Title: **Title**: Efficacy of Do-It-Yourself air filtration units in reducing exposure to simulated respiratory aerosols Dataset

Dataset Number: RD-1057-2023-0

Introduction:

Our investigation examined the efficacy of Do-It-Yourself (DIY) air filtration units in reducing recipient exposure to simulated respiratory aerosols within a mock classroom. Seven commercially available box style fans were evaluated using five performance parameters. Two fans with the highest and lowest airflow rates were subsequently evaluated in two DIY unit configurations using either 2.5 or 5 cm deep minimum efficiency reporting value (MERV) 13 filters. DIY air filtration units were tested with the central HVAC system set at 2 air changes/hour (ACH) to represent a classroom with low ventilation. Results of the investigation provide a better understanding of DIY units and their potential to reduce exposure to infectious aerosols that can transmit SARS-CoV-2 and other diseases.

Non-Endorsement Disclaimer:

Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC).

Citations:

Derk R., Coyle J., Lindsley W., Blachere F., Service S., Lemons A., Martin S., Mead K., Fotta S., Reynolds J., McKinney W., Beezhold D., Sinsel E., Noti J., Efficacy of Do-It-Yourself Air Filtration Units in Reducing Exposure to Simulated Respiratory Aerosols. Building and Environment 229 (2023) 109920:1-13. https://doi.org/10.1016/j.buildenv.2022.109920

Data Collection Methods

- 1. Aerosol Particle Generation
 - a. 14% w/v KCl aerosolized via single jet Collison atomizer (BGI Sciences)
 - b. Exhaled using a simulator with headform with elastomeric bellows (15 L/min minute ventilation)
- 2. Aerosol Particle Measurement
 - a. Exposure metric for each of the three receiver simulators measured by three Grimm 1.108 optical particle counters (0.3–3.0 μ m particle range)
 - b. Area samples measured by eight TSI 3330 optical particle counters (OPC) (0.3–10.0 μ m particle range)
- 3. Ventilation Rates
 - a. HVAC Supply Rate measured using Alnor Balometer (TSI, Inc.) with a 0.6 m x 1.2 m Capture Hood
 - b. Tracer Gas using sulfur hexafluoride and Four Innova Photoacoustic Infrared Spectroscopy Analyzer models 1412, 1412i(2x) and 1512 (California Analytical Instruments, Inc.)
 - c. Particle Decay measured using eight TSI 3330 optical particle counters
- 4. Mask Fit Factors
 - a. Three-ply cotton masks (Defender, HanesBrand Inc.) were affixed to all simulators
 - b. Measured using PortaCount Pro+ (TSI, Inc.) in N99 mode (all sizes)
- 5. Ambient Conditions
 - a. Relative humidity and temperature probe and data logger (Vaisala, Oyj)

b. Noise levels were measured using Real Time Octave Band Analyzer (Extech Instruments, Inc.)

Acknowledgements

This work was supported by the Centers for Disease Control and Prevention. The authors wish to acknowledge the facilities, maintenance, and security personnel of NIOSH Morgantown for the hard-work and dedication they provided which was integral in the completion of this work.

Authors

Name	Affiliations	Email
Raymond C.	Health Effects Laboratory Division, Allergy and Clinical	rhd8@cdc.gov
Derk	Immunology Branch, National Institute for Occupational Safety	
	and Health, Morgantown, WV	
Jayme P.	UES, INC, 4401 Dayton-Xenia Road, Dayton, OH	jcoyle@ues.com
Coyle		
William G.	Health Effects Laboratory Division, Allergy and Clinical	wdl7@cdc.gov
Lindsley	Immunology Branch, National Institute for Occupational Safety	
	and Health, Morgantown, WV	
Francoise M.	Health Effects Laboratory Division, Allergy and Clinical	czv3@cdc.gov
Blachere	Immunology Branch, National Institute for Occupational Safety	
	and Health, Morgantown, WV	
Samantha K.	Health Effects Laboratory Division, Bioanalytics Branch, National	oph6@cdc.gov
Service	Institute for Occupational Safety and Health, Morgantown, WV	
Angela R.	Health Effects Laboratory Division, Allergy and Clinical	wrw0@cdc.gov
Lemons	Immunology Branch, National Institute for Occupational Safety	
	and Health, Morgantown, WV	
Stephen B.	Respiratory Health Division, Field Studies Branch, National	stm9@cdc.gov
Martin	Institute for Occupational Safety and Health, Morgantown, WV	
Kenneth R.	Division of Field Studies and Engineering, Engineering and	kcm3@cdc.gov
Mead	Physical Hazards Branch, National Institute for Occupational	
	Safety and Health, Cincinnati, OH	
Steve Fotta	Health Effects Laboratory Division, Office of the Director,	sff4@cdc.gov
	National Institute for Occupational Safety and Health,	
	Morgantown, WV	
Jeffrey S.	Health Effects Laboratory Division, Physical Effects Research	jsr0@cdc.gov
Reynolds	Branch, National Institute for Occupational Safety and Health,	
	Morgantown, WV	
Walter G.	Health Effects Laboratory Division, Physical Effects Research	wdm9@cdc.gov
McKinney	Branch, National Institute for Occupational Safety and Health,	
	Morgantown, WV	
Donald H.	Health Effects Laboratory Division, Office of the Director,	zec1@cdc.gov
Beezhold	National Institute for Occupational Safety and Health,	
	Morgantown, WV	
Erik W. Sinsel	Health Effects Laboratory Division, Physical Effects Research	eur2@cdc.gov
	Branch, National Institute for Occupational Safety and Health,	
	Morgantown, WV	

John D. Noti	Health Effects Laboratory Division, Allergy and Clinical	ivr2@cdc.gov
	Immunology Branch, National Institute for Occupational Safety	
	and Health, Morgantown, WV	

Contact

For further information contact:
Allergy and Clinical Immunology Branch (ACIB),
Health Effects Laboratory Division (HELD),
National Institute for Occupational Safety and Health (NIOSH),
Morgantown, WV
304.285.6024