT})

SIGihN = =SNN
NS & NS+1
P2 3 PR
IFE =
IF(NS JER. 1) GU TC 318
N =& 2
NC ¢85 k=1,3
SAVI(K)eSP(K)4PxDSP(K)
XLF(K)e=§AV(K)
DC ¢€5 Leled
€85 CPELKelL) = CE(KsL)
DSEF(Isy) = [SEFSV
NCLCE) = o
DC €9C KsloNCANG
€90 TFCSEF(TaK) ,GTs we() NLL(Z2)EK
JesnliL(2)
DSEFCIsu2)elSEP(Isud )P
DC €92 Kk=2s3
DC €¢%2 L=Ke3
DL 8 CPB(LsK=1)/CPB(K®isk=1)
SAV(L) = SAV(L)=SAV(K=1)wlL
PC €92 pekeld
€92 CPB(LeM) = CFE(LsMI®CPR(K=1aM)[L
SAVCI) 8 SAV(3)/CPE(3:3)
NC ¢94 RKels?
NC ¢93 Lelek
€93 SAV(3®K) = SAV(A=K)eSAV (4= )*CFB( 3K, =)
€66 SAV(3ek) = SAV(3=Kk)/CPB(I=ks3=K)
DC 657 K=1:3
DC €97 L=lsd
€97 CPE(KelL) = Q.
6C 10 2343

ACCCULNY FUR LLSS UF MATEKRIAL FhGM PARTICLE BY FRAGMENTATICN

00539
000540
C00541"
000542
ooogam
000544
000545

.coo;aak

oocéy |
oodg 8

000549

000550
000551
C0CS552
000553
coosg

000555
000556
000557
600558
000559
000560
000561
000562
0005613
LY
000565
000566
coC567
000568
000569
C00570
000571
006572
000573

-

000575
000576

000577

000578
000579
600580
G00581
000582
000583
000584
000585
000586
coy587
00C54u8
000589
¢c005%0
00591
000592
U0Y593
000594
00595
000596
¢00597
000598




[N eNe

[ W an |

700 YF(LAVRAT obGs 0.0) GU TC 725

110

720

FURMATICN OF CCMPOSITE FLASTIC=SLICIMG=CRACKING RESFONSE OF PARTICLE

725

740

743
745
760

775

777
780

FFAKIE = Q.G

FFRRIF = (o€

PC 710 K=1.3

FFARIE = FPARIR+SLILNM(IsK)

FFARIF = FPARIF+SLICM(IoK)+ESLILM(T2K)

IFCSEFCTILK) LCGTe ®1,0) FPARIB=FFARTB4+.C5/DAMRAT
TFCSEFCLoRIHESERFCI?K) oGTe “1o0)FPARYIF=FFARLF+,GD/DANRAT
PFEB=FF*(FXP(=CAMRAT*FPAKIE)*0,85%0,95)

PF =FPF*(FXP(="CAMRATHFPARLEDI* V(540 ,%95)

DFF = PFPR=PP

DFFAR = DFPAR+GPP

CC 72C K=1,3

XLSCK) 3 XLSCKI=DPF*(SJGP(I»sK)=FFARST(K))

PA = 1,0=FR

NC /406 K=1,3

XLS{K) = XLSCK)+PP*XLP(K)

DC /740 L=§s3

CPACKIL) = CFALK,LI*FA4+CPB(KsL)%PY

CUMBINING UF FARTICLE BEHAVIQR TO 0BTAIN

COMPUSITE FRUPERTIES (Ofr SAMPLE
CSCsL) = CSCKet.)+CFA(KYL)*FP
DC 745 K=1s3
DL = XL P(K)
DC 743 L=1,3
CL = CU+CFACK,L)*DESCL)
DSIGF(T,k) = (U
CCMNTINUVE

ACCCUNT FCGR FRAGMENTED PARTICLE

DL = (FPAR+DFFAR)*ELKMDN

Cellesl) = CSC1o1)+0L,
CSU1s2) = CS(1e2)+0L
CSlzel) = €S(Z2e1)+LL
Celge2) = CS(Ze2)4LL

MAKE PRUPERTIES SYMWETKICAL Tf REQUIRELC

TFCISYMN oEQe €) GC T0 780

DE 175 J=1.3 i

DC 7175 u=l».3

CFACI»J) = CS(T»eJ)

XLSCI) = RXUSCOII4C 5+ (CSCT,d)=CS(JsT))*PES(J)
PDC 7177 [=1.3

NC 277 y=is3

CECLou) = CoBr(CPACTRJIHCPALU, 1))

TFARELM oNEe 1) WRITECI)I(SFCP(L)ol=z=lshNSTR)
RETLRN

ENC

B-11

000595
0uo06QcC:
TR E
Yooeyuz
cpoec?
00660
(00605
0G606
coué07?
Gov60e
00C60S
coséln
v0Q611
(0C612
ce0613
o6l
COC61e
goléle
¢eoeély
¢oc6le
gneéls
guu62ce
Q06
0clé62?
000622
000624
go0ées
Co062¢e.
gp06e7
guGéar
c0C62S
gng63c
0n0631
Q0632
00C632
Le0o634
€C0063%
(006J¢
€00637
€00638
C00635
GOC64c
ceQ64an
coCob4ar
000643
L0064y
eopué4ar
L0064
geceuy
COC64PR
COC64




B-12

SUBRCUTINE IATP(JeCoFeSIGTPULSeN)
¢
C SLEBRCLTINE TC INTERPCLATE STRENGTH PARAMETEKRS
¢
CCFVON  /BHI/  JCNT» SPCP(L1)p SLIUM(2093)s
1 DSLIPKM(20s3)s SEF(Z0s3)s CSEF(ZUs3)» SIGP(Z2003)e DSIGP(20s3),
€ TrAC2003)» NGFEPAC20)s NUFFU(EG)e DESC3)s £S5C3)2 NUOF(3)s FV(365)
3 Fs(3s5)e NCC(3)e CV(32¢5)e CS (3e%)s SIGTO(3)s THS(3)» PCFC(EQ)»
4 VAL(20)» CE(3+3)e MONFs NLOISe KATs DSe FPARs BLKMOC» CAMRATS
5 L§FAR
C &8 CV(yel)
SIGI = SIGTOC(,)
F 2 FVv(del)
IF(Lh .lTa '609) RETth
SIGY = (a0
NL 2 ARCCy)=1
PC 3CC L & 1,00
TFOLE 6T CSCUpL+1)) GU TC 3CH§
C 2 CVOual Y+ (CV(Jple1)eCVidel)) sl uS=CS(url))/CSUUdsL*+1)=CSCUnrL))
GC 1C 350

300 COMNVINUE
C = CVlJohL*1)

3T0 NL

ACF(Y) =1

DC 4CC L=1sht
IFCLE G6Te FSCuUelL+1)) GG TC 40C

F =

FVOUpLISCFVOUa L+ 1)oFV(Js L)) x(uS=FSCusL))/(FSCUppL+1)=FSCJsL))

RETLEM
400 CCNTINE

F =2

FVOJaNL41)

RETLRN

ENC

000650
000651
€00652
C00653
000654
CCO655
(00656
600657
00658
€00659
006660
000661
600662
600663
000664
000665
COC666
000667
¢00668
C00669
00GC670

000671
00672
000673
coC674
C00675
CeC676
vocer?
C00678
000679
ceo6bQ

X R RN R R N R R s R R R N R R R E E S R S R N R R R F R R R R R R RS S R RN NS NN R R R RSN R R R R IR Y

SUBROLTINE CRTANG(SXoSYrSXYoDSA L OYsDSXYsFsCVsSTeRAT, XKC2SCaTHC)

SLBRCLYINE TC CALCULATE MUST L IKELY FATLURE PLANE

DIMENSTEN SAC3I) e TH(I) o XKS(ID o XK(Z)
SaCL) =0,¢
SACedzs 1,0
SACd)==1,0

=

4 B %

v
4
[

JoHa(8SX=8Y)
C,5#(8X+8Y)
Ce5%(DSX=DHY)
Coo%(DSX+DSY)
LUCF TO CCNSICREK POSSIELF TEASIGN FATLURE AND
TWe PCSSIBLE SKLAR FATLURE
66 J=1:s3

XKS(u)=10400,
Sz8A(y)

]

Fel1+858xY

DxlzFap3+ Sl SXY
X2rpaSXY=S#Y
NXesFaNSXY=8aL3

C

€

€
Di
De
D3
D4

¢

€
ne
X1

€

INTTIAL ESTIMATL

TEZ=ATAN2(X2,X1)"=3.14159266

coc681
000682
000683
00664
c00685
00686
000667
gouéess
0QU689
ce06SQ
§00691
couey2
00693
000694
£0069Ys
CC06Y6
000697
000698
CCu699
6007060
000701
0oC7062
¢0C703




s RaR el

100
fic

125

§30

DC 11C r=1,2

THEaTF2+3,14159266

CTH=aCCS(TH?)

SThaSIM(TH?)

C=2Cy

IFC, oFGe 1)C =8Tx}

C 5 Ca0oB5% (1 ¢+ (THY(Leu™CTHI*RAT)
UsCefupy mX1+CThe X2x STk
VefF«[C4 +EX1«CTHeDX2eSTE
XK(K)=2300G0,

IFCL oGEe 0oCIGL TC 100

IF(V QGEF O.Q)XK(K)=O.U

6C 1L 110

IFCy olEe 0eaC) GO TC 11¢
XKk{pgdstizy

CCNTINUE

TFO XKOL)Y  o.Te XK(Z2) DThe=Thy®3.14156206€
KChiag

SFARCE FOK RCCT BY MEANS UF NERTCANS METHOCL

DC «GC [mlelg
CTheCCe(Th?)
STha8SIN(TH2)
C=Cy
TFCy eFGqe 1)C =STwé
CF & Ce«(RAT=1,0C)*»STH
CPF = ?QO*C*(FAT'l.ﬁ)*C]h
C 2 CuCeD* (1, 0+CTH* (1, G=CThHI®RAT)
UeCaFan2 wX v (TH =XZ2vgT)
Ve Fuld TCX1#CTHALX2%S5TH
UFe(P+2,0¢(X1xSTH=XZ2CTH)
VFEBaZ g Ca{LX1ASTHeDX2%CThH)
UPPaCFP+4 Cu(x1#CTH+X2%5TH)
VPPsed 02 (DX{aCTH+LX2%5TH)
DLsTF2
PLYIsLFPeVatwyfp

AVCID MAXe UR MINe PLINT
TFCLLT oNEs Col)GU TC 13¢C
{FCROCNT o0 3GD TL 294
KCNfsi4KONT
DLZ3C,.
VFEFA0OeDX12CCS(THZ40U2)+ X2 *SIN(TH24L2)
VBEFALA4DXTI«CCS(THE=DURISUXEXSINCTHEZ=DLEZ)
IFCWE oL Te VEIDUZ==DL2
ThZ=TE?4NU2
GC IC 2¢¢0 v
DTks = (lUPeyelayp)/LLT
IFCABS(LTHY .G6Te 244060 Tu 125
YHE2eCL4pTH
DLEAESCTHE =[UL)
IFCLL oLTe o€352) GC TO 29¢
CCMNIINUE
TF(V)zTh?
IFCL oCEe 0.C)GL TL 298
TFOV oGEe CoCIXKE(U)E0,0
6C 10 3¢0¢
IFCy oLEe 0oC) GO TC 300
XKS(JdelL /Y

Y COMIINLE

S Gou7LT

00733

Co0TGA
0006705
006706
GoG7u7
CoC708
C00709"
coCT10

00CT11
€0C712
000713
006714
00C715
C0C716

000718
00L719
0oU720
000721
000722

000723

GoC724
000725
0ueT26
goo727
06728
0006729
000730
000731
0C0732

000734
goe73s
Go0736
000737
600738
¢o0C739
000740
000741
000742
Qo743
000744
€oC745
C00746
0007R?
000748
Q00749
000750
00751
000752
000753
c00754
000755
C00756
co07L7
00758
000759
coC760
00761
o762
ceC763




410

XKC=XKs(1)
L=1

DC 410 N=2»93
TIFCxhC ot b
IFCL+N LEQ,
L=\
XKC=2XKS(N)
CCNTTINGE
TEC=TH(L)
sc=sAa(1)
RETLRM

ENC

SELECT CRITICAL VALLE

XKECNIIGE TL

s AND o

XKC

410
okbe

1,04%xKS(3)) GO TG 410

0oC764
(Qg76n
coi76¢
c0C767
00768
(0C76¢
voe77¢
coC771
60772
0oe772
ceerve
co077-
D(JC??(;




e RasNalal

O

>R aNaXel

PROGRAM EVAL

00000

T

FRCGRAN TG EVALUATE CHARACTERIZATION MOLELS FOR SIMPLE STRESS ANL  QCOOUS3
STRAIN HISTURIES 00000
¢0000"

DIMENSTGN TITLE(12)0SEV(6520)5CSC650) s TFF(6)sECLI»XLS(6)s 00COou¢

L ST6C6Y»VEH)oCVSC6) P DECE) s VECE) ,DVTCE)»OV(6)sOVCC6),C(626)s 000067

Z2 XLCE)»DSTGCE)sNSIGF(6) s DEPLE) s DEOCE) s LVCF(6) sk NVSTF(6) e LES(6) GO00UE

3 PLE20(3)sC82(353)2XL82(3) ¢0000S
€00011

FCRMAT STATEVENT 600013
000017

BOO FCRMAT (6115J4r6E10,202F5,1) ¢000Q1:
801 FCRMAT (12A6) C0001¢
€02 FCRMAT (T1sl4,6E16C42) o 00001°¢
501 FCRMAT (1h1s 20Xs12p6) 00001¢
502 FCRKAT (/5Xs *STRAIN/STRESS HISTURY CONTRCL'/8X»'COVPONENT NGo'» 00017
1 6110/16%Xs *IFF ='p6110/13Xs YENVSTF 2056X»1P6E10,2//5Xs 00001¢

/3 "CONVERGENCE FACTELR ='o1lPEL1543s5%Xe *CONVERGENCE LIMIT =%91FEL15,3) ¢0001¢
SO03 FCRVATU(///5Xs *SEGMENT =% T3s3Xs"hNMIS ='513,3Xs'VY =',1PEL10.203%X  (OO002¢
i YWEZ = s 1PE1C2,3%X0'V3 ="21PE10+?923X, V4 ='51FE10.253Xs'Vh =1, 00002}
2 JFE10a203%5°V6 =5 1PEL10 e 9///1Xs6HING NG»SXs'SIGeX»6Xs 'E=X',6X% (000022
3 AR ANYSTRE LA ANV TRES FLVANFY YA LLANFLITRAES LA AL TRE NS AP TR H X
4

PRIGEXZ2 Y EX s Ee XL o 5Xp 'STGEYZ Y s BXs ' E=Y2Y /) . 00002«

SCU FCRMATCI®elUXsIPLI2F1GCe2) 60002
S06 FCRMAT (3Xs*TRE SAMPLE IS NU LCKGER STABLE's 4X»'AVG ERRCR = *» €0002¢.
i E15,5) ¢go0ae,
SC? FCRMATELIXo*THE SAMPLE HAS CUMPLETELY LOST ITS INTEGRITY') 0002t
XLAKE = 1.0FE4ZC goo0cer

10 J181LF = ¢ : 00003
REAL (S,801,FEND=700) TITLL 00003
WRITE (€+901) TITLE c0003:
ESTARLISH TYPE OF STRESS AND STRAIMN HISTORY 60003

REAL (SoBOO) (TFF(I)oI=dpb)r ITYFE» (ENVSTFULI)»Y=126)sCCNFACPCONLKT 00003
WRIIECAs902)(1o1=126)s (IFFCL)al=lob)o CENVSTFUI)21=2156)eCCNFACSY €000G3.

1 CUNLMY 00003
IFCITYPE oFQs ¢) GC TO 15 00003,
00003

CALL CHARACTFRIZATION RCUTINE FGR PURFGSE CF READING IN MATERIAL €0003¢
PRCFERTIES , 00004«
00004:

CALL FREPCIeCo(Qo0oCEL2CSeXLS) o004

GC 1C 20 c0C04.

15 CALL FREP(1,CoCrColE25C82,XLS2) ¢00CH:
6C I1C 3¢ oG04
INTTTALLIZE ARRKRAYS 00004«

20 CALL PRUP(?2s1oCrtolbsrCSeXLS) ¢0004.
GC IC 35 00G04:

30 CALL FRUP(Po1GrielE2sCS22XLS82) ‘ 0004
38 DC 4C T1=196 0005
FCI) = Qo0 00005

SIGCI)

Uol 00005
vl o0

0 €00C5:




B-16

DVS(I) = Q.0 000054

DECL) = =L,CC(1 000055

IFCL o6Te 3) CECYI) =040 000056

40 cCAhTINUE : 000057

NMREX =& 80 000058

ICVh = @ €00059

1 80 00C060Q

¢ 000061

¢ PRCFCRYIONATE LGADING SEGMEMNT LCCP 000062
Y 000063

50 DC €C J=1s6 00064

60 VEC(.) = V(J) ¢0C065

KChT = @ 000066

REAL (55BL2) NSECeAMIS»(V(J)rJ=1s06) 00067

IF(NnSEC EQ, 6§) GO TC 10 (000068

ISTeF = 1STEF+1 000069

WRITECE»SCI)ISTEPANNISP(V(JIPY=120) 000070

DLe =2 NpIS 0000714

oLl = 1,0/0U2 000072

DL 3 0,0 000073

R = (o0 €00074

DC tC J=1e6 00075
DVT(J) = V(u)=VB(J) 00076

DVELY = DVT(U)*0UL*1.000001 c00077

PVCCu) = Q.¢ 000078

Y FSTARLISH STRAIN LSTIMATE FOR FIRSY INCREMENTY OF 000079

C L GACING SEGNMENT go0obQ

IF (CVS(J) oEGe 0o0) GO TU 70 000081

R = R+RV(JI/CVS(Y) (00082

DL = LU+1e0 000083

70 COMNTINUE 000084

IF (CU oFGe Col) GL TO HQ ¢00085

R s R/DL ' 000066

GC IC 9¢ 000087

80 R 2 1,0 ¢o0ob8

90 IF (R oLTe Ge0) R=Q,8%R 000089

DC 12C Kk = 1,¢ 000050

IFCIFFCKY oNEe 1) GC TO 100 000091

DECK) = DV(K) 000092

6C IC 12¢C ¢00093

100 DE(K) = DPE(K)aR (00094

120 COMVINUE ' | 600095

c 000096

C INCRENMFNTAL LCAUING LOOP 000087

¢ 000098

150 DC 18C Kk=1e6 000099

180 DES(KI=LE(K) ¢00100

¢ ' 0001061

¢ TTERFATYCN LLCCP 000102

¢ ' o013

DC 4C6 U=1.2¢C 0eC104

IC s y+I0VR 000105

¢ Crll CHARACTERIZATIUN RULYINE 7C PREDICY INCREMENTAL (00106

¢ PROPERTILS 0001067

IFCITYPE »FGQG, 1) GL TO 200 000108

DE2(1) = DECY) 000109

DEZ(2) = UF(2) ¢oct1gQ

DEZ(3) = L¥F(4) - Q00111

CALL PRUP(3p1o( e CoLE2:CEE2r XLE2) 000112

DC 1BS Nelst ¢00113




ias

190

€00

€30

240

25¢

260

"3
-~d
(94}

3se
400

XLSECA) = Q.0

DC'IBS MEje b

Cslhel) B 0,

PC 190 Nel»2

XLS(N) = XLSZ(N)

CSChpdllY = £82(Ns3)

C8{4sh) = C82C¢3eN)

PDC 190 k=192

CSCAoW) = CS2(NoM)

XL3(4) = XLS2(3)

CSChrly = €S2(353)

6C 1C 230

CALL FRO?(3»1.0»IC'EE’CS'XLS)
CCCUNT F CPE R

. N:lngh FOR SPECIFIEL STRAINS

DEFCN) = LECN)

DC c4C Mp=lsb

CihelM) B CS(NaM)

CUNsN)YBCONeN)SENVSTF(N)

XLON) = XLS(N)

DSICCAY = DVIN)=XL(N)

D?th(N) g Lv(N)

IF CIFF(N) LEG j i

COMARY = XLAFG 0) 60 TG 25¢

DSIGCNY = XLBRG*DV(N)

DSIGF(N) = DSIG(N)

SULVE FUR INCREMENTAL STRESSES ANC STRAINS

?E(é75 hNz=geb

(AN=1sN"1) oNEe 0s0) G

WRLIE (6.907) e 0 TO 260
6GC YC 430

DC €75 JJ=N»eé
gsigczddoh-l)/C(N'lnh'l)

JJdY = LSIG6G (JJ) = R*LUSIG (A=
PSI¢F(Jy) = CSIGP(YJ) = R=DS , ':“1)
gs ALY IGF(N=1)

vetK)Y = ClUJyeRI=RACIN®LK)
CE (6) = DSIC (6)/C(696)
DEC§6) 2 DSIGF(6)Y/C(606)
DC 3C0 h=£sb
K & 7=y
DC!29C JJBKSS
DSsl¢ (k) = PEIG (K) = CUK» '

: - Y \ J\J+1)*Dt (
DSICP(K) = [eIGP(K) = C(K»Ju+1>*0£0(jj:i;
DE (K) = DSIG (K)/L(KsK)

DEGCK) = DSICGF(K)/C(KeK)

DL & 0.0 )

DC 31C hN=1,6

SEVEN, ) 3 CEFON)

DL 3 CU+ABSCCECN)) ~
ChECK FUR CCA ENCE

DLV = 0.0 VERGENCE

DO 32C h=ie6

DLV = NLMEAESC DECNI®DEFINDY)

pL = Lup/0U

Joe 3

TFCLL LLTe CONLKT) GC TG 4

DC 33C AN=1,6 4

PECAN)BNEPCN)SCONFACR(DE(N)=LE

CEN TRCE (N)=DEPIN))

000114
00115
000116
¢eo117
006118
000119
000120
000121
000122

000123

006124
c00125:
(00126
go0127
co0128

000129
€0013¢
¢0C131
¢00132
00133
000134

000135
000136
000137
0006138
000139
000140
600141
000142
€00143
000144
000145
000146
000147
000148
000149
€00150
000151
000152
000153
000154
¢00155
c00156
000157
co00158
000159
BT/
(o016t
000162
000163
cocioa:
000165
000166
000167
000168
(00169
¢o0170
$00171

uoo0172
coC173




«o O

410

420
430

449

€10

€20

€25

7Co

FATLLRE TO CCNVERGE = KFALF INCKEMENT STZE
DC 41C N=leé€
DVEND) = DVINIRC,S
DECA) = DES(N)I*0,5
KCNT = KNONT+y

“IF (KCNT «E@, 15) GC TO 42¢C

ICVE = )

60 IC 150 .
FATLLRE TO CONVERGE EVEN ‘CLCE '

WiL1E (6 ATLLRE | N WITH RECLCED TNCREMENT SIZE

REAL (5,80G2) NSEC X

IF (NSFC oFGs 9) GG TO 10

6C IC 430
CUNVERGED =ACD INCREMENTAL VALUES TO TOTAL VALUES
AND FRINT VALUES '

ICVh = ¢

DC 55C N=leé

DL = XLSCM)

DC SGO0 K=1,6

DL = NU+CSCNoK)#DE(K)

“SIG{N) = STGIN) + CU

[C 3€¢ hN=1s6
ECN) = EONIFLCECN)
DECN) = DEBIN)
DVC(N) = DVE(NY + CVI(N)
1 = J+1
WRTJTECECs904) ToUSIGUK)SE(K)sK=19€)
IF (1 Qe MMAXY GC TO 430
NC S8C N=1+6
NVS(N) = CVIN)
CHFCK TC SEE IF PROFORTIUNAL LCADING SEGMENT IS CCMPLETEL
DC 550 N=1s6 '
JFCABSCLVCUN)) «LTe ABSCDVTIN))) w0 TC 6CO
CCNTINUE
GC 10 s¢
IFCRONT oEQe C) GO TC 620
IF (vu oGhae #Y GO TC 620
TF KAFID CONVERGENCES ANC INCRENMENT SIzZE PREVLIOUSLY
PENLCED NCh DLubLE 11
DC ¢1C N=1s6
DVER) = DVINI®Z2,Q
DECp) = DECNYI®Z2,.(¢
KENF=KONT =
MAKE SURE ThIS INCREMENT DNES NUT EXCEFD SEGMENY SIZCE
DL €25 n=leb
BVCFONY = DPVEOCNI+DVIN) ’
TFCABSCLVCPIN)Y)Y 6T, ABSCDVTIIND)) PVIN)Y=(EVT(N)=DVC(N))w1,000001
CCMNFINUL '
GC 1C 150 |
STCF
END

600174
600175
G0017¢
00177
00017¢

6001735
co016¢
000181

000182
000183
00184
c00185
000186
cCcolb7
¢0018¢8

001869

00019¢
00191

00C192
000192
000194

0c019"
c0019¢
¢0C197
000198
00019¢
60C206¢

0002G1

000202
00eC203
ge0204

00205
(0020¢
00207
¢0020¢8
0Cc020¢
6Q021¢
(00211

(00212
¢00213
00214
00021%
€0021¢
(oL2l7
¢oo21¢
ono2ls
cocC22¢
Lo0221

voo22¢
000223
o022






