Bureau of Mines Report of Investigations/ 1973

The K₂HfF₆-K₂ZrF₆-1.25 Percent HF System at 40° C With Other Solubility Curves From 25° to 70° C

Report of Investigations 7785

The K₂HfF₆-K₂ZrF₆-1.25 Percent HF System at 40° C With Other Solubility Curves From 25° to 70° C

By Stanley C. Rhoads

Albany Metallurgy Research Center, Albany, Oreg.

UNITED STATES DEPARTMENT OF THE INTERIOR Rogers C. B. Morton, Secretary

BUREAU OF MINES Elburt F. Osborn, Director This publication has been cataloged as follows:

Rhoads, Stanley C

The $\rm K_2HfF_6\text{-}K_2ZrF_6\text{-}1.25$ percent HF system at 40° C with other solubility curves from 25° to 70° C. [Washington] U.S. Bureau of Mines [1973]

20 p., illus., tables. (U.S. Bureau of Mines. Report of investigations 7785)

1. Phase diagrams. 2. Hafnium. 3. Zirconium. 4. Fluorine. 5. Solubility. I. U.S. Bureau of Mines. II. Title. (Series)

TN23.U7 no. 7785 622.06173

U.S. Dept. of the Int. Library

CONTENTS

		Page
Intro Ackno Proce	ract oduction. owledgments edures and apparatus. Preparation of components. Determining solubility curves. The phase rule. Apparatus. Equilibrium determination. Determination of a solubility diagram. and discussion. The K ₂ HfF ₆ -K ₂ ZrF ₆ -1.25 weight-percent HF system at 40° C. Solubility curves at 25°, 30°, 50°, 60°, and 70° C.	1 1 2 2 2 3 3 4 7 10 11 11 11 15 19
	TI I HOMD A MIONG	
	ILLUSTRATIONS	
1. 2. 3. 4. 5. 6. 7. 8. 9.	The K ₂ HfF ₆ -K ₂ ZrF ₆ -1.25 weight-percent HF system. Tube rotor and constant temperature bath. Distillation apparatus. Nomograph for hydrofluoric acid fluorine. Residue extrapolation. The K ₂ HfF ₆ -K ₂ ZrF ₆ -1.25 weight-percent HF solubility curve at 40° C. The K ₂ HfF ₆ -K ₂ ZrF ₆ -1.25 weight-percent HF system at 40° C. Differential thermal analysis curves for K ₂ HfF ₆ and K ₂ ZrF ₆ mixtures, heating cycle. Differential thermal analysis curves for K ₂ HfF ₆ and K ₂ ZrF ₆ mixtures, cooling cycle. Solubility curves at 25°, 30°, 40°, 50°, 60°, and 70° C for the K ₂ HfF ₆ -K ₂ ZrF ₆ -1.25 weight-percent HF system.	4 6 8 9 11 12 14 16 17
	TABLES	
1. 2. 3. 4. 5. 6. 7. 8.	Analyses of K_2 HfF ₆ and K_2 ZrF ₆	3 13 15 16 17 18 19

THE K₂HfF₆-K₂ZrF₆-1.25 PERCENT HF SYSTEM AT 40° C WITH OTHER SOLUBILITY CURVES FROM 25° TO 70° C

by

Stanley C. Rhoads 1

ABSTRACT

The Bureau of Mines investigated the complete ternary system $K_{\rm 2}\,{\rm HfF_6}$ - $K_{\rm 2}\,{\rm ZrF_6}$ -1.25 weight-percent HF at 40° C. In addition, solubility curves have been established at 25°, 30°, 50°, 60°, and 70° C. These solubility data implemented a study of hafnium enrichment in feed solutions for liquid-liquid extraction processes. Selected $K_{\rm 2}\,{\rm HfF_6}$ - $K_{\rm 2}\,{\rm ZrF_6}$ -1.25 weight-percent HF mixtures were equilibrated in a constant temperature bath. Compositions of the equilibrated solutions and wet residues were established from combined hafnium and zirconium oxide and total fluorine analyses.

All solubility curves were essentially parallel on triangular coordinates. At 40° C, the solid phase of the $\rm K_2HfF_6$ - $\rm K_2ZrF_6$ -1.25 percent HF system is a series of solid solution hydrates with $\rm K_2HfF_6$ - $\rm H_2O$ and $\rm K_2ZrF_6$ -3H₂O segments existing at the respective extremes. Since this system contains $\rm K_2HfF_6$ - $\rm H_2O$ and $\rm K_2ZrF_6$ -3H₂O segments, it is not ideal for simple separation of high-purity $\rm K_2HfF_6$ from $\rm K_2HfF_6$ - $\rm K_2ZrF_6$ mixtures by recrystallization. However, it would be useful for producing hafnium-enriched feed solutions from zircon concentrates for liquid-liquid extraction of hafnium from zirconium.

INTRODUCTION

The concurrent recrystallization studies using the $\rm K_2HfF_6$ - $\rm K_2ZrF_6$ -1.25 weight-percent hydrofluoric acid system at 35°C showed that hafnium enrichment could be accomplished. Therefore, the Bureau of Mines studied the $\rm K_2HfF_6$ - $\rm K_2ZrF_6$ -1.25 weight-percent hydrofluoric acid system in this temperature range, specifically at 40°C. Equilibrium conditions for sample mixtures were attained in a constant temperature bath, and the equilibrium $\rm K_2HfF_6$ and $\rm K_2ZrF_6$ compositions of solutions and residues were calculated from fluorine and combined oxide contents. Since a complete evaluation of the system at several temperatures was beyond the time available for this investigation, the 40°C solubility diagram was determined first, followed by solubility curves at 25°, 30°, 50°, 60°, and 70°C.

¹ Research chemist.

The only basic solubility values found in the literature for $\rm K_2 ZrF_6$ were reported by Missenden² in 1922. These solubility values were for $\rm K_2 ZrF_6$ containing unknown amounts of $\rm K_2 HfF_6$ in water instead of hydrofluoric acid solutions. From 1922 until 1950 no published data appeared. In 1950 Beaver³ completed a separation report on the ammonium analogs of $\rm K_2 HfF_6$ and $\rm K_2 ZrF_6$, but no basic data were included. Such a lack of basic data hampered the development research involving this system.

ACKNOWLEDGMENTS

The author deeply appreciates the contribution to this study made by other employees of the Albany, Oreg., Metallurgy Research Center: The assistance of Jack L. Henry, research chemist, for the experimental and apparatus design; and the preparation of the excellent tube rotor design by Ralph Anderson, a former student trainee at the installation.

PROCEDURES AND APPARATUS

Preparation of Components

Three methods were considered for preparing $K_2\,HfF_6$. The best product was prepared by the reaction:

$$HfO_2 \cdot 5.28 \text{ H}_2O + 4HF + 2(KF \cdot 2H_2O) \rightarrow K_2 HfF_6 + 11.28 \text{ H}_2O$$
 (1)

At higher pH the basic salt $K_3 \, \mathrm{HfF_7}$ may form.⁴ So an excess of hydrofluoric acid was used to promote the formation of $K_2 \, \mathrm{HfF_6}$. The $K_2 \, \mathrm{ZrF_6}$ preparation involved the following fusion reaction at 1,100° C:

$$ZrO_2 + K_2SiF_6 \rightarrow K_2ZrF_6 + SiO_2.$$
 (2)

Leaching the minus 200-mesh product twice at 90° C with 1.2 weight-percent hydrofluoric acid removed $\rm K_2ZrF_6$. Leaching was accomplished using a weight ratio of 4:1 for the dilute hydrofluoric acid-to-ground product. After the leach liquors were cooled to 25° C, the $\rm K_2ZrF_6$ precipitate was filtered off and then vacuum dried overnight at 90° C. Analysis values for $\rm K_2HfF_6$ and $\rm K_2ZrF_6$ are in table 1. The 1.25 weight-percent hydrofluoric acid used was diluted 52 percent reagent grade. The diluted hydrofluoric acid percentage was determined by fluorine analysis.

²Missenden, J. The Salts of Zirconium. Chem. News, No. 124, 1922, pp. 326-327.

³Beaver, W. W. Separation of Hafnium From Zirconium by Multiple Recrystallization of Ammonium Fluozirconates. AEC Final Tech. Rept. BBC-54, Aug. 28, 1950, 85 pp.

⁴ Elger, Gerald W., Lloyd H. Banning, and Kenneth W. Moser. Producing Hafnium-Enriched Feed Solutions From Zircon. BuMines RI 6802, 1966, p. 10.

TABLE 1. - Analyses of K2HfF6 and K2ZrF61

	Percent				100 Zr,	X-ray dif	fraction
Sample	A1	Mg	Si	(Zr + Hf)0	Zr + Hf	constit	uents
						Major	Minor
K ₂ HfF ₆	<0.01	<0.001	<0.03	53.9	5.8	K ₂ HfF ₆	None
K ₂ ZrF ₆	<.3	<.01	<.1	42.3	98.9	K ₂ ZrF ₆	None

¹Significant percentages of other elements were not detected by spectrographic analyses.

Determining Solubility Curves

The Phase Rule

This study was done on mixtures at equilibrium since meaningful solubility data must be determined at equilibrium. The Phase Rule defines the condition of a system at equilibrium and thereby is applicable to this study. A mathematical expression of the Phase Rule is follows:

$$V = C - P + 2 \tag{3}$$

where

V = Variance or degree of freedom of a system

C = number of components

P = number of phases

2 = temperature and pressure factors.

In this system, equilibria is attained at constant temperature and atmospheric pressure, which is considered to be constant. Hence for constant temperature and pressure, equation 3 becomes

$$V = C - P. \tag{4}$$

In this case a quarternary system is effectively reduced to a ternary system by knowing the hydrofluoric acid fluorine content. This system is better understood by examination of figure 1, which represents the quarternary system $K_2HfF_6-K_2ZrF_6-HF-H_2O$, the shaded triangle being the $K_2HfF_6-K_2ZrF_6-1.25$ weight-percent HF system.

For graphing purposes the altitudes of the equilateral triangle are divided into 100 equal segments following the Gibbs method. The corners are $\rm K_2\,HfF_6$, $\rm K_2\,ZrF_6$, and 1.25 weight-percent HF. Two mixed components are a point on their common side. A three component mixture is represented by a point within the triangle. The composition is defined by the perpendicular distance from each side of the triangle.

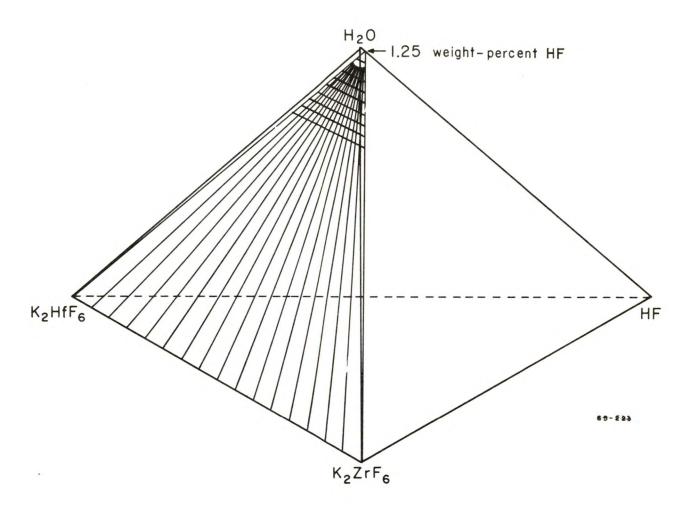


FIGURE 1. - The K₂HfF₆-K₂ZrF₆-1.25 weight-percent HF system.

Apparatus

To assure a constant temperature, continuous mixing, and no contamination of the equilibrium mixture, it was necessary to use a constant temperature bath, a tube rotor, polypropylene test tubes and stoppers, and Pyrex⁵ caps.

Functionally, the constant temperature bath consisted of three parts: the plate glass tank, the control devices, and the tank insulation. The 28-inch-square tank was 24 inches deep and was filled to within 2 inches of the top with distilled water. A large mercury bulb thermostat, sensitive to $\pm 0.005^{\circ}$ C, maintained the constant temperatures by operating a 500-watt intermittent heater via a mercury relay. The temperature was adjusted by using continuous heaters of 100, 200, or 300 watts or by running cooling water through the cooling coils on the bottom of the bath. A uniform temperature throughout the bath was maintained with a 1,425-rpm circulating pump

⁵Reference to trade names does not imply endorsement by the Bureau of Mines.

that drew water from the bottom and top of the tank and discharged it into the center of the tank. Continuous addition of distilled water to the tank maintained a uniform water level. The temperature range of the water bath was extended from 60° to 70° C by insulating the tank and cover with a two-layer aluminum foil blanket.

The tube rotor for continuous mixing was designed to provide minimum maintenance and problems. The design of the tube rotor in figure 2 was similar to one used by G. A. Louis. The tube rotor was designed to hold and rotate 24 tubes in the water bath.

An improvised drive train turned the rotor 4 rpm. The drive train consisted of a 1/2 horsepower electric motor, a 1:66 reduction transmission, V-belt pulleys, V-belt, stainless steel sprockets, and stainless steel roller chain. The stainless steel sprockets and roller chain connected the tube rotor and transmission.

The water bath cover shown in figure 2 was assembled with bolts in two sections. The larger cover section supported the tube rotor so that it could be removed without disturbing the smaller section. Most of the control elements were mounted through the smaller section. When test tubes were placed in the stationary test tube rack, on the right in figure 2, the solid phase settled prior to sampling.

To avoid corrosion in the distilled water the tube rotor was fabricated from aluminum plate, stainless steel rod, and brass. The cover for the water bath was made from aluminum plate, the stationary tube rack from aluminum sheet. The tube rotor, bath cover, and stationary tube rack were protected by three coats of Amercoat. Most of the finish is in good condition after 2-1/2 years of service. The quality of the design can be appraised by two facts: the rotor functioned satisfactorily without modification, and no maintenance was required during the entire investigation. Initially, difficulties were encountered in obtaining rotor test tube clamps that would not corrode; however, this problem was overcome by using 600-volt ferrule-type brass fuse clips.

The three equilibrium mixture tube assemblies visible in figure 2 consist of a 100-ml polypropylene test tube closed with a hollow polypropylene stopper, a tapered neoprene sleeve around the test tube, and a Pyrex cap. This tube-sealing arrangement was used to avoid contamination and loss of equilibrium mixtures. Hydrofluoric acid control samples did not react with the polypropylene. These polypropylene test tubes proved to be entirely satisfactory. Tapered neoprene sleeves and Pyrex caps held the hollow stoppers in place and sealed off the space between the equilibrium mixture and the water bath. This space served as a check for leaks from the mixtures or bath. Tubes were identified by markings on the test tube and inside the Pyrex cap.

⁶Louis, G. A. Phase Rule Study of the System Al(SO₄)₃-ZnSO₄-H₂O at 25° C. Available for consultation at Mackey Library, University of Nevada, Reno, Nev.

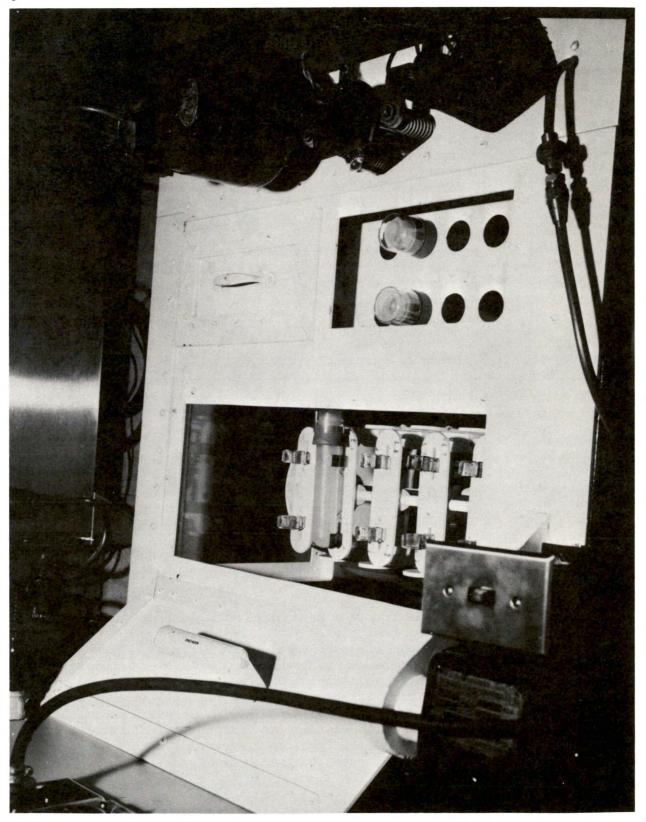


FIGURE 2. - Tube rotor and constant temperature bath.

Equilibrium Determination

The equilibrium determination consisted of mixture preparation and equilibration, sampling for analyses, analysis, and calculation of solution composition.

Mixture preparation and equilibration may be considered as one operation. First, predetermined weight-percentage ratios of $\rm K_2\,HfF_6$ and $\rm K_2\,ZrF_6$ were accurately weighed and added to each test tube. Subsequently, about 70 milliliters of 1.25 weight-percent hydrofluoric acid were added to each tube and the tube lightly stoppered. The required equilibrium temperature for the various mixtures was reached by dissolving the solid phase at elevated temperatures and placing the tube in a constant temperature bath, or by placing the tube containing the salts and HF solution directly into the stationary tube rack in the constant temperature bath. Equilibrium compositions attained were the same when equilibrium was obtained from unsaturated and supersaturated solutions. After the prepared tubes were placed in the constant temperature bath, thermal equilibrium was reached in about 30 minutes. Then the hollow stopper and Pyrex cap were firmly seated, and the tube assembly was placed on the rotor.

Chemical equilibrium was determined by successive duplicate fluorine analyses. By very careful fluorine analyses it was possible for successive duplicate fluorine analyses to agree within 0.08 percent. This accuracy was accepted as adequate for determining when a mixture reached equilibrium.

Sampling for analysis presented two problems: hydrofluoric acid attacked glass pipettes and weighing bottles, and precipitation of $\rm K_2HfF_6$ and $\rm K_2ZrF_6$ presented a problem during sampling and dilution. Both of these problems were overcome by using polypropylene pipettes and weighing bottles, heating pipettes to the test temperature before sampling, and proper dilution and weighing order. Samples for fluorine analysis were weighed and contained 0.03 to 0.08 grams of fluorine, and samples for hafnium zirconium oxide analyses were weighed and contained 0.5 to 1.0 grams of hafnium plus zirconium. These analyses were used to establish solid and liquid phase compositions.

Blake's⁷ modified Willard and Winter method required phosphoric acid and 1:1 sulfuric acid using a distillation temperature range of 150° to 155° C to release fluorine, as HF, from hafnium and zirconium complexes. The only significant change from Blake's technique was improved distillation temperature control, achieved by monitoring the distillation temperature with a potentiometer. Since another acid fraction distilled from the mixture at about 160° C, the distillation temperature controls avoided possible contamination of the distillate by the higher boiling fraction. Sufficiently accurate distillation temperature control was obtained by using 0° to 600° C Pyrovane controllers set for a 3° to 5° C temperature range. The controllers and distillation apparatus are shown in figure 3.

Blake, H. E., Jr. Fluorine Analyses. BuMines RI 6314, 1963, 29 pp.

FIGURE 3. - Distillation apparatus.

The method used for hafnium-zirconium analysis involved fuming the sample with sulfuric acid to remove fluorine, precipitation of hydrous hafnium and zirconium oxides with ammonium hydroxide, dissolving that precipitate in dilute hydrochloric acid followed by reprecipitation of hafnium and zirconium as mandelates, and igniting those mandelates to their oxides. These analyses were performed in duplicate. Average combined oxide contents and fluorine contents were used to calculate compositions of equilibrated solutions.

Calculation of $K_2 \, \mathrm{HfF}_6$ and $K_2 \, \mathrm{ZrF}_6$ solution compositions were accomplished by nomographic extrapolation of hydrofluoric acid fluorine and subsequent calculation of the percent $K_2 \, \mathrm{HfF}_6$ and $K_2 \, \mathrm{ZrF}_6$ by simultaneous equations. To establish solubility curves these solution compositions were plotted on triangular coordinates. These plotted values were compared with hydrofluoric acid fluorine contents obtained by extrapolation.

Figure 4 is a scaled-down version of a 16- by 20-inch nomograph that was used to extrapolate the fluorine percentage of the hydrofluoric acid in solution samples at equilibrium. These percentages are based on 1.25 weightpercent hydrofluoric acid containing 1.18 percent fluorine, and 100 nomograph

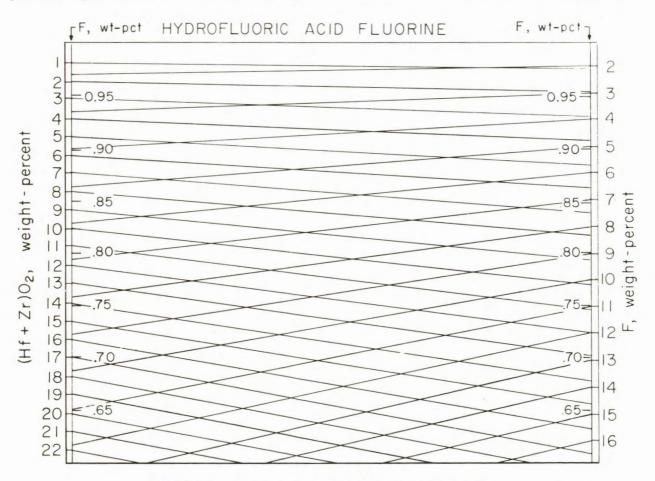


FIGURE 4. - Nomograph for hydrofluoric acid fluorine.

units equaling 1.18 percent fluorine. These nomographic extrapolations were accurate for obtaining hydrofluoric acid fluorine values, but would not provide accurate extrapolation values for K_2HfF_6 and K_2ZrF_6 contents.

The hydrofluoric acid fluorine was determined using the nomograph by (1) finding the intersection of the lines representing the total fluorine and $(\mathrm{Hf} + \mathrm{Zr})_{0}$ analysis values, (2) then projecting a line across the nomograph parallel to the horizontal axis to a vertical axis decimal scale, and (3) multiplying the extrapolated decimal factor by 1.18 to yield the hydrofluoric acid fluorine content.

Simultaneous equations were accurate for calculating $K_2\,\mathrm{Hf}F_6$ and $K_2\,\mathrm{Zr}F_6$ weight-percents in solution. The $K_2\,\mathrm{Hf}F_6$ and $K_2\,\mathrm{Zr}F_6$ percentages were calculated from total fluorine, hydrofluoric acid fluorine, and combined hafnium-zirconium oxides content. The simultaneous equations for calculating $K_2\,\mathrm{Hf}F_6$ and $K_2\,\mathrm{Zr}F_6$ are as follows:

$$HfO_2/K_2HfF_6 X + ZrO_2/K_2ZrF_6 Y = (weight-percent combined oxides), and (5)$$

$$6F/K_2HfF_6$$
 X + 6 F/K_2ZrF_6 Y = (total weight-percent fluorine) minus (weight-percent HF fluorine), (6)

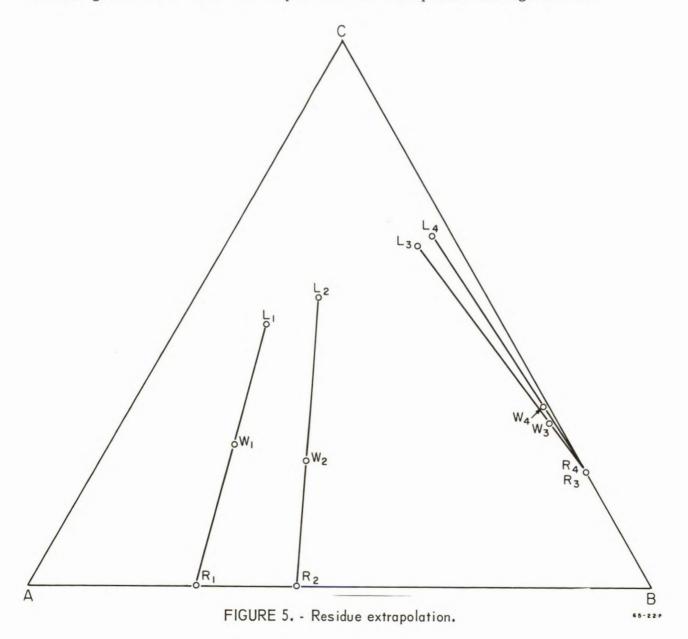
where X = weight-percent K2HfF6,

and Y = weight-percent K2ZrF6.

The two simultaneous equations reduce to:

$$0.2285 \text{ X} + 0.1749 \text{ Y} = 0.4023 \text{ (weight-percent combined oxides), and}$$
 (7)

The calculated $\rm K_2\,HfF_6$ and $\rm K_2\,ZrF_6$ percentages were plotted on triangular coordinates and the percentage hydrofluoric acid fluorine determined for comparison with nomographically extrapolated percent hydrofluoric acid fluorine. For specific equilibrium conditions, $\rm K_2\,HfF_6$ and $\rm K_2\,ZrF_6$ solution compositions define points that, when connected, form a solubility curve.


Determination of a Solubility Diagram

A solubility diagram may be determined by tielines between corresponding solubility curve points and residue composition points projected to the residue composition points whether they are hydrous or anhydrous. The residue compositions were determined by Schreinmakers' method⁸ of wet residues, and the isotherm was displayed on triangular coordinates. The wet residue is the solid equilibrium product that is wet with the equilibrated solution.

Schreinmakers, F. A. H. Graphische Ableitungen aus den Lösung-Isotherment eines Doppelsalzes und seiner Komponenten und nogliche Formen der Umwandlungs Kurve (Graphical Deductions From the Solution Isotherms of a Double Salt and Its Components). Z. Physik. Chem. No. 11, 1893, pp. 75-109.

Schreinmakers' wet residue method is illustrated in figure 5 with the composition of the liquid phase as point L, the wet residue composition as point W, and extrapolation of the tieline from point L through point W establishing the residue composition at point R. The wet residue analysis involved dissolving the wet residue, sampling the dissolved wet residue, analyzing for fluorine and hafnium-zirconium oxides in duplicate, and calculating wet-residue compositions. All sampling and dilutions were by weight. Solution and wet residue compositions were calculated by the same method.

The dry-residue composition was determined by plotting the compositions of the respective solutions and wet residues on triangular coordinates, and extending tielines from the respective solution points through the wet

residue points to a line connecting $K_2 H f F_6 \cdot H_2 O$ and $K_2 Z r F_6 \cdot 3 H_2 O$. Intersection of a tieline with the line connecting $K_2 H f F_6 \cdot H_2 O$ and $K_2 Z r F_6 \cdot 3 H_2 O$ defined the composition of the residual salt. Wet residue compositions were determined for this system at 40° C.

DATA AND DISCUSSION

The K_2HfF_6 - K_2ZrF_6 -1.25 Weight-Percent HF System at 40° C

This system was established by determining liquid and wet-residue compositions of a number of equilibrium mixtures. These compositions were calculated from total fluorine and total oxide contents for the various equilibrium mixtures. The liquid phase of the equilibrium mixtures were analyzed first to determine that equilibrium was established. Then the wet residues were analyzed.

The 40° C solubility curve shown in figure 6 is based on calculated experimental values in table 2 and establishes a solubility curve for this

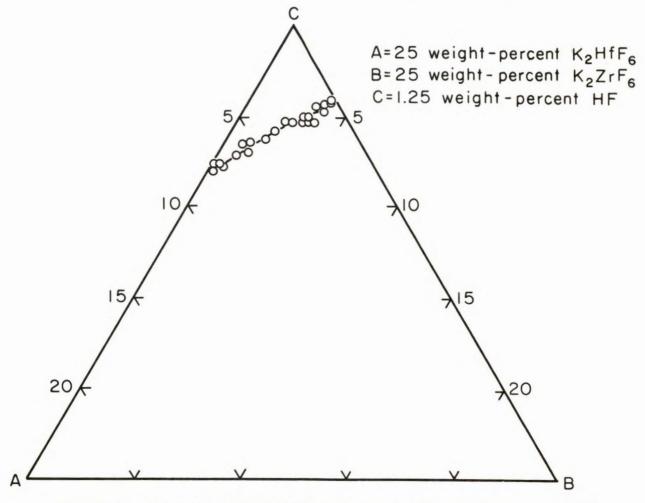


FIGURE 6. - The K₂HfF₆-K₂ZrF₆-1.25 weight-percent HF solubility curve at 40°C.

system at 40° C. Compositions on the solubility curve and compositions of corresponding wet residues were determined to establish tielines for the K_2 HfF₆- K_2 ZrF₆-1.25 weight-percent HF system at 40° C.

TABLE 2. - $K_2 HfF_6 - K_2 ZrF_6 - 1.25$ weight-percent HF solubility data at 40° C

Sample								
tube	Total	(Hf+Zr)0 ₂	Nomograph,	Difference in	Simultane	ous equa	tions	
No.	F	combined	F from HF	F1 from HF	F from HF	K2HfF6	K2ZrF6	
		oxides				2		
I:5	3.534	4.53	1.022	0.001	1.023	7.703	0.357	
I:6	3.401	4.31	1.026	.001	1.027	7.397	.250	
I:7	3.396	4.03	1.030	.002	1.032	6.251	1.103	
I:8	3.094	3.54	1.041	.002	1.043	5.607	.818	
I:9	2.980	2.73	1.050	.003	1.053	2.733	2.709	
I:10	2.820	2.14	1.062	0	1.062	1.018	3.592	
I:11	2.741	1.86	1.066	0	1.066	.211	4.003	
I:12	1.113	0	1.113	-	-	-	-	
I:13	3.570	4.606	1.021	.001	1.022	7.856	.331	
I:14	3.383	4.327	1.026	.002	1.028	7.553	.086	
I:15	3.436	4.307	1.026	.001	1.027	7.224	.469	
I:16	3.405	3.907	1.030	.003	1.033	5.687	1.558	
I:17	3.172	3.550	1.037	.003	1.040	5.273	1.277	
I:18	3.183	3.371	1.042	.003	1.045	4.486	1.893	
I:19	3.066	3.073	1.047	0	1.047	3.781	2.129	
I:20	2.971	2.612	1.053	.003	1.050	2.288	3.019	
I:21	2.984	2.582	1.053	.002	1.055	2.100	3.195	
I:22	2.889	2.445	1.056	.001	1.057	1.968	3.052	
I:23	2.975	2.539	1.054	.001	1.055	1.963	3.275	
I:24	2.930	2.467	1.054	.002	1.056	1.865	3.238	
I:25	2.911	2.485	1.055	.002	1.057	2.033	3.060	
I:26	2.910	2.452	1.055	.001	1.056	1.897	3.162	
I:27	2.923	2.495	1.055	.001	1.056	2.020	3.100	
I:28	2.923	2.403	1.056	.001	1.057	1.634	3.392	
I:29	2.899	2.433	1.057	.003	1.060	1.877	3.145	
I:30	2.936	2.506	1.055	0	1.055	2.007	3.141	
I:31	2.935	2.229	1.060	.001	1.061	.859	4.005	
I:32	2.789	2.137	1.062	.001	1.063	1.148	3.416	
I:33	2.822	2.069	1.064	.002	1.062	.717	3.822	
I:34	2.810	2.033	1.064	0	1.064	.619	3.867	
I:35	2.817	1.974	1.064	0	1.064	.337	4.100	
I:36	2.808	1.894	1.065	.001	1.066	.433	3.792	

^{1 (}Simultaneous equation fluorine) - (nomograph fluorine).

The wet-residue compositions shown in figure 7 are from calculated compositions presented in table 3. The tielines in figure 7 begin at specific solution compositions and extend through the corresponding wet-residue points to the hydrated residue compositions. These tielines indicate a system of continuous solid solutions except for a very small region of $K_2 ZrF_6/K_2 HfF_6$ ratios of more than 93:7 and a very small $K_2 HfF_6$ -rich region. The $K_2 HfF_6 \cdot H_2 O$

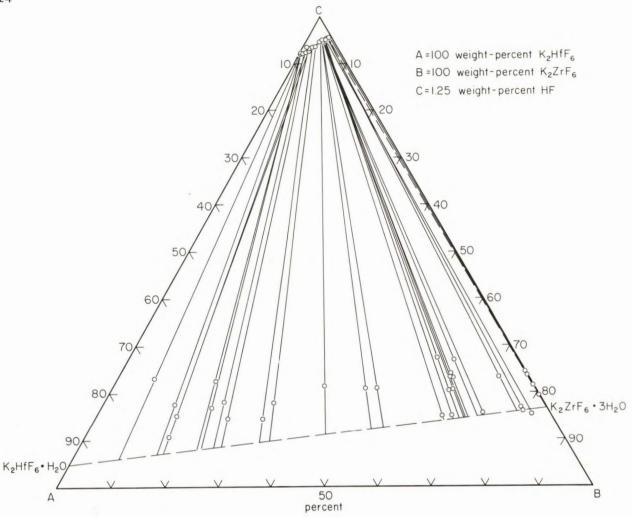


FIGURE 7. - The K_2HfF_6 - K_2ZrF_6 -1.25 weight-percent HF system at 40°C.

and $\rm K_2\,ZrF_6\cdot 3H_2\,0$ hydrates exist in this system at $40\,^\circ$ C. This conclusion is based on two facts:

- 1. Differential thermal analysis (DTA) heating curve peaks (fig. 8) from 200° to 400° C do not occur in the corresponding cooling curves (fig. 9). This behavior is indicative of crystalline water of hydration.
- 2. Extrapolated tielines intersect the $K_2 \, ZrF_6 1.25$ weight-percent HF side of the graph near $K_2 \, ZrF_6 \cdot 3H_2 \, 0$ in figure 7.

The wet residue analyses and DTA peaks in figure 8 indicate that $\rm K_2ZrF_6$ is a trihydrate and $\rm K_2HfF_6$ is a monohydrate. The progression of DTA water of hydration peaks from 95 percent $\rm K_2HfF_6$ 5 percent $\rm K_2ZrF_6$ to 3 percent $\rm K_2HfF_6$ 97 percent $\rm K_2ZrF_6$ graphically illustrates the removal of crystalline hydrated water as the temperature increases. The DTA curves, the wet residue analyses, and the expected chemical similarity of hafnium and zirconium compounds indicate that the $\rm K_2HfF_6$ hydrate does exist. Tielines from solution compositions through wet residue compositions did not indicate the $\rm K_2HfF_6$ hydrate

since the purest K_2 HfF₆ available contained 5 percent K_2 ZrF₆. The solid phase of this 40° C isotherm consists of continuous solid solution hydrates. Four other solubility curves were determined to see if the solubility curves were similar to the 40° C curve, and if time permitted, to complete one or more of these systems if significant differences were observed in these solubility curves.

TABLE 3. - $K_2 \, HfF_6 \, - K_2 \, ZrF_6 \, - 1.25$ weight-percent HF wet residue data at $40^{\circ} \, C$

Sample	Weight-percent								
tube	Total	(Hf+Zr)O ₂	Simultaneous	s equations					
No.	F	combined oxides	K ₂ HfF ₆	$K_2 ZrF_6$					
I:5	25.721	41.435	58.921	18.330					
I:6	26.788	45.001	68.931	13.454					
I:7	29.295	48.922	73.701	16.241					
I:8	27.517	43.583	59.565	22.428					
I:9	28.148	39.396	39.051	39.599					
I:10	32.626	39.476	18.563	66.549					
I:11	33.549	35.109	0.00	80.757					
I:13	24.543	42.774	70.076	6.837					
I:14	27.650	44.392	62.344	20.659					
I:15	22.068	35.363	50.478	15.393					
I:16	27.657	46.191	69.867	14.969					
I:17	28.742	45.249	60.748	24.716					
I:18	29.324	44.328	54.170	31.192					
I:19	28.190	41.901	49.361	31.892					
I:20	29.095	38.659	31.584	47.659					
I:21	30.736	36.682	15.641	63.940					
I:22	32.335	39.561	20.272	64.512					
I:23	28.681	34.028	14.087	59.866					
I:24	29.146	38.224	29.344	49.585					
I:25	28.491	33.375	12.096	60.966					
I:26	28.020	33.566	15.085	57.499					
I:27	29.842	35.351	14.230	62.723					
I:28	30.598	36.677	16.271	63.106					
I:29	29.731	35.351	14.744	62.051					
I:30	32.845	38.248	12.407	71.768					
I:31	33.459	37.132	4.887	79.025					
I:32	33.908	37.293	3.475	81.241					
I:33	30.504	33.989	5.456	71.053					
I:34	31.220	33.068	0.00	76.062					
I:35	30.846	32.759	0.00	75.351					
I:36	31.762	33.977	0.00	78.153					

Solubility Curves at 25°, 30°, 50°, 60°, and 70° C

The solubility curves at 25°, 30°, 40°, 50°, 60°, and 70° C shown in figure 10 are from calculated analytical values in tables 2, 4, and 5 to 8. The solubility curves, which are essentially parallel at 25°, 30°, 40°, 50°, 60°, and 70° C, indicate temperature dependence in this system at these temperatures.

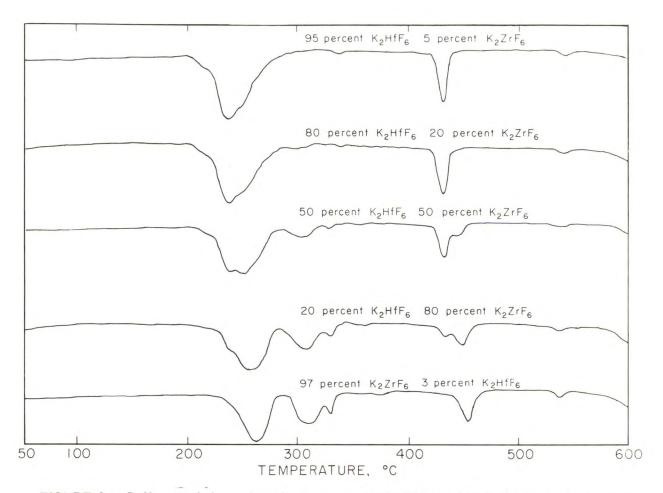


FIGURE 8. - Differential thermal analysis curves for K_2HfF_6 and K_2ZrF_6 mixtures, heating cycle.

TABLE 4. - $K_2 HfF_6 - K_2 ZrF_6 - 1.25$ weight-percent HF solubility data at 25° C

Sample			We	ight-percent			
tube	Total	(Hf+Zr)0 ₂	Nomograph,	Difference in	Simultane	ous equa	tions
No.	F	combined	F from HF	F1 from HF	F from HF	K2HfF6	K2ZrF6
		oxides				2	
IV:2	2.564	2.548	1.208	0.002	1.210	4.594	0.000
IV:3	2.619	2.502	1.208	.008	1.216	4.147	.338
IV:5	2.398	1.751	1.224	.001	1.225	2.045	1.355
IV:6	2.367	1.693	1.224	.002	1.222	1.942	1.357
IV:8	2.277	1.448	1.229	.003	1.232	1.338	1.583
IV:9	2.326	1.409	1.229	.002	1.231	.947	2.003
IV:11	2.260	1.227	1.232	.003	1.235	.492	2.180
IV:12	2.296	1.289	1.231	.003	1.234	,585	2.200
IV:14	2.239	1.046	1.235	.003	1.238	.00	2.406
IV:15	2.202	1.042	1.236	.002	1.238	.00	2.397
IV:16	1.267	-	1.267	-	-	-	-
IV:17	1.269	-	1.269	-	-	-	-
1 (Simul	taneous	equation f	luorine) - (n	omograph fluori	ne).		

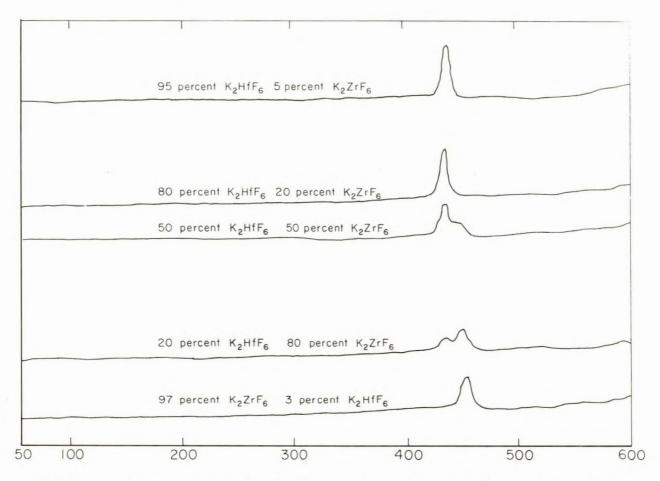


FIGURE 9. - Differential thermal analysis curves for K_2HfF_6 and K_2ZrF_6 mixtures, cooling cycle.

TABLE 5. - $K_2 \, \mathrm{HfF_6} \, - K_2 \, \mathrm{ZrF_6} \, - 1.25$ weight-percent HF solubility data at 30° C

Sample			We	ight-percent				
tube	Total	(Hf+Zr)O ₂	Nomograph,	Difference in	Simultane	ous equa	tions	
No.	F	combined	F from HF	F1 from HF	F from HF	K2 HfF6	K2ZrF6	
		oxides			-			
III:1	2.898	3.063	1.119	0.000	1.119	4.839	0.724	
III:2	2.882	3.081	1.117	.004	1.121	4.980	.581	
III:4	2.567	2.126	1.134	.000	1.134	2.449	1.690	
III:5	2.608	2.209	1.132	.001	1.133	2.604	1.679	
III:7	2.475	1.690	1.140	.003	1.143	1.049	2.517	
III:8	2.402	1.793	1.140	.001	1.141	1.821	1.746	
III:10	2.412	1.480	1.145	.000	1.145	.469	2.791	
III:11	2.461	1.511	1.145	.001	1.146	.377	2.983	
III:13	2.389	1.255	1.148	.002	1.150	.00	2.887	
III:14	2.368	1.237	1.151	.000	1.151	.00	2.845	
III:16	1.184	-	1.184	-	-	-	-	
1 (Simul	1 (Simultaneous equation fluorine) - (nomograph fluorine).							

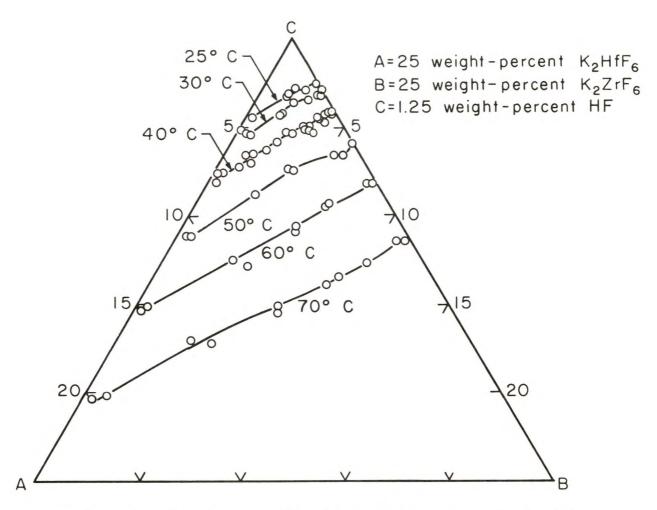


FIGURE 10. - Solubility curves at 25°, 30°, 40°, 50°, 60°, and 70° C for the $K_2HfF_6-K_2ZrF_6-1.25$ weight-percent HF system.

TABLE 6. - $\underline{K_2}$ HfF₆- K_2 ZrF₆-1.25 weight-percent HF solubility data at 50° C

Sample								
tube	Total	(Hf+Zr)0 ₂	Nomograph,	Difference in	Simultane	ous equa	tions	
No.	F	combined	F from HF	F1 from HF	F from HF	K, HfF	K, ZrF	
		oxides				2 3	2 0	
V:1	4.475	6.315	0.990	0.008	0.998	10.814	0.397	
V:2	4.521	6.316	.992	.005	.997	10.617	.657	
V:3	3.980	4.691	1.020	.003	1.023	6.331	2.519	
V:4	4.034	4.725	1.021	.001	1.022	6.232	2.727	
V:5	3.757	3.831	1.035	.005	1.040	3.773	3.882	
V:6	3.721	3.704	1.037	.002	1.035	3.408	4.067	
V:7	3.606	3.060	1.048	.001	1.049	1.253	5.401	
V:8	3.646	3.029	1.048	.002	1.050	.939	5.741	
V:9	3.486	2.553	1.056	.001	1.057	<.01	5.872	
V:10	3.449	2.553	1.057	.000	1.057	<.01	5.872	
V:11	1.100	-	1.100	-	-	-	-	
V:12	1.145	-	1.145	-	-	-	-	
1 (Simul	taneous	equation f	luorine) - (n	omograph fluori	ne).			

TABLE 7. - $K_2 HfF_6 - K_2 ZrF_6 - 1.25$ weight-percent HF solubility data at 60° C

Sample								
tube	Total	(Hf+Zr)02	02 Nomograph, Difference in Simultaneous			ous equa	tions	
No.	F	combined	F from HF	F1 from HF	F from HF	K2HfF6	K2ZrF6	
		oxides				2 0	~	
VI:1	5.741	8.665	1.008	0.006	1.014	15.063	0.252	
VI:2	5.750	8.621	1.008	.006	1.014	14.836	.447	
VI:3	5.244	6.721	1.040	.006	1.046	9.241	3.387	
VI:4	5.385	6.711	1.039	.005	1.044	8.546	4.270	
VI:5	4.955	5.484	1.062	.003	1.065	5.417	5.537	
VI:6	4.900	5.400	1.063	.006	1.069	5.318	5.474	
VI:7	4.607	4.569	1.080	.003	1.083	3.213	6.312	
VI:8	4.589	4.524	1.081	.003	1.084	3.109	6.345	
VI:9	4.375	3.595	1.098	.001	1.099	.226	7.974	
VI:10	4.395	3.701	1.096	.002	1.098	.575	7.762	
VI:11	1.206	-	1.206	-	-	-	-	
VI:12	1.189	-	1.189	-	-	-	-	

^{1 (}Simultaneous equation fluorine) - (nomograph fluorine).

TABLE 8. - $K_2HfF_6-K_2ZrF_6-1.25$ weight-percent HF solubility data at 70° C

Sample			We	ight-percent			
tube	Total	(Hf+Zr)0 ₂	Nomograph,	Difference in	Simultane	ous equa	tions
No.	F	combined	F from HF	F1 from HF	F from HF	K2 HfF6	K, ZrF
		oxides					
VII:1	7.384	11.517	0.926	0.008	0.934	19.255	1.048
VII:2	7.269	11.561	.928	.006	.934	19.978	.492
VII:3	6.557	9.238	.967	.006	.973	13.564	3.528
VII:4	6.700	9.172	.966	.009	.975	12.625	4.604
VII:5	6.298	7.703	.992	.004	.996	8.353	6.805
VII:6	6.441	7.904	.987	.005	.992	8.527	7.040
VII:7	6.025	6.489	1.012	.004	1.016	4.544	8.989
VII:8	6.054	6.732	1.009	.004	1.013	5.430	8.392
VII:9	5.889	5.921	1.022	.003	1.025	2.804	9.956
VII:10	5.863	5.911	1.022	.003	1.025	2.881	9.833
VII:11	5.615	5.011	1.040	.002	1.042	.282	11.158
VII:12	5.566	5.065	1.039	.003	1.042	.731	10.695
VII:13	1.149	-	1.149	-	-	-	-
VII:14	1.200	-	1.200	-	-	-	-

^{1 (}Simultaneous equation fluorine) - (nomograph fluorine).

CONCLUSIONS

The $K_2 \, \mathrm{HfF_6} - K_2 \, \mathrm{ZrF_6} - 1.25$ weight-percent HF system solid phase is comprised of continuous solid solution hydrates, except for the very small $K_2 \, \mathrm{HfF_6} \cdot H_2 \, \mathrm{O}$ - and $K_2 \, \mathrm{ZrF_6} \cdot 6 \, \mathrm{H_2} \, \mathrm{O}$ -rich regions. The existence of these hydrates and the slope of the solubility curve connecting the hydrate solubility curves explains why hafnium enrichment can be obtained in recrystallization liquors of this system.

The parallel solubility curves were obtained for this system at 25° , 30° , 40° , 50° , 60° , and 70° C. Higher temperatures resulted in increased solubility.

Although these data indicate that hafnium enrichment is possible, this system is not suitable for separating high purity $\rm K_2HfF_6$ from $\rm K_2HfF_6$ - $\rm K_2ZrF_6$ mixtures.