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APPENDIX: DERIVATION OF THE MSLRT STATISTICS

In this Appendix, we provide a detailed derivation of the MSLRT statistics for the lognormal

mean and qauntiles, under a type I singly left censored sample.
Al. The MSLRT statistic for the lognormal mean

The mean of a lognormal distribution is given by exp(u + ‘7—22), where p and o2 are the mean
and variance, respectively, of the log-transformed random variable (which follows N(u,d?)).
Define ¢ = p+ %2 and consider the reparametrization (1, 02) — (1, 62). Let (¢,52) denote the
MLE of (1,0?), and let 83) denote the constrained MLE of o2 for a fixed ¢. The computation
of the MLE is described in Section 2.1, and that of the constrained MLE is explained in Section
3.2.2 in the paper. In particular, Gi is the solution of equation (13) in the paper. In order to
implement the MSLRT, we need to compute the SLRT statistic R(¢) and the factor Q(v) given
in equations (12) and (16), respectively, in the paper. Once the MLE (12, 52) and the constrained
MLE Ei are obtained, the computation of R(1)) is straightforward, using the expression given

n (12). Here we shall explain the computation of Q(v)).

Our derivations are based on the theory described in Wong and Wu (2000); we refer to this



article for motivation and further details. In fact the expressions given below are obtained by

simplifying the quantities in equations (7)—(17) in Wong and Wu (2000).
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For a function f(#), we shall use the notation fy(f) to denote the 2 x 1 vector of first derivatives,

and fgg(0) to denote the 2 x 2 matrix of second derivatives. The likelihood function, as a function

of 8, can be expressed as
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where § = £ as defined in Section 2.1, o being the censoring threshold. Furthermore, the

Fisher information matrix Jy(0) is
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and w(&) = ¢(€)/®(€). Let 6 = (1, 6) denote the MLE, and write
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For ¢y(0) defined above, we note that
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The constrained MLE of 8, when v(0) is kept fixed at the value vy, can be obtained by maxi-



mizing

K(0,a) = 1(0) + a((6) — o)

with respect to o and 6. Let a and %0 = ([lyy, Oy,) maximize K(6,a). We note that Eio
satisfies equation (13) in the paper, and fiy, = o — 83)0 /2. Equating the first derivative of

K (0, ), with respect to u, to zero, we also get
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The development of the MSLRT statistic also requires the information matrix, say Jy(6),
based on the “likelihood”
1(0) = 1(0) + a(v(6) — to).

It is clear that
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where Jy(0) is given in (A.2). Define
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To get the above expression, we used the inverse matrix given in (A.6). Define
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53T (Ouo)| = Jo22(Bug) = & = 275,120, + To.11 (0) 3 (A.10)
Now let
INTEEENTIRS
N R R Jo(e)’ Do (Oy,)
Q) = sign (3 - o) () - x(O) :
ACIENQ
52, 52 52
= sign( — vo)| =3 (u iy — §0> + 50

N

-~

Jo(0)

~ ~ PO 12
{J9,22(9¢0) — & —2Jy12(0y, )Ty, + J9,11(6¢0)012/;0}

(/G4,)°

(A.11)

where Jpi;(0y,) is the (i,7) element of Jy(fy,). The quantity Q(¢) used in Section 3.2.3 of the

paper is given by the above expression.

A2. The MSLRT statistic for a lognormal quantile

Here we shall give details of the derivation of the quantity Q(n) given in Section 4.2.2. With
6 = (u,0), the parameter of interest is n = n(#) = p + zp0. Let 6 = (11,5) denote the MLE of
. Then the MLE of n is ) = i 4+ 2,0. Let 8,2] denote the constrained MLE of o2, obtained by

solving equation (21) in the paper. Then the constrained MLE of 6, say 57,, is given by

~
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The constrained MLE can also be obtained by maximizing I(n,0?) + a(n(f) — n9), where «

is a lagrange multiplier and 7y is a fixed value of n = n(#). As before, the development of



the MSLRT statistic also requires the information matrix, say Jy(6), based on the “likelihood”
I(n,0%) = 1(n,0?) + a(n(0) —no), & being the value of a that maximizes 1(n, 02) 4+ a(n(0) — no).
Since 1(f) = p + 2,0, it is easy to verify that Jy(f) = Jp(0), the information matrix based on

I(n,0?). The latter information matrix is given in equations (A.2) and (A.3).

Define (¢1(0), p2(0)) and ¢g(#) as in (A.4) and (A.5), respectively, and let
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where we have used the property Jp(6) = Jy(0). With |¢(8)| as given in equation (A.6), it is

easy to see that |¢9(§n)’/|¢9(§n)| = 85/8;3. Now define
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The quantity Q(n) used in Section 4.2.2 of the paper is given by the above expression.
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