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ABSTRACT

Mechanistic studies are needed to understand how rotating shift work perturbs metabolic proces-
sing. We collected plasma samples (n = 196) from 49 males, rotating car factory shift workers at the
beginning and end of a night-shift (22:00-06:00 h) and day-shift (06:00 h-14:00 h). Samples under-
went targeted LC-MS/MS metabolomics and concentrations of 130 metabolites were log,-
transformed and pareto-scaled. An elastic net selected the most influential metabolites for linear
mixed models examining within-person variation in metabolite levels at night-shift end (06:00 h)
compared to day-shift start (06:00 h). Quantitative enrichment analysis explored differentially
enriched biological pathways between sample time points. We included 20 metabolites (amino
acids, biogenic amines, acylcarnitines, glycerophospholipids) in mixed models. Night-shift was
associated with changes in concentrations of arginine (geometric mean ratio [GMR] 2.30, 95%Cl
1.25, 4.23), glutamine (GMR 2.22, 95%Cl 1.53, 3.24), kynurenine (GMR 3.22, 95%Cl 1.05, 9.87),
lysoPC18:2 (GMR 1.86, 95%Cl 1.11, 3.11), lysoPC20:3 (GMR 2.48, 95%Cl 1.05, 5.83), PCaa34:2 (GMR
2.27, 95%Cl 1.16, 4.44), and PCae38:5 (GMR 1.66, 95%Cl 1.02, 2.68). Tryptophan metabolism,
glutathione metabolism, alanine metabolism, glycine and serine metabolism, and urea cycle were
pathways differing between shifts. Night shift work was associated with changes in metabolites and
the perturbation of metabolic and biochemical pathways related to a variety of health outcomes.
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Introduction shift work, disrupted circadian rhythms and cardiome-
tabolic disorders (Hulsegge et al. 2019; McAlpine and
Rotating night shift work is an increasingly common  Swirski 2016; Scheer et al. 2009). However, the mechan-
work scheduling arrangement. Night shift work results  isms underlying associations between night shift work

in circadian misalignment where the circadian timing  and cardiometabolic disorders remain unclear.

system is misaligned to the behavioral sleep/wake and
feeding/fasting cycles. Circadian rhythms drive
a multitude of biological processes in the human body.
These rhythms are regulated by a central clock in the
suprachiasmatic nuclei (SCN) in the brain and periph-
eral clocks in virtually all tissues (Mohawk et al. 2012;
Potter and Wood 2020). Circadian rhythms are influ-
enced primarily by the 24-h light dark cycle
(Papantoniou et al. 2014), but can also be influenced
by timing of sleep, meals, and physical activity (Gabriel
and Zierath 2019; Gangwisch 2009; Potter and Wood
2020; Wehrens et al. 2017).

Circadian clocks control changes in metabolism
across the 24 h day (Davies et al. 2014; Mohawk et al.
2012), and there is an established link between night

Therefore, mechanistic studies are needed to provide
insight into how rotating night shift work may perturb
metabolic processing.

Metabolic profiling (metabolomics) has the ability to
characterize metabolic phenotypes that may be asso-
ciated with night shift work and disease pathology
(Davies et al. 2014; Hancox et al. 2021). Leveraging
metabolomic profiling allows for the investigation of
genotype and environmental effects, integrating infor-
mation derived from changes at the gene transcript level,
the protein level and the posttranslational modification
level together (Raamsdonk et al. 2001). The few studies
that have incorporated metabolomics into analyses of
night shift work have found that the normal rhythmicity
of metabolite concentrations is absent or shifted
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following night shift work, indicating these changes may
be due to the shifted behavioral cycles rather than the
phase of the central SCN circadian clock (Kervezee et al.
2019, 2018; Skene et al. 2018). Moreover, these analyses
only included data from simulated night shift studies,
and data from few participants (n = 14 in Skene et al.
2018, n = 9 in Kervezee et al. 2019 and n = 8 in, 2018).

We undertook the present study to examine how shift
work is related to changes in the plasma metabolomic
profile within a population of male rotating shift work-
ers who worked both day and night shifts in a slow
backward rotation. We hypothesized that night shift
work would up or down regulate metabolites relative
to day shift work and be associated with biological path-
way perturbations.

Methods
Study population

This study included 49 adult male backward rotating
(counterclockwise)  shift workers from  the
HORMONIT study who were working at a car factory
in Barcelona, Spain (HORMONIT n.d.). Participants
rotated through 3 weeks of night shifts (22:00-
06:00 h), followed by 3 weeks of evening shifts (14:00-
22:00 h) and 3 weeks of early morning shifts (06:00—
14:00 h). All participants worked five-day work weeks
from Monday-Friday followed by two days off on
Saturday and Sunday. Participants were sampled on
two days. One day of sample collection occurred during
an early morning shift on the 2nd or 3rd week of the
early morning shift rotation. The other day of sample
collection occurred during a night shift, again on the
2nd or 3rd week of the night shift rotation.
A venipuncture blood sample was taken at the beginning
and end of each work shift on both sample collection
days, resulting in a total of up to four blood samples
collected for each study participant.

The study protocol was reviewed and approved by The
Parc de Salut Mar Clinical Research Ethics committee
(#2015/6351). All participants were given a leaflet with
study information and signed an informed consent form.
A total of 71 men volunteered for the study, of whom 7
were found to be ineligible and 8 withdrew prior to study
start due. Ultimately, 56 participants were enrolled in the
study, of whom 49 had complete metabolomic data and
are included in the following analyses.

Covariates

At each of the two sample collection points, participants
responded to questionnaires collecting data on
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demographics, work-related aspects, lifestyle factors
such as smoking, alcohol use, caffeine use and dietary
habits, medical history and medication use and sleep-
related information. We also collected information on
daylight length (hours) on the days that blood samples
were collected (using values available from the National
Oceanic and Atmospheric Association calculator and
inputting the latitude 41° 230 N and longitude 2° 100
E for Barcelona) (US Department of Commerce et al.,
2005). Furthermore, participants wore an actigraphy
device (Actigraph 2 GT3X+, USA) capable of measuring
triaxial acceleration during the 24 h of the early morning
shift collection period and during the 24 h of the night
shift collection period to collect information on daily
step counts and sleep (Madrid-Navarro et al. 2019).
Finally, information on the urinary 6-sulfatoxymelato-
nin (aMTé6s, the major melatonin metabolite) was col-
lected from 24-h urine voids. Using the 24-h urine voids,
we applied a cosinor analysis to plot the aMT6s level
throughout the 24-h period of data collection and then
extracted data on the aMT6s level corresponding to the
clock hour of blood collection (Harding et al. 2022).

Outcomes

Participants provided blood samples at both the start
(06:00 h) and end (14:00 h) of the early morning shift
and the start (22:00 h) and end (06:00 h) of the night
shift. Targeted metabolomic analysis was performed on
a total of 196 plasma samples using the AbsoluteIDQ"
p180 targeted metabolomics kit (Biocrates Life Sciences
AG, Innsbruck, Austria), and a Waters Xevo TQ-S tri-
ple-quadrupole mass spectrometer coupled to an
Acquity UPLC system (Waters Corporation, Milford,
MA, USA). Methods for these analyses have been
described in detail elsewhere (Honma et al. 2020;
Skene et al. 2017). Briefly, plasma samples were prepared
according to the manufacturer’s instructions adding
several stable isotope-labelled standards to the samples
prior to derivatization and extraction. Using reverse-
phase UPLC-MS/MS (ultra-performance liquid chroma-
tography/mass spectrometry) or FIA-MS/MS (flow
injection analysis-MS/MS), 185 metabolites from 5 dif-
ferent compound classes (namely acylcarnitines, amino
acids, biogenic amines, glycerophospholipids, and
sphingolipids) could be quantified (Davies et al. 2014).
Sample order was randomized and three levels of quality
controls (QC) were run on each plate.

The metabolite levels in each QC were compared to
the expected values and the percent coeflicient of varia-
tion (CV%) was calculated. Metabolites where >25% of
concentrations were below the limit of detection, out of
range, or the QC2 coefficient of variance was >30%, were
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excluded (n = 50). Values < 1E —10 were replaced by 1E-
10 for computational purposes. The remaining 130
quantified metabolites comprised 5 acylcarnitines, 21
amino acids, 8 biogenic amines, 13 lysophosphatidyl-
cholines, 69 glycerophospholipids, and 14 sphingolipids.

Statistical analysis

Prior to undertaking statistical analyses, we applied log
transformation (base 2) to all 130 metabolite values due
to the log-normality of the data values. Metabolomics
data are commonly normalized or scaled, which is
done to reduce systematic variation and better ensure
true biological variation can be revealed (Fan et al.
2019). We applied a pareto-scaling procedure utilizing
Metaboanalyst 5.0 (Pang et al. 2021). Pareto-scaling
was done to give each metabolite a similar distribution
and reduce the influence of the larger metabolite
values, as pareto-scaling will decrease larger fold
changes more than smaller fold changes (Eriksson
et al. 1999; van den Berg et al. 2006; Worley and
Powers 2013). We examined basic differences for all
130 metabolites between the four time points using
a one-way repeated measures ANOVA. We also exam-
ined differences in metabolite concentrations between
the two time points that coincided in clock time (start
of the day shift at 06:00 h and end of the night shift at
06:00 h) using paired t-tests. All p-values from the
ANOVA and paired t-tests were corrected using
a Benjamini Hochberg correction to control for the
false discovery rate (FDR) due to multiple compari-
sons. To allow more potential metabolite differences
to be found in these exploratory analyses, an FDR < 0.1
was considered significant. For all comparisons, we
summarized the top metabolite differences between
the time points using tables and box plots.

To pick the best subset of the 130 metabolites to
include in subsequent mixed models investigating dif-
ferences in metabolite levels between shifts, we fit an
elastic net model including the two collection points that
coincided in clock time (06:00 h at the beginning of the
early morning shift, and at the end of the night shift).
We used the R package glmnet to fit the elastic net, using
the binomial family option (Friedman et al. 2010). For
the elastic net, an elastic net mixing parameter, a, equal
to 0.85, and a A value equal to 0.05 were chosen using
leave one out cross validation (LOOCYV) and included in
the model. Twenty metabolites were selected by the
elastic net model, including amino acids (alanine, argi-
nine, aspartate, citrulline, glutamine, phenylalanine), the
biogenic amine kynurenine, acylcarnitines (carnitine
and tetradecenoylcarnitine), and glycerophospholipids
(lysoPCaC18:2, lysoPCaC20:3, lysoPCaC26:0,

lysoPCaC28:0, PCaaC32:0, PCaaC34:2, PCaaC40:3,
PCaeC30:0, PCaeC36:4, PCaeC38:1, and PCaeC38:5).

Using the 20 metabolites selected from the elastic net,
we fit a linear mixed model to examine within-person
differences in metabolite levels during the night shift
compared to the day shift as the reference. The mixed
model was adjusted for hours of daylight on the day of
sample collection, aMT6s levels at the time of sample
collection, 24-h step count, smoking, and duration of
sleep in the 24 hours prior to sample collection. Beta
coefficients were exponentiated and results are pre-
sented as Geometric mean ratio (GMR).

Quantitative enrichment analysis

To identify biological pathways that may be differen-
tially enriched between time points, we utilized the
MetaboAnalyst 5.0 Quantitative Enrichment Analysis
module. With this module, we used enrichment analysis
to look for groupings of metabolites in the same biolo-
gical pathway that differed significantly between samples
collected at the beginning of a day shift compared to the
end of a night shift (both 06:00 h in clock time). To
undertake the enrichment analysis, the log,-transformed
concentrations for all 130 metabolites in our set were
matched to their Human Metabolome Database identi-
fier, uploaded to MetaboAnalyst 5.0, pareto scaling was
applied, and their concentrations by shift schedule were
compared to metabolite sets found in 99 Small Molecule
Pathway Database (SMPDB) human metabolic path-
ways. Differences in pathways between shifts were quan-
tified with Benjamini Hochberg FDRs, as an indication
of how likely the pathway perturbation is related to true
biologic variation, and not chance alone. The top five
pathways found to be most different between day shift
and night shift that included at least three metabolites
from our set were further investigated to determine if
the pathway may have biological relevance to shift work.

Results

Participants in this study were males with a mean age of
38 (SD £ 9) years. More than half of the population had
a BMI > 25 kg/m? (53%). A large portion of participants
reported smoking during their day (63%) or their night
(59%) shift. Participants exercised more during their day
shift than their night shift (Table 1).

When examining differences in metabolite concentra-
tions between the two time points that coincided in clock
time (start of the day shift, 06:00 h and end of the night shift,
06:00 h), we found significant differences (FDR < 0.1) for
several glycerophospholipids (lysoPCaC18:2,
lysoPCaC20:4, PCaaC32:0, PCaaC34:2, and



Table 1. Characteristics of HORMONIT participants (N = 49).

Variable Mean (SD) or %
Age, years 38 (9)
BMI kg/m?
<25 47%
25-30 35%
> 30 18%
Education
Primary 29%
Professional 71%
Smoking
Smoking during day 63%
shift
Smoking during night 59%
shift

Minutes of daylight

Minutes of daylight day 719 (103)
Minutes of daylight 766 (114)
night
6-Sulphatoxymelatonin

level

6-Sulphatoxymelatonin 7.7 3.4)
mesor day shift

6-Sulphatoxymelatonin 7.1 (4.0)

mesor night shift
Daily step count

Step count day shift

Step count night shift
Sleep duration

20014 (3382)
18998 (3225)

Sleep duration day 6.0 (1.6)
shift (h)
Sleep duration night 6.1 (1.9)
shift (h)

lysoPCaC20:3) and amino acids (alanine, citrulline, trypto-
phan, and phenylalanine) (Table 2). When visually exam-
ining the difference in concentration levels from the five
metabolites with the most pronounced differences at the
06:00 h time points, the majority of metabolites appeared to
be lower at the start of the day shift than they were at the
end of the night shift (lysoPCaCl18:2, lysoPCaC20:4,
PCaaC32:0, and citrulline) (Figure 1).
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Results from the linear mixed models showed several
metabolites with intra-individual differences in their
concentrations at the end of the night shift (06:00 h)
compared to the reference day shift sample (06:00 h)
(Table 3). This includes the amino acids arginine (GMR
2.30, 95%CI 1.25, 4.23) and glutamine (GMR 2.22, 95%
CI 1.53, 3.24), the biogenic amine kynurenine (GMR
3.22, 95%CI 1.05, 9.87), and the glycerophospholipids
lysoPCaC18:2 (GMR 1.86, 95%CI 1.11, 3.11),
lysoPCaC20:3 (GMR 2.48, 95%CI 1.05, 5.83),
PCaaC34:2 (GMR 2.27, 95%CI 1.16, 4.44), PCaeC36:4
(GMR 2.04, 95%CI 1.00, 4.15), and PCaeC38:5 (GMR
1.66, 95%CI 1.02, 2.68). In all instances, these metabo-
lites were higher at the end of the night shift period
compared to the start of the day shift period at the
same clock hour.

We included the top five pathways that contained at
least three of the metabolites in our metabolite set.
These included: tryptophan metabolism, glutathione
metabolism, alanine metabolism, glycine and serine
metabolism, and the urea cycle. Table 4 outlines the
pathways that were found to differ between day shift
and night shift, including information on the biological
relevance of the pathway.

Discussion

We used a repeated design to compare metabolomic
profiles among individuals working a night shift rotation
compared to a day shift rotation in a real-world setting,
and found that night shift work perturbed metabolism.
In particular, we found that the levels of several amino
acids, several glycerophospholipids and one biogenic

Table 2. Top 20 metabolites with the greatest differences in metabolite concentrations (uM) between the start of the day shift and end

of the night shift (06:00 h).

Concentration (uM) at start of day shift (06:00 h), Concentration (uM) at end of night shift (06:00 h),

median (IQR)

Metabolite Class P value FDR median (IQR)
alaninet amino acid 0.00 0.00 406.0 (346.0, 465.0)
lysoPCaC18:2t  glycerophospholipids  0.00  0.00 60.2 (49.5, 76.4)
lysoPCaC20:41  glycerophospholipids  0.00  0.00 9.5(7.5,11.7)
PCaaC32:0 glycerophospholipids  0.00 0.06 9.7 (8.7, 10.8)
citrullinet amino acid 0.00 0.06 34.1 (28.7, 40.6)
PCaaC34:2 glycerophospholipids  0.00  0.06 149.0 (136.0, 160.0)
tryptophant amino acid 0.00 0.06 72.0 (65.1, 86.2)
lysoPCaC20:3 glycerophospholipids  0.00 0.06 3.7 (3.3,45)
phenylalaninet amino acid 0.01 0.08 66.7 (57.0, 73.0)
PCaaC36:2 glycerophospholipids ~ 0.01  0.12 127.0 (118.0, 135.0)
ornithine amino acid 0.01 0.12 60.5 (52.3, 69.7)
butyrylcarnitine acylcarnitines 0.01 0.12 0.20 (0.15, 0.23)
lysoPCaC28:1 glycerophospholipids ~ 0.01  0.12 0.26 (0.21, 0.29)
lysoPCaC18:1 glycerophospholipids  0.02  0.16 31.3 (25.1, 38.0)
argininet amino acid 0.02 0.16 90.7 (83.9, 107.0)
PCaaC34:1 glycerophospholipids  0.03  0.21 121.0 (113.0, 134.0)
SM(OH)C16:1 sphingolipids 0.03 0.21 3.7 (3.1,4.5)
lysoPCaC26:1 glycerophospholipids ~ 0.03  0.21 0.10 (0.08, 0.13)
SMC16:0 sphingolipids 0.03 0.21 135.0 (114.0, 151.0)
PCaeC42:5 glycerophospholipids  0.03  0.22 2.0 (1.7, 2.3)

292.0 (255.0, 360.0)
82.4 (65.0, 102.0)
12.0 (10.2, 13.9)
10.9 (9.3, 13.0)
41.6 (33.8, 51.0)
159.0 (145.0, 168.0)
85.1(70.3,93.9)
4.5 (3.4,5.9)
723 (63.4, 85.8)
134.0 (124.0, 143.0)
66.3 (56.3, 83.5)
0.22 (0.18, 0.27)
0.27 (0.23, 0.33)
34.3 (28.9, 42.5)
104.0 (83.4, 124.0)
128.0 (119.0, 140.0)
4.0 (3.7, 4.6)
0.11 (0.10, 0.12)
149.0 (125.0, 165.0)
21(1.7,24)

t indicates that these metabolites were also included in the list of 20 top metabolite differences from the one-way repeated measures ANOVA analysis
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Table 3. Mixed model results from the start of the day shift and end of the night shift sampling time points that coincide in clock time

(06:00 h).
Minimally adjusted® Fully adjusted®
Metabolite Class GMR 95%(Cl P value GMR 95%(Cl P value
alanine amino acid 0.98 0.54 1.79 0.95 0.70 0.25 1.98 0.51
arginine amino acid 1.71 1.15 2.54 0.01 2.30 1.25 423 0.01
aspartate amino acid 0.99 0.93 1.06 0.79 0.97 0.88 1.07 0.56
citrulline amino acid 2.08 1.30 333 0.00 1.94 0.92 4.08 0.08
glutamine amino acid 1.64 0.85 3.18 0.14 222 1.53 3.24 0.00
phenylalanine amino acid 1.26 0.64 247 0.50 1.66 0.63 437 0.30
kynurenine biogenic amine 1.69 0.75 3.83 0.21 3.22 1.05 9.87 0.04
carnitine acylcarnitines 1.16 0.57 2.39 0.68 1.06 0.38 2.95 091
tetradecenoylcarnitine acylcarnitines 0.60 0.34 1.08 0.09 0.84 0.33 2.12 0.71
lysoPCaC18:2 glycerophospholipids 1.70 1.1 2.59 0.02 1.86 1.11 3.11 0.02
lysoPCaC20:3 glycerophospholipids 1.77 1.06 2.94 0.03 2.48 1.05 5.83 0.04
lysoPCaC26:0 glycerophospholipids 1.03 0.59 1.80 0.92 0.65 0.28 1.53 033
lysoPCaC28:0 glycerophospholipids 1.90 1.15 3.14 0.01 0.74 0.30 1.80 0.51
PCaaC32:0 glycerophospholipids 1.45 0.88 2.40 0.15 0.96 0.43 2.13 0.91
PCaaC34:2 glycerophospholipids 1.54 0.54 4.44 0.42 2.27 1.16 4.44 0.02
PCaaC 40:3 glycerophospholipids 0.80 0.59 1.08 0.15 0.93 0.48 1.81 0.82
PCaeC30:0 glycerophospholipids 2.8 1.33 3.55 0.00 1.06 0.34 3.26 0.92
PCaeC36:4 glycerophospholipids 1.00 0.64 1.57 0.99 2.04 1.00 415 0.05
PCaeC38:1 glycerophospholipids 1.19 0.77 1.83 0.43 1.38 0.67 2.86 0.38
PCae(38:5 glycerophospholipids 1.33 0.92 1.92 0.12 1.66 1.02 2.68 0.04

2Adjusted for daylight, ® adjusted for daylight, aMT6s level, step count in last 24 hours, smoking in last 24 hours and sleep duration during last 24 hours

amine were higher during the night shift than the day
shift after at least one week of adaptation.

In our mixed model, which included the confounders
of daylight, aMTé6s levels, daily step count, smoking, and
sleep duration, two non-essential amino acids, arginine
and glutamine, were found to be significantly different
between the day and night shift. The former is important
in immune function, has a putative role in preventing or
treating circulatory diseases, is produced and used by the
body when fatigued, and is important in the formation
of urea (PubChem n.d.-a); the latter is important for the
regulation of ammonia levels in the body, and is neces-
sary for a range of vital functions, including muscle
growth, immune system support, and synthesizing neu-
rotransmitters, nucleotides, and nucleic acid (PubChem
n.d.-b). Five glycerophospholipids, a class of glycerol-
based phospholipids that are the key component of
biological membranes, and important for signal proces-
sing and induction (PubChem n.d.-c), also differed sig-
nificantly between day and night shift. In a previous
simulation study by Skene et al. (2018) (3-day
simulated day shift sleeping period 22:00 h-06:00 h,
3-night simulated night shift sleeping period
10:00 h-18:00 h), similar differences in the levels of
several amino acids and glycerophospholipids after
simulated night shift work were observed, providing
evidence that the circadian rhythm of many metabolites
shifted as a result of night shift work. In the same study,
Skene et al. (2018) also found an alteration in kynure-
nine levels associated with night-shift work, a biogenic
amine found to be significantly different in our mixed
model.

Several pathways that were identified as being per-
turbed in our dataset from the quantitative enrichment
analysis have also been found to be perturbed in other
shift work and sleep studies, adding to the evidence of
their potential disruption due to working at night. Bhat
et al. (2020) and Davies et al. (2014) reported on trypto-
phan metabolism being altered in both rats and humans
experiencing sleep deprivation, with sleep deprivation
also increasing production and accumulation of kynure-
nic acid, which is the byproduct of tryptophan metabo-
lism and is related to adverse neurological outcomes
(Bhat et al. 2020; Davies et al. 2014). In a simulated
shift work study by Skene et al., serine, glycine, alanine,
and glutathione pathways were found to be enriched
in day workers compared to night workers, similar to
our finding in rotating shift workers (2018).

A strength of this study was the sampling strategy
employed. By design, we sampled the same participants
both when they were in their 2nd or 3rd week of day
shift and again when they were in their 2nd or 3rd week
of night shift work (repeated design). While some indi-
viduals are capable of faster and more complete adapta-
tion to night shift work than others, we expected that
during the 2nd or 3rd week of the night shift, the
majority of participants would exhibit metabolite
rhythms that were nearly opposite to the “normal” day-
time conditions due to the shifting of their central SCN
clock and their peripheral clocks (Pickel and Sung 2020;
Skene et al. 2018). Although we are unable to comment
on the rhythmicity of metabolites in our study (having
only collected samples at two time points on any
given day) we did observe that the concentrations of
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Figure 1. Boxplots showing raw metabolite concentrations (uM) at the start of the day shift and end of the night shift sampling time
points that coincide in clock time (06:00 h) for the top 5 metabolite differences using t tests.

several metabolites were significantly altered in the night
shift period compared to the same clock hour in a day
shift period, even with presumed biological adaptation
to the night shift.

When we examined metabolite levels at each of the
four sample time points, we noted that for the majority

of metabolites, the concentration decreased over the
working day during the day shift and similarly during
the night shift. Interestingly, for the majority of meta-
bolites, the metabolite concentrations at the start of the
night shift were higher than at the start of the day shift
(Supplemental Figure 1). To hypothesize the reason for
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Table 4. Findings from enrichment analysis. Using normalized
and scaled data from the start of the day shift and end of the
night shift sampling time points that coincide in clock time
(06:00 h).

Pathway Total Raw

name Compound Hits p  FDR Biologic relevance

Tryptophan 60 5 0.00 0.03 TRP regulates immunity,
Metabolism neuronal function,

metabolic stress,
intestinal homeostasis
Glutathione 21 3 0.00 0.03 GSH provides antioxidant
Metabolism defense, nutrient
metabolism, regulates
cellular events
Alanine 17 3 0.00 0.03 ALA is used for protein

Metabolism biosynthesis, provides
energy under fasting
conditions

Glycine and 59 7 0.01 0.08 GLY/SER provide essential

Serine precursors for proteins,

Metabolism nucleic acids, lipids

Urea Cycle 29 7 0.02 0.15 Converts excess ammonia
(from amino acid
catabolism) into urea
in the liver cells

this finding, both internal and external factors must be
considered. Internal biological cues, related to circadian
rhythms or diurnal variation could drive differences in
the metabolites that are tested at differing clock times
(06:00 h versus 22:00 h). However, external factors must
also be considered. Prior to starting a 06:00 h early
morning shift, participants likely wake up and go
straight to work. In contrast, participants may have
eaten, engaged in physical activity, or a variety of other
social activities in the hours leading up to the night shift
start (22:00 h). Prior research has shown that feeding is
an external cue that exerts one of the strongest influ-
ences on the synchronization of peripheral clocks both
in rodents and humans (Damiola et al., 2000; Pickel and
Sung 2020; Wehrens et al. 2017) and that feeding and
meal timing results in acute changes of some metabolite
levels. In addition, time of sleep onset, sleep duration
and other lifestyle habits influence metabolite levels
(Dollet and Zierath 2019). With our study design, we
are unable to separate out how these varying external
cues may impact metabolite levels. While measured
perturbations to the metabolomic profile may be due
to lifestyle habits, timing/quality of meals, or physical
activity, these are downstream effects of night shift work.
Therefore, our findings provide further evidence that
night shift work, either through changing dietary, life-
style, sleeping, and other habits, and/or through disrup-
tion to internal biological rhythms, perturbs the
metabolomic profile.

This study has several strengths including its inclu-
sion of a larger cohort of real-world rotating shift work-
ers. Prior metabolomic studies included a smaller

sample size and shift work was simulated in controlled
laboratory conditions. We also have repeated measures
that controls for individual differences, with data on
metabolite levels available at four different time points
per participant, combined with data on many covariates
and potential external cues, allowing us to further
account for factors that may influence acute changes in
plasma metabolite levels. This study also has limitations
including the fact that we had only four time points
where we were able to determine metabolite concentra-
tions (two samples per shift). Therefore, we are unable to
say if our findings truly reflect a shift in the timing of the
metabolite rhythms, or if our results can be explained
fully or in part by acute effects of the feeding/fasting
state, sleep deprivation or other lifestyle behaviors on
the day of sampling (Davies et al. 2014). Despite our
careful efforts in taking two samples during each shift,
discrete sampling cannot track shifted peripheral clock
rhythms. While we asked participants to report eating
times during the day and night shifts when urine sam-
ples were collected, unfortunately these data were not
able to be included due to high degree of missingness
and lack of clarity on whether the times reported were
AM or PM. Recognizing that feeding/fasting state and
timing of meals can be related to metabolite rhythms,
collecting more complete meal data will be an important
area to improve for future studies.

Additionally, this study only included men. It should
also be noted that the targeted metabolomics kit and the
reverse-phase UPLC-MS/MS platform used is restricted
to analyzing five metabolite classes, being enriched for
glycerophospholipids. Considering the established link
between night shift work, obesity and cardiometabolic
dysfunction, this metabolomics platform was appropri-
ate. We found several lipids were altered, but caution is
advised in not over-interpreting the influence of night
shift on lipid levels because of the features of the meta-
bolomics kit chosen. Although reverse-phase UPLC-MS
/MS is considered the gold standard in metabolomics
due its reproducibility and ease of use, polar metabolites,
for example, sugars, organic acids, and nucleotides/
nucleosides cannot be measured. To measure polar
metabolites a hydrophilic interaction liquid chromato-
graphy (HILIC) system comprised of UPLC coupled to
a triple-quadrupole mass spectrometer operating in both
positive and negative electrospray ionization modes
would be needed.

In summary, we found that night shift work was
associated with changes in the levels of several amino
acids, glycerophospholipids and one biogenic amine,
and the perturbation of primary metabolic and bio-
chemical pathways. These changes are related to
a variety of health outcomes ranging from



cardiometabolic and cancer-related, to neurologic and
kidney or liver function. Although additional research is
needed, particularly among larger diverse populations
and with biological samples collected during several
time points throughout a shift, these findings provide
insight into additional mechanistic pathways that may
explain the associations between night shift work and
many common non-communicable diseases.
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