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Abstract

Human exposure to air pollution is associated with increased risk of morbidity and mortality. However, personal air pollution
exposures can vary substantially depending on an individual’s daily activity patterns and air quality within their residence and
workplace. This work developed and validated an adaptive buffer size (ABS) algorithm capable of dynamically classifying an
individual’s time spent in predefined microenvironments using data from global positioning systems (GPS), motion sensors,
temperature sensors, and light sensors. Twenty-two participants in Fort Collins, CO were recruited to carry a personal air
sampler for a 48-h period. The personal sampler was retrofitted with a GPS and a pushbutton to complement the existing sensor
measurements (temperature, motion, light). The pushbutton was used in conjunction with a traditional time-activity diary to
note when the participant was located at “home”, “work”, or within an “other” microenvironment. The ABS algorithm
predicted the amount of time spent in each microenvironment with a median accuracy of 99.1%, 98.9%, and 97.5% for the
“home”, “work”, and “other” microenvironments. The ability to classify microenvironments dynamically in real time can

enable the development of new sampling and measurement technologies that classify personal exposure by microenvironment.

Introduction

Exposure to air pollution has been shown to have deleter-
ious effects on human health [1-5]. Epidemiologic studies
of air pollution have traditionally relied on exposure data
reported by a central-site monitor. However, air pollution
exposures are known to be spatially and temporally het-
erogeneous; thus, ambient air quality measures from a
central-site monitor are not necessarily representative of an
individual’s exposure, particularly while indoors [6—10].
Recent research has focused on characterizing air pollution
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exposures with greater spatial and temporal resolution, often
with the intent to quantify (post-hoc) air pollution levels
within distinct microenvironments (e.g. “home”, “work”,
“transit”, etc.) [11-14]. These post-hoc evaluations have
helped determine the timing, location (and source) of ele-
vated exposures [15].

To estimate microenvironment exposures, studies have
traditionally used surveys and diary methods. These meth-
ods are burdensome for study participants (particularly for
children) and are subject to reporting bias and/or missing
data [13, 16]. To alleviate the burden of self-reporting,
several studies have used handheld [11, 12, 14, 17] or
smartphone-based [18-21] global positioning systems
(GPS) to estimate where participants spend their time.
These studies have demonstrated that GPS sensors tend to
provide accurate location data when outdoors. However, the
positional accuracy is compromised by signal loss and drift
in and around buildings. These GPS limitations create
uncertainty and may also lead to exposure misclassification.

To account for GPS signal loss/drift, some studies define
a spatially-explicit “buffer” around microenvironments such
as “home” and “work”™ (rather than relying solely on geo-
graphic information system [GIS] geocoded building
boundaries) [11, 12]. Other studies have utilized
GPS-enabled buffers in conjunction with temperature
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[11, 22, 23], light [24-27], or motion [28, 29] data to detect
a transition between microenvironments. The algorithms
developed to date have relied on data collection from
multiple sources to collect the exposure (e.g. central-site
monitors or continuous personal sampling devices) and
microenvironment detection data (e.g. GPS, temperature,
motion, light, etc.). These approaches are appropriate for
analysis of microenvironment exposures in a post-hoc
fashion (i.e., via post processing of data after collection);
however, there are potential advantages to developing
technologies and/or algorithms that can assist in dynamic
(i.e., in real time) sampling and speciation of personal
air pollution exposures as a function of microenvironment
[30-33]. For example, the automated microenvironment
aerosol sampler (AMAS) [34] is a wearable device con-
taining four separate filter channels for collecting fine par-
ticulate matter (PM, 5) with integrated GPS, motion, light,
and temperature sensors. Devices such as the AMAS can
use microenvironment-detection algorithms to dynamically
adjust the flow of air through individual filters and collect
PM, 5 samples specific to a microenvironment.

The goal of this work was to develop an adaptive buffer
size (ABS) algorithm capable of dynamically classifying an
individual’s location into one of three microenvironments:
“home”, “work”, and “other” (a miscellaneous category
encompassing all non-home and non-workplace activities).
The ABS algorithm (Fig. 1, Fig. S1) uses GPS, motion,
temperature, and light sensor data to determine a transition
between microenvironments. Rather than relying on buffers

with fixed radii around each location, the algorithm employs
a dynamic buffer that is adjusted, in real time, based on GPS
signal quality and environmental sensor data. The algorithm
identifies transitions between microenvironments by detect-
ing changes in motion, temperature, light, and GPS signal
strength. Performance of the ABS algorithm was evaluated
using data collected by participants in Fort Collins, CO and
verified using a traditional diary method combined with a
user pushbutton method for digital logging. Results from
this work demonstrate that the ABS algorithm can suc-
cessfully classify microenvironments to further advance the
science of personal exposure monitoring.

Methods

The development and evaluation of the ABS algorithm
involved four steps: (1) collection of a “reference” dataset
of spatially and temporally resolved microenvironment
transitions using a panel of volunteers, (2) data curation to
address data entry errors (made by the participants) or gaps
in the sensor data, (3) formulation of the ABS algorithm,
and (4) evaluation of the ABS algorithm (and other, simpler
algorithms) relative to the reference dataset.

Data collection

Adult participants were recruited from Colorado State
University in Fort Collins, CO over the course of a

Fig. 1 Overview of the
adaptive buffer size (ABS)
algorithm. When only GPS
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four-month period (Dec. 2015— Mar. 2016). The only
requirements were that participants were working adults
that did not live in the same residence as any of the other
participants. Each participant provided their “home” and
“work” addresses, which were used to determine a coordi-
nate centroid (latitude, longitude) for these microenviron-
ments using Google Maps. A Google Maps disclaimer
states a maximum uncertainty of 15m worldwide, and
Goadarzi et al. [35] reported that Google maps has ~3 m
accuracy in a major city, thus this method was deemed
appropriate for the development and use of the micro-
environment algorithm. Participants were asked to note the
timing of each microenvironment transition (i.e., the times
when they left or entered their “home” and “work™ micro-
environments) using a written diary. Participants were also
asked to carry an ultrasonic personal aerosol sampler
(UPAS) [36] for ~48 h. The UPAS measured and recorded
ultraviolet light intensity (Silicon Labs, SI1145), tempera-
ture, (Bosch Sensortech, BME280), and motion (ST
Microelectronics, LSM303). The UPAS was further mod-
ified (Fig. S2, Table S1) by adding a GPS sensor (Adafuit,
746) and a pushbutton recorder (Switchcraft Inc., ED913).
The modified UPAS will be referred to as the personal
monitor throughout the remainder of the manuscript. Due to
the known limitations of the traditional diary method, par-
ticipants were asked to depress the pushbutton during each
microenvironment transition to serve as an additional source
of reference data. The personal monitor logged all sensor
data, including the pushbutton status, to non-volatile
memory at a frequency of 0.2 Hz (every 5s). The number
of satellites tracked by the GPS was logged, in addition to
the latitude and longitude, in degrees decimal minutes
(DDM). Linear acceleration was measured on a +2 g full
scale for all three primary axes and the total acceleration
was calculated using Eqn. S1. Light intensity data were
collected as 100x the ultraviolet (UV) index. Temperature
was logged in Celsius. Battery voltage was logged in volts.
All study procedures were approved by the Institutional
Review Board at the Colorado State University and
informed consent was obtained from all participants.

Data curating

Microenvironment transition data were curated to establish
a reference dataset for evaluation of the ABS algorithm. The
GPS latitude and longitude data were converted to decimal
degree (DD) formatting and used to calculate the distances
from the “home” and “work” centroid coordinates using the
Haversine formula [37]. The pushbutton and diary data
were used to determine each participant’s duration within
each microenvironment and the precise timing of when
they transitioned between microenvironments (e.g., when
the participant left “home” and entered the “other”
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microenvironment). If the transition time recorded by the
pushbutton and diary methods coincided, the pushbutton
event was used unless there was a diary entry that specifi-
cally noted an error in the pushbutton transition time.
The pushbutton data were also used to estimate time spent
in each microenvironment as participants tended to record
rounded times in their diaries or had discrepancies between
the clock on the personal monitor and the clock or watch
they were using. Some participants pressed the pushbutton
on the personal monitor multiple times upon entering or
exiting a microenvironment. In these instances, only one
(the first) button press was counted as a microenvironment
transition. When the personal monitor logged a button press
without a corresponding diary entry (occasionally or for the
entire sample), the data were manually evaluated to deter-
mine the GPS distance from both microenvironment cen-
troids. If the GPS distance was less than 500 m from a
“home” or “work” microenvironment when the button was
pressed, the event was included and coded appropriately;
otherwise, it was assumed that the button press was acci-
dental and discarded. If the participant’s diary included
events that didn’t have a corresponding pushbutton event, it
was assumed that the participant made the microenviron-
ment transition but forgot to press the button. Infrequently,
participants failed to note a transition that caused an
impossible result (i.e. a direct “home” to “work” transition).
To estimate the time spent in each microenvironment for
those datasets, the data were manually evaluated in an
attempt to code the data based on GPS distances. Once the
diary and pushbutton time-location data were compiled they
were manually validated against the GPS data. For the
reminder of the manuscript, the combined diary and push-
button data are referred to as the reference dataset.

Adaptive buffer size (ABS) algorithm

The ABS algorithm dynamically adjusts the buffer size
around both the “home” and “work” microenvironments
to account for uncertainty in GPS positional accuracy. The
ABS algorithm was formulated from the hypothesis that
acute changes in GPS signal quality, acceleration, UV light
intensity, and temperature are indicative of a transition
between microenvironments (e.g., moving from indoors to
outdoors). The ABS algorithm uses these triggers to adjust
the buffer sizes in an attempt to optimize microenvironment
classification (i.e., to maximize accuracy, sensitivity, and
specificity as defined below). A detailed flow chart depict-
ing the ABS algorithm operation is shown in Fig. S1.

The ABS algorithm defines three circular buffers with
varying radial distances from the centroid of the “work” and
“home” microenvironments; (1) large buffer: 500 m for
both the “home” and “work” microenvironment, (2) med-
ium buffer: 185 m and 120 m for the “work” and ‘“home”
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microenvironment respectively, and (3) small buffer: 115 m
and 60m for the “work” and “home” microenvironment
respectively. Wu et al. demonstrated that variations in GPS
signal accuracy are on the order of 500 m or greater for a
number of different GPS models when located in indoor
environments, largely due to signal bounce/degradation
[38]. Evaluation of our GPS signal showed similar perfor-
mance indoors at several locations. For this reason, we set
our large buffer to 500 m for periods when GPS signal
quality was low. The medium and small buffers were
set using the cumulative distributions of participant distance
from “home” and “work” locations from the reference
dataset (Fig. S3). The medium buffer represents the 85th
percentile and the small buffer represents the 75th
percentile.

The ABS algorithm uses a combination of categorical
and continuous variables as triggers for detecting micro-
environment transitions: (1) GPS signal status, (2) motion
and environmental triggers, and (3) personal monitor char-
ging status. The first step (see Fig. S1 for a process diagram)
was to determine if the personal monitor was plugged into a
wall outlet and charging by monitoring the battery voltage.
The personal monitor had to be charged overnight and thus
while charging, no microenvironment transition could
occur. The next step was to determine if there was a GPS
signal available. If no GPS signal was available, the last
known location and large buffer were used; otherwise,
motion and environmental triggers were used to check for
microenvironment transitions. Motion and environmental
trigger events are characterized as acute changes in accel-
eration, temperature, or light data that may be indicative of a
transition between two microenvironments. To invoke a
motion trigger, the absolute value of the change in total
acceleration between each time step had to be greater than
0.37g (95th percentile of cumulative distributions). A
temperature trigger was defined as when the absolute value
temperature change for a sixty-second period was greater
than 1 °C and the current change in temperature had a sign
change (negative, positive, or zero) as compared with the
prior temperature change measurement. A UV light trigger
is activated when there is a UV index [39] greater than
0.03 (95th percentile of cumulative distributions). Once a
motion, UV light, or temperature trigger is detected, an
individual timer for each trigger is reset and continues to
increment once every second until the next trigger of that
type is detected. Finally, in order for a transition to occur,
the microenvironment must be confirmed for 30s (six
consecutive timestamps). This requirement helps reduce
excessive “bouncing” in and out of microenvironments.

The ABS algorithm uses the status of the triggers to
select one of the three radial buffers. If no transition triggers
are active or the GPS signal quality is poor or unavailable,

the default buffer with a radius of 500 m is used around
each microenvironment. If motion and one of the environ-
mental triggers is activated, the medium buffer is used. If
triggers for motion, light, and temperature are all detected
then the small buffer is used. This method allows the buffer
size to be evaluated every 5 s and the radii to be reduced if
the probability of a microenvironment transition increases.

ABS algorithm evaluation

Our hypothesis (that environmental and motion triggers
can aid microenvironment classification) was evaluated by
comparing output from the ABS and static buffer algo-
rithms to the curated reference data. To aid the compar-
ison, the size of the static buffers were set to match the
three buffer sets used in the ABS algorithm. These static
buffer algorithms are referred to as “GPS-S” (115 m and
60 m, “work” and “home” buffers), “GPS-M” (185 m and
120 m, “work” and “home” buffers), and “GPS-L” (500 m
and 500 m, “work” and “home” buffers). A fourth algo-
rithm, referred to as the “Motion” algorithm, was identical
to the ABS algorithm except only motion triggers were
used (light and temperature data were excluded) to deter-
mine if the use of environmental sensor data enhances
microenvironment classification.

The raw GPS data from the reference dataset was feed
into all five of the algorithms. Performance of each algo-
rithm was calculated by comparing the classification output
(at five-second intervals) to the participant’s known location
(as determined from the curated reference data) to estimate
the true positive, false positive, true negative, and false
negative classifications for each microenvironment. For
example, for the “home” microenvironment, a true positive
indicates that an algorithm predicted the “home” micro-
environment when the person was actually at “home”.
A false negative indicates that an algorithm incorrectly
predicted the “work” or “other”” microenvironment when the
person was actually at “home”. With these data, the sensi-
tivity (Eq. S2), specificity (Eq. S3), and accuracy (Eq. S4)
of each algorithm were calculated by microenvironment.
The sensitivity characterizes the degree to which an algo-
rithm underestimates the amount time spent in each
microenvironment. The specificity indicates how much an
algorithm overestimated time in each microenvironment.
Finally, the total algorithm accuracy was also evaluated to
determine the effectiveness of each algorithm across all
microenvironments. The Friedman and pairwise post-hoc
Nemenyi tests (PMCMR package [40]) were used to test for
significant differences between the ABS and reference
algorithms. All analyses were performed using R 3.5.0
(R Core Team, Vienna, Austria) and code developed and
used for these analyses are available upon request.
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Results

A total of 22 participants were recruited into the study; these
participants provided a total of 25 microenvironment tran-
sition datasets (three participants collected data twice) from
December 2015 through March 2016, with median, stan-
dard deviation, minimum and maximum data collection
times of 47.8, 7.7, 30.9, and 71.9 h, respectively. These 25
datasets provided 274 microenvironment transitions (Table
S2; 90 defined only by the traditional diary method, 5
required manual assignment using GPS coordinate data, and
the remaining 186 were defined by the pushbutton or both
the pushbutton and traditional diary method) into or out of
22 unique ‘“home” and 4 “work” microenvironments
(campus buildings at Colorado State University). Four of
the participants failed to use the traditional diary method,
but those participants did use the pushbutton to indicate
their microenvironment transitions. The median (25th, 75th
percentile) amount of time that participants spent in the
“home”, “work”, and “other” microenvironments based on
the reference dataset were 27.8 (24.3, 30.8), 11.5 (8.4,
14.9), and 4.6 (3.1, 9.2) hours. These results are shown in
Fig. S4 and Table S3.

The number of predicted microenvironment transitions
(Table S2) and median (25th, 75th percentile) amounts of
time spent in the “home”, “work”, and “other” micro-
environments (Fig. S4, Table S3) were determined for each
of the five algorithms. The ABS algorithm predicted 350
microenvironment transitions and the median (25th, 75th
percentile) amounts of time spent in the “home”, “work”,
and “other” microenvironments were 28.0 (24.8, 30.3), 12.1
(9.2, 14.4), and 4.0 (2.8, 9.2) hours respectively.

The accuracy, sensitivity, and specificity were calculated
for all five algorithms by microenvironment using all 25
datasets (See SI. XLSX data file). The accuracy compar-
isons by microenvironment are shown in Fig. 2 and the total
accuracy for the microenvironments combined are shown in
Fig. S5. The median (25th, 75th percentile) accuracy values
are summarized in Table S4 and the pairwise post-hoc
Nemenyi results are shown in Tables S5 and S6. The ABS
had the highest median total accuracy of 0.975 (0.946,
0.980) of all the algorithms. The sensitivity and specificity
by microenvironment are shown in Fig. 3. A summary of
the median (25th, 75th percentile) data shown in Table S7,
and the pairwise post-hoc Nemenyi results are shown in
Tables S8 (Sensitivity) and S9 (Specificity).

Discussion
For microenvironments that are defined with a fixed buffer
size (GPS-S, GPS-M, and GPS-L), the GPS-only algorithms

show a positive trend between the size of the buffer and the
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Fig. 2 Microenvironment determination accuracy for each of the
five algorithms compared against the participant reference data-
set. Data points represent single volunteers (n = 25); triangles repre-
sent outliers that fall below the 0.7 cutoff indicated by the dashed gray
line. GPS-S location only with small buffer, GPS-M location only with
medium buffer, GPS-L location only with large buffer.

classification accuracy for a given microenvironment
(Fig. 2). However, there is a distinct tradeoff that occurs for
the GPS-only algorithms; as the buffer size increases the
increased accuracy for the “home” and “work” is gained
through a loss of accuracy for the “other” microenvironment
(i.e., the “home” and “work” buffers infringe upon the
“other” microenvironment). The same tradeoff is also
apparent with sensitivity: as the sensitivity for the “home”
and “work” classifications increases, the sensitivity for the
“other” classifications is negatively impacted leading to an
underestimation of the amount of time spent outside of the
“home” and “work” microenvironments. Inverse tradeoffs
are also apparent for the specificity of the three GPS-only
algorithms; the specificity for the “other” classifications
increases as the buffer size increases, however, these
increases are offset with decreases in the “home” and
“work” classifications (Fig. 3). These tradeoffs can be seen
in Fig. 1 where the larger buffer encompasses the entire area
around the “home” and “work” microenvironment. How-
ever, the large boundary also encompasses the majority of
points that are logged during the transition between the
“home” and “work” microenvironments leading to an
underestimate of the time spent in the ‘“other” micro-
environment. Proper classification of the “other” micro-
environment is critical; while the amount of time spent in
the “other” microenvironment is typically lower, air pollu-
tion concentrations in the “other” microenvironment tend to
be elevated (e.g., while in transit on roadways). Thus,
exposures in the “other” microenvironment could poten-
tially account for a substantial portion of a person’s daily
cumulative exposure [41, 42]. However, other studies have
shown that “home” and indoor environments can be the
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Fig. 3 The sensitivity and specificity for each of the five algorithms
by microenvironment. Data points represent single volunteers (n =
25); triangles represent outliers that fall below the 0.7 cutoff indicated

majority source of exposure due to the amount of time one
spends at “home”, “work™, or “school [43, 44].

Using trigger events to adjust the buffer size helps retain
classification accuracy (Fig. 2) without loss of sensitivity
and specificity (Fig. 3). The ABS algorithm showed greater
total and microenvironment accuracies when compared
with the three GPS-only and Motion algorithms; these
improvements were statistically significant when the ABS
algorithm were compared with the most accurate GPS-only
(GPS-L) algorithm (Tables S5 and S6). Additionally, unlike
the GPS-only algorithms, both the ABS and Motion
algorithms were able to reduce the tradeoffs between the
sensitivity and specificity; the sensitivity for the “other”
classifications and the specificity for the “home” (with the
exception of the Motion algorithm) and “work™ classifica-
tions were improved and were statistically significant as
compared with the GPS-L algorithm. While the ABS
algorithm had determined more transitions (350) as com-
pared with the Motion algorithm (332) the ABS algorithm
had slightly better accuracies as seen in Table S4, and slight
differences for the “other” sensitivity and “home” specifi-
city (Table S7).

Previous work by Breen et al. [12] developed a micro-
environment algorithm that was used to classify eight dif-
ferent microenvironments (inside and outside of the home,
work, school; inside vehicles; other locations). They eval-
uated their algorithm and determined the sensitivity and
accuracy for the Work (99.9% & 99.6%), Work-Out
(60.4% & 99.7%), School (93.1% & 99.9%), School-Out
(73.5% & 99.9%), Home (98.8% & 98.9%), and Home-out
(81.4% & 98.9%) microenvironments. The “other” micro-
environment described herein would encompass all of the

e fj §§7 40 49"

# Home E8 Work ®8 Other

by the dashed gray line. GPS-S location only with small buffer, GPS-
M location only with medium buffer, GPS-L location only with large
buffer.

113

microenvironments aside from the “work™, “home”, and
“school”. Thus, a direct comparison is not easily made to
the sensitivity and accuracy results published by Breen
et al., but we can see the ABS algorithm provides similar
results. Both algorithms provide a high accuracy and
sensitivity for detecting the “home” and “work” micro-
environments, but both have reduced sensitivity values with
detecting when an individual is outside the “home” and
“work” microenvironment. This comparison is notable as
the performance of the ABS algorithm in detecting micro-
environments in real time is comparable to the performance
of a post-hoc analysis.

Strengths, limitations, and future work

This work has several strengths worth noting. First, the
reference dataset was collected by 22 volunteers who were
not asked to change their daily routines and allowed for the
evaluation of microenvironment transitions that occurred at
random throughout the day. Second, this work demonstrates
tradeoffs (between accuracy, sensitivity, and specificity) of
various algorithms used to classify microenvironments. The
primary concern is that a high accuracy for an algorithm can
be achieved but at the cost of underestimating time spent in
certain microenvironments. This type of tradeoff can impact
health assessments if large exposures occur in micro-
environments where people only spend a short amount of
time during the day. Third, the ability to detect micro-
environments accurately and in real time enables the use of
emerging technologies that collect physical samples by
microenvironment (such as the filter-based AMAS). Fourth,
this study had 18% of the participants fail to use the diary
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method at all to record their daily habits. This further sup-
ports the challenges of using diary methods that have been
previously published [13, 16].

There are several limitations worth noting. Circular
buffers were used to define the “home” and “work”
microenvironments rather than polygons or the actual
building boundaries. This simplified approach was used [1]
to accommodate memory limitations of the microcontroller
within the personal monitor and [2] to simplify the imple-
mentation of the algorithm (i.e., requiring no prior knowl-
edge of each microenvironment except the coordinate
location). Future work could allow for adjustable radial
buffer sizes for each microenvironment or could use a
rectangular rather than circular bounding box, as most
building footprints tend to be rectangular. Defining a
microenvironment with a circular buffer and a centroid
point rather than the building boundary can result in
defining a portion of a “work” or “home” microenvironment
as “other”. The use of a rectangular buffer, however, would
require additional coordinate data.

To better account for issues caused by poor GPS signal
quality or complete signal loss, future work should monitor
GPS signal quality parameters such as horizontal dilution of
precision [45]. Another option that is becoming more cost-
effective would be to incorporate advanced spatial tracking
techniques such as dead reckoning that integrate motion and
GPS sensors to account for GPS signal degradation [21].
While leveraging light detection and temperature data didn’t
provide a substantial benefit to the performance of ABS
algorithm (beyond the inclusion of motion data), future
work that combines these environmental data with
enhanced motion data could lead to the development of
algorithms that could potentially “learn” microenvironment
boundaries. The light sensor used for this work could only
measure UV light and thus could only help detect transi-
tions during daylight hours. Also, UV light can be detected
indoors, that is why the algorithm developed in this work
required UV motion to be coupled with either temperature
or acceleration motion. Future work should either replace
the UV sensor with or add an additional light sensor capable
of measuring both indoor low-level light and outdoor light.

This work included only four “work”™ locations within a
single city (Fort Collins, CO) and during two seasons
(Winter and Spring). Future improvements to the algorithm,
such as those described above, should be validated with
more extensive testing that spans a variety of locations and
climates. In addition, we hope to continue the development
of the algorithm and one of the first items we would like to
include is further classification of the “other” micro-
environment. We would initially start with the detection of
transit, including vehicular transit, walking, and biking. We
would begin by leveraging the number of studies that have
already evaluated transit classification using GPS and/or
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motion sensors (e.g., Brunauer et al. [46], Ellis et al. [47],
Feng and Timmermans [48], etc.) and potentially including
hardware with pre-installed firmware with this capability.
Finally, the accuracy, sensitivity, and specificity metrics
can be biased particularly when comparing “home” and
“work” microenvironment classifications to the “other”
microenvironment. This bias occurs because people tend
spend the majority of their time at “home” or “work™ as
compared with the “other” microenvironments. Future work
should develop metrics that can provide an improved
assessment of the accuracy of microenvironment transitions.

Conclusions

This work describes an algorithm that is capable of
detecting pre-determined microenvironments in real time
using minimal user input. The ability to dynamically clas-
sify microenvironments in real time can aid researchers by
reducing the amount of postprocessing work required to
classify exposure by microenvironment, ease the integration
of exposure data into spatial models, and potentially provide
air quality notifications in real time. Improvements to all of
these areas will help researchers better understand the links
between air pollution exposure and health.
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