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APPENDIX: DERIVATION OF THE MSLRT STATISTICS

In this Appendix, we provide a detailed derivation of the MSLRT statistics for the lognormal

mean and qauntiles, under a type I singly left censored sample.

A1. The MSLRT statistic for the lognormal mean

The mean of a lognormal distribution is given by exp(µ + σ2

2 ), where µ and σ2 are the mean

and variance, respectively, of the log-transformed random variable (which follows N(µ, σ2)).

Define ψ = µ + σ2

2 and consider the reparametrization (µ, σ2) → (ψ, σ2). Let (ψ̂, σ̂2) denote the

MLE of (ψ, σ2), and let σ̂2
ψ denote the constrained MLE of σ2 for a fixed ψ. The computation

of the MLE is described in Section 2.1, and that of the constrained MLE is explained in Section

3.2.2 in the paper. In particular, σ̂2
ψ is the solution of equation (13) in the paper. In order to

implement the MSLRT, we need to compute the SLRT statistic R(ψ) and the factor Q(ψ) given

in equations (12) and (16), respectively, in the paper. Once the MLE (ψ̂, σ̂2) and the constrained

MLE σ̂2
ψ are obtained, the computation of R(ψ) is straightforward, using the expression given

in (12). Here we shall explain the computation of Q(ψ).

Our derivations are based on the theory described in Wong and Wu (2000); we refer to this
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article for motivation and further details. In fact the expressions given below are obtained by

simplifying the quantities in equations (7)−(17) in Wong and Wu (2000).

Let

θ = (µ, σ2), and ψ = ψ(θ) = µ +
σ2

2
.

For a function f(θ), we shall use the notation fθ(θ) to denote the 2×1 vector of first derivatives,

and fθθ(θ) to denote the 2×2 matrix of second derivatives. The likelihood function, as a function

of θ, can be expressed as

l(θ) = k lnΦ
(

DL− µ

σ

)
− (n− k) lnσ − 1

2σ2

n−k∑

i=1

(Xi − µ)2.

The MLEs µ̂ and σ̂ are the solutions to the equations

∂l(θ)
∂µ

= −k

σ

φ(ξ)
Φ(ξ)

+
(n− k)(X̄l − µ)

σ2
= 0

∂l(θ)
∂σ

= −kξφ(ξ)
σΦ(ξ)

− n− k

σ
+

1
σ3

n−k∑

i=1

(Xi − µ)2 = 0, (A.1)

where ξ = x0−µ
σ , as defined in Section 2.1, x0 being the censoring threshold. Furthermore, the

Fisher information matrix Jθ(θ) is

Jθ(θ) =



−∂2l(θ)

∂µ2 −∂2l(θ)
∂µ∂σ

−∂2l(θ)
∂µ∂σ −∂2l(θ)

∂σ2


 , (A.2)

where

−∂2l(µ, σ)
∂µ2

=
k

σ2
w(ξ)[w(ξ) + ξ] +

n− k

σ2

−∂2l(µ, σ)
∂µ∂σ

=
kw(ξ)

σ2
[ξ(ξ + w(ξ))− 1] +

2(n− k)(X̄l − µ)
σ3

−∂2l(µ, σ)
∂σ2

=
kξw(ξ)

σ2
[ξ(ξ + w(ξ))− 2]− n− k

σ2
+

3(n− k)
σ4

(S2
l + (X̄l − µ)2), (A.3)
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and w(ξ) = φ(ξ)/Φ(ξ). Let θ̂ = (µ̂, σ̂) denote the MLE, and write

V =




1 1 . . . 1

X1−µ̂
σ̂

X2−µ̂
σ̂

. . .
Xn−k−µ̂

σ̂


 =




V11 V12 . . . V1,n−k

V21 V22 . . . V2,n−k


 .

Define

φ1(θ) =
n−k∑

j=1

∂l(θ)
∂Xj

Vij = −n− k

σ2
(X̄l − µ)

φ2(θ) =
n−k∑

j=1

∂l(θ)
∂Xj

V2j = −(n− k)
σ̂σ2

[S2
l + (X̄l − µ̂)(X̄l − µ)], (A.4)

and

φθ(θ) =




∂φ1(θ)
∂µ

∂φ1(θ)
∂σ

∂φ2(θ)
∂µ

∂φ2(θ)
∂σ




=




n−k
σ2

2(n−k)
σ3 (X̄l − µ)

n−k
σ2σ̂

(X̄l − µ̂) 2(n−k)

σ3σ̂
[S2

l + (X̄l − µ)(X̄l − µ̂)]


 . (A.5)

For φθ(θ) defined above, we note that

|φθ(θ)| =
2(n− k)2S2

l

σ̂σ5

φ−1
θ (θ) =

σ2

(n− k)S2
l




[S2
l + (X̄l − µ̂)(X̄l − µ)] −σ̂(X̄l − µ)

−σ(X̄l−µ̂)
2

σ̂σ
2


 . (A.6)

Let ψ(θ) = µ + σ2

2 and ψθ(θ) =
(

∂ψ(θ)
∂µ , ∂ψ(θ)

∂σ

)
= (1, σ) so that

ψθθ(θ) =




0 0

0 1


 .

The constrained MLE of θ, when ψ(θ) is kept fixed at the value ψ0, can be obtained by maxi-



4

mizing

K(θ, α) = l(θ) + α(ψ(θ)− ψ0)

with respect to α and θ. Let α̂ and θ̂ψ0 = (µ̂ψ0 , σ̂ψ0) maximize K(θ, α). We note that σ̂2
ψ0

satisfies equation (13) in the paper, and µ̂ψ0 = ψ0 − σ̂2
ψ0

/2. Equating the first derivative of

K(θ, α), with respect to µ, to zero, we also get

α̂ =
kw(ξ̂0)

σ̂ψ0

− (n− k)
(X̄l − µ̂ψ0)

σ̂2
ψ0

, with ξ̂0 =
DL− µ̂ψ0

σ̂ψ0

.

The development of the MSLRT statistic also requires the information matrix, say J̃θ(θ),

based on the “likelihood”

l̃(θ) = l(θ) + α̂(ψ(θ)− ψ0).

It is clear that

J̃θ(θ) = Jθ(θ)− α̂




0 0

0 1


 ,

where Jθ(θ) is given in (A.2). Define

χ(θ) = (1, σ̂ψ0) φ−1
θ (θ̂ψ0)




φ1(θ)

φ2(θ)




=
σ̂2

ψ0

σ2

(
µ− µ̂ψ0 −

σ̂2
ψ0

2

)
, (A.7)

and

χ(θ̂)− χ(θ̂ψ0) =
σ̂2

ψ0

σ̂2

(
µ̂− µ̂ψ0 −

σ̂2
ψ0

2

)
+

σ̂2
ψ0

2
. (A.8)

To get the above expression, we used the inverse matrix given in (A.6). Define

σ̂2
χ = (1, σ̂ψ0) J̃−1

θ (θ̂ψ0)




1

σ̂ψ0



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=
Jθ,22(θ̂ψ0)− α̂− 2Jθ,12(θ̂ψ0)σ̂ψ0 + Jθ,11(θ̂ψ0)σ̂

2
ψ0

|J̃θ(θ̂ψ0)|
(A.9)

where Jθ,ij(θ) is the (i, j) element of Jθ(θ). Then

σ̂2
χ|J̃θ(θ̂ψ0)| = Jθ,22(θ̂ψ0)− α̂− 2Jθ,12(θ̂ψ0)σ̂ψ0 + Jθ,11(θ̂ψ0)σ̂

2
ψ0

. (A.10)

Now let

Q(ψ0) = sign
(
ψ̂ − ψ0

) ∣∣∣∣χ(θ̂)− χ(θ̂ψ0)
∣∣∣∣





∣∣∣∣Jθ(θ̂)
∣∣∣∣
∣∣∣∣φθ(θ̂ψ0)

∣∣∣∣
2

σ̂2
χ

∣∣∣∣J̃θ(θ̂ψ0)
∣∣∣∣
∣∣∣∣φθ(θ̂)

∣∣∣∣
2





1
2

= sign(ψ̂ − ψ0)
∣∣∣∣
σ̂2

ψ0

σ̂2

(
µ̂− µ̂ψ0 −

σ̂2
ψ0

2

)
+

σ̂2
ψ0

2

∣∣∣∣

×

∣∣∣∣Jθ(θ̂)
∣∣∣∣
1
2

(σ̂/σ̂ψ0)
5

{
Jθ,22(θ̂ψ0)− α̂− 2Jθ,12(θ̂ψ0)σ̂ψ0 + Jθ,11(θ̂ψ0)σ̂2

ψ0

}1/2
, (A.11)

where Jθ,ij(θ̂ψ0) is the (i, j) element of Jθ(θ̂ψ0). The quantity Q(ψ) used in Section 3.2.3 of the

paper is given by the above expression.

A2. The MSLRT statistic for a lognormal quantile

Here we shall give details of the derivation of the quantity Q(η) given in Section 4.2.2. With

θ = (µ, σ), the parameter of interest is η = η(θ) = µ + zpσ. Let θ̂ = (µ̂, σ̂) denote the MLE of

θ. Then the MLE of η is η̂ = µ̂ + zpσ̂. Let σ̂2
η denote the constrained MLE of σ2, obtained by

solving equation (21) in the paper. Then the constrained MLE of θ, say θ̂η, is given by

θ̂η = (η − zpσ̂η, σ̂η) = (µ̂η, σ̂η).

The constrained MLE can also be obtained by maximizing l(η, σ2) + α(η(θ) − η0), where α

is a lagrange multiplier and η0 is a fixed value of η = η(θ). As before, the development of



6

the MSLRT statistic also requires the information matrix, say J̃θ(θ), based on the “likelihood”

l̃(η, σ2) = l(η, σ2) + α̂(η(θ)− η0), α̂ being the value of α that maximizes l(η, σ2) + α(η(θ)− η0).

Since η(θ) = µ + zpσ, it is easy to verify that J̃θ(θ) = Jθ(θ), the information matrix based on

l(η, σ2). The latter information matrix is given in equations (A.2) and (A.3).

Define (φ1(θ), φ2(θ)) and φθ(θ) as in (A.4) and (A.5), respectively, and let

χ(θ) = (1, zp) φ−1
θ (θ̂η)




φ1(θ)

φ2(θ)


 =

σ̂2
η

σ2

(
µ− µ̂η − σ̂ηzp

2

)
. (A.12)

It is easy to see that

χ(θ̂)− χ(θ̂η) =
σ̂2

η

σ̂2

(
µ̂− µ̂η − σ̂ηzp

2

)
+

σ̂ηzp

2
. (A.13)

Also define

σ̂2
χ = (1, zp) J̃−1

θ (θ̂η)




1

zp


 = (1, zp) J−1

θ (θ̂η)




1

zp


 , (A.14)

where we have used the property J̃θ(θ) = Jθ(θ). With |φθ(θ)| as given in equation (A.6), it is

easy to see that |φθ(θ̂η)|/|φθ(θ̂η)| = σ̂5/σ̂5
η. Now define

Q(η) = sign (η̂ − η)
∣∣∣∣χ(θ̂)− χ(θ̂η)

∣∣∣∣×





∣∣∣∣Jθ(θ̂)
∣∣∣∣
∣∣∣∣φθ(θ̂η)

∣∣∣∣
2

σ̂2
χ

∣∣∣∣J̃θ(θ̂η)
∣∣∣∣
∣∣∣∣φθ(θ̂)

∣∣∣∣
2





1
2

= sign (η̂ − η)
∣∣∣∣
σ̂2

η

σ̂2

(
µ̂− µ̂η − σ̂ηzp

2

)
+

σ̂ηzp

2

∣∣∣∣×




1
σ̂2

χ

×
(

σ̂2

σ̂2
η

)5




1
2

. (A.15)

The quantity Q(η) used in Section 4.2.2 of the paper is given by the above expression.
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