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Fire-based emergency management service (EMS) personnel are dispatched to various incidents daily, many of 

which have unique occupational risks. To fully understand the variability of incident types and how to best pre- 

pare and respond, an exploration of the U.S. coding system of incident types is necessary. This study uses potential 

exposure to SARS-CoV-2 as a case example to understand if and how coding categories for incident call types 

may be updated to improve data standardization and emergency response decision making. Researchers received 

emergency response incident data generated by three fire department computer-aided dispatch (CAD) systems 

between March and September 2020. Each incident was labeled EMS, Fire , or Other . Of the 162,766 incidents, 

approximately 8.1% ( n = 13,144) noted potential SARS-CoV-2 exposure within their narrative descriptions of 

which 86.3% were coded as EMS , 9.9% as Fire , and 3.9% as Other . To assess coding variability across incident 

types, researchers used the original 3-incident type variable and a new 5-incident type variable reassigned by 

researchers into EMS, Fire, Other, Hazmat, and Motor Vehicle . Logit regressions compared differences in potential 

exposure using the 3- and 5-incident type variables. When evaluating the 3-incident type variable, those respond- 

ing to a Fire versus an EMS incident were 84% less likely to be associated with potential exposure to SARS-CoV-2. 

For the 5-incident type variable, those responding to Fire incidents were 77% less likely to be associated with a 

potential exposure than those responding to EMS incidents. Changes in potential exposure between the 3- and 

5-incident type models show the need to understand how incident types are assigned. This demonstrates the 

need for data standardization to accurately categorize incident types to improve emergency preparedness and 

response. Results have implications for incident type coding at fire department municipality and national levels. 
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. Introduction 

The initial situation that fire station personnel, including those who

rovide fire-based emergency medical services (EMS), are presented

ith when dispatched to an event is referred to as an incident type.

hen telecommunicators receive emergency 9–1–1 calls, they conduct

riage to describe the emergency and subsequently assign a code to each

ncident. This code assignment is termed incident type throughout this

aper. It describes the scenario that these fired-based EMS personnel are

xpecting to be presented with when arriving at the scene. Codes applied

o designate an incident type often adopt those defined by the National

ire Incident Reporting System (NFIRS) [1] and are ultimately recorded

ithin department-specific computer-aided dispatch (CAD) systems. 
Abbreviations: EMS, Emergency medical services; NFIRS, National Fire Incident 

nternational Public Safety Data Institute; NIOSH, National Institute for Occupationa
∗ Corresponding author. 

E-mail address: wcq3@cdc.gov (E.J. Haas) . 

ttps://doi.org/10.1016/j.jnlssr.2023.01.001 

eceived 2 January 2023; Received in revised form 28 January 2023; Accepted 29 Ja

666-4496/© 2023 China Science Publishing & Media Ltd. Publishing Services by El

rticle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-
Incident types can be valid indicators to identify health-related risks
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pidemics [2–5] . However, the voluntary nature of NFIRS 5.0 and the

se of different CAD software systems make consistent and reliable in-

ident reporting across departments a challenge [ 6 , 7 ]. To illustrate, be-

ween NFIRS versions 4.1 and 5.0, the number of potential EMS incident

ypes increased 314% from 7 sub-incident codes to 29 [1] . Related to

he software systems that manage emergency calls, a survey conducted

ith a sample of 431 fire departments revealed the use of 35 unique

AD software vendors to record and manage call data [8] . 
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ic safety surveillance. The need for accurate incident-type coding, in ad-

ition to the need for consistent coding, has received recent attention.

or example, one study found that dispatching errors due to inaccurate

ncident interpretation caused 9% of 9–1–1 calls to be rerouted [10] . In

nother study, a prioritization algorithm was applied to the Fire Depart-

ent of New York’s emergency 9–1–1 calls, revealing 63 incident types

sed to reflect medical or trauma emergencies [11] . The varying num-

ers of incident type options available have resulted in inconsistencies

ithin and across municipality incident coding [12] . To illustrate, for

he same event, one 9–1–1 telecommunicator may interpret the caller’s

escription of an incident as chest pain. In contrast, another may inter-

ret it as respiratory distress when the issue at hand is chest pain due

o difficulty breathing. To this end, understanding the role that incident

ype may have in responders’ occupational health risks serves not only

s an impetus to improve data quality issues but can also inform decision

aking and planning at the department, state, and national levels. 

.1. Objectives 

In the current study, researchers from the National Institute for Oc-

upational Safety and Health (NIOSH) wanted to understand the con-

istency of incident types that are coded across fire department CAD

ystems. The objective was to study the instances of inconsistent coding

sing a case study that compared two incident-type coding approaches:

n original 3-incident type as determined by the telecommunicator, and

n adjusted 5-incident type coding determined by the researchers. 

. Material and methods 

NIOSH collaborated with the International Public Safety Data Insti-

ute (IPSDI) [13] to receive 9–1–1 emergency call details (which include

ncident type coded for each call) from IPSDI’s National Fire Operations

eporting System (NFORS). NFORS (which is a different system than

FIRS) links to either the CAD, the fire department’s records manage-

ent system (RMS), or both using an application programming inter-

ace, automatic creation, and ingestion of a file in CSV or XML format, or

hrough other methods (depending on the CAD or RMS brand). For this

tudy, data contained call details provided by three fire department’s

unicipal CAD systems, each serving a population of more than 1 mil-

ion people in Massachusetts, New York, and Ohio. This activity was

eviewed by CDC and was conducted consistently with applicable fed-

ral law and CDC policy. 1 

.1. Incident type codes 

CAD systems attribute various data elements to each 9–1–1 call, such

s incident description, incident type, response location and duration,

esources deployed, weather, and other elements. This information is

ollected by the 9–1–1 telecommunicator who is on the phone. They

nter information into the CAD based on a series of standard questions

imed at determining the nature of the incident. Based on the informa-

ion collected by the 9–1–1 telecommunicator, this individual assigns

he incident type, which often follows the classifications: Fire incidents

nclude any indoor or outdoor fire or a fire alarm. EMS, Fire , and Other .

MS incidents vary and can entail any trauma or health event, such as a

troke or heart attack. Service calls, good intent calls, and false alarms

re often coded as Other incident types. 

Researchers used potential occupational exposure to SARS-CoV-2

hat was accounted for in two different ways during 9–1–1 emergency

ncident calls, making this specific type of contagious emergency a clear

ase example to address the study objectives. First, Contagious Emergency

ncidents were added to municipal CAD systems as separate incidents. If
1 See e.g., 45 C.F.R. part 46; 21 C.F.R. part 56; 42 U.S.C. §241(d), 5 U.S.C. 

552a, 44 U.S.C. §3501 et seq 
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168 
n emergency call was made directly in response to difficulties a positive

atient was experiencing, the incident was coded Contagious Emergency .

he Contagious Emergency attribution allowed departments to easily fil-

er for and track trends potentially driven by the COVID-19 pandemic

cross their local area. Specifically, the participating fire departments

ould code an incident as Contagious Emergency if keywords like RESD,

oronavirus, COVID, flu, cov19, or corona were mentioned during the

all. Eventually, when IPSDI normalized this dataset using a free text

earch, it became included as an EMS incident subtype, although it re-

ained the Contagious Emergency narrative description. 

Second, although not an incident type, during emergency calls,

elecommunicators could glean, through a series of predetermined ques-

ions that were temporarily inserted as a part of their routine script,

hether there was a potential for responders to be exposed to SARS-

oV-2. This was answered using a “Yes ” or “No ” indication as a separate

ata point in the emergency call log. Therefore, any emergency call that

ad an incident type of Contagious Emergency would also have a “Yes ”

or potential exposure to SARS-CoV-2 whereas another incident type o f

MS, Fire , or Other could have a “Yes ” or “No ” for potential exposure

ased on caller responses to the routine questions asked. 

.2. Sample 

From March to September 2020, NIOSH received NFORS data for

62,766 emergency call responses as described above, via a CVS file that

as cleaned and transferred into statistical software for further analy-

is. Within the sample, 64.2% ( n = 104,468) were coded EMS ; 29.6%

 n = 48,212) as Fire ; and 6.2% ( n = 10,086) as Other . Of these incidents,

.1% ( n = 13,144 incidents) noted potential exposures to SARS-CoV-2

ased on information received during the call. Among these 13,144 po-

ential exposures, 86.3% were EMS incidents; 9.9% were Fire incidents;

nd the remaining 3.9% were entered as Other . 

Table 1 presents the percentages of EMS, Fire , and Other incident

ypes that also noted a potential exposure to SARS-CoV-2 and the per-

entage of incidents coded as Contagious Emergency. Again, in these latter

nstances, the only box checked was Contagious Emergency and nothing

lse, such as a stroke. In the dataset, 4969 incidents were classified as

ontagious Emergency at the onset of the 9–1–1 call. We ran models that

ept these Contagious Emergency codes within their original EMS inci-

ent type delegation, but also completed analyses that excluded these

969 cases. 

.3. Data cleaning and recoding of incident types 

To initially understand the assignment of incident types among de-

artment dispatch codes, researchers consulted the raw data file to ex-

mine the corresponding open-ended narrative descriptions of each inci-

ent. After visually noting discrepancies, we completed a formal qualita-

ive content analysis [14] of these narratives, revealing common system-

tic classifications and themes and obvious inconsistencies. There were

pproximately 165 unique narrative descriptions of incidents across the

hree departments, illustrating several differences in incident interpre-

ation and subsequent coding assignments. Two researchers worked to-

ether to further discuss, agree upon, and manually recode (i.e., cor-

ectly label) the 162,766 incidents to mitigate inconsistencies. Examples

f categories that we recoded were: (1) incident types coded as Other

hat were clearly EMS incidents (e.g., stroke, unconscious person) and

2) incident types where no one was hurt or treated (e.g., locking keys in

ar) that were coded as EMS or Fire rather than Other . Additional trends

ocumented within the incident descriptions were also identified that

rompted us to extract two incident types and create separate incident

ariables (i.e., Hazmat and Motor Vehicle ). 

.3.1. Hazmat incidents 

Hazmat incidents are specific conditions (with no fire) indicating

hat a hazardous material may be involved. Hazardous conditions oc-
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Table 1 

Descriptive characteristics of incidents. 

All incidents classified as potential exposure to SARS-CoV-2 Excluding incidents that were classified as Contagious Emergency 1 

Total Incidents 

by Category 

Counts of potential 

exposure to SARS-CoV-2 

within categories Percent (%) 

Total Incidents 

by Category 

Counts of potential 

exposure minus 

Contagious Emergencies Percent (%) 

Incident type (3 categories) 

EMS 

Fire 

Other 

104,468 

48,212 

10,086 

11,340 

1296 

508 

10.9% 

2.7% 

5.0% 

99,499 

48,212 

10,086 

6371 

1296 

508 

6.4% 

2.7% 

5.0% 

Incident type (5 categories) 

EMS 

Fire 

Other 

Hazmat 

Motor vehicle 

112,247 

33,298 

3906 

2708 

10,607 

11,803 

1100 

141 

37 

63 

10.5% 

3.3% 

3.6% 

1.4% 

0.6% 

107,278 

33,298 

3906 

2708 

10,607 

6834 

1100 

141 

37 

63 

6.4% 

3.3% 

3.6% 

1.4% 

0.6% 

Season 

Spring (Mar-May) 

Summer (Jun-Aug) 

Fall (Sep) 

63,905 

74,876 

23,985 

7270 

4954 

920 

11.4% 

6.6% 

3.8% 

61,119 

73,065 

23,613 

4484 

3143 

548 

7.3% 

4.3% 

2.3% 

Fire Department state 

Massachusetts 

New York 

Ohio 

42,596 

5693 

114,477 

3242 

1338 

8564 

7.6% 

23.5% 

7.5% 

42,596 

5693 

109,508 

3242 

1338 

3595 

7.6% 

23.5% 

3.3% 

Total 162,766 13,144 157,797 8175 

1 Note that Columbus Division of Fire, Ohio was the only fire department that implemented this contagious emergency category coding and thus, was the only 

department that had EMS incidents with potential SARS-CoV-2 exposure. Researchers analyzed the data without Columbus Division of Fire, Ohio and found 

very similar results: For the 3-incident type (model 3), OR for Fire was 0.3059 and Other 0.4440 and for the 5-incident type (model 4), OR for Fire was 0.4117, 

Other 0.3244, Hazmat 0.1761, and Motor Vehicle 0.1405 respectively and all were statistically significant. Researchers decided to report all cases including Ohio 

cases while controlling for fire department. 
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ur less frequently but tend to have significant overlap between EMS

nd fire responses. Previously developed guidance states if incidents in-

olved fire and EMS then Fire should be used [1] . However, the coding

ssignments for these three fire departments indicate that such guidance

s not always followed. For our data, if narrative incident descriptions

eferenced hazardous materials, gas leaks, or odors, but no fire, it was

ecoded into a separate Hazmat incident variable. 

.3.2. Motor vehicle incidents 

The most applicable incident code for motor vehicle accidents and

ncidents is still unclear [15] . According to the U.S. national incident

ype descriptions, a vehicle accident with no injuries may be considered

MS . Alternatively, a vehicle accident that results in flammable spills

nd leaks may initiate an EMS, Fire, or even Other incident-type cate-

orization. Given the number of these incidents that occur and the lack

f decisiveness in how they are coded (in the original dataset around

0% of motor vehicle accidents were coded as Fire and 40% as EMS ),

e created a separate motor vehicle incident variable. After recoding

he incident descriptions, we created a new variable with these five in-

ident types ( EMS, Fire, Other, Hazmat, Motor Vehicle ). See Table 2 for

xamples of incident descriptions that may fall into a respective incident

ype. 

.4. Logit regression 

Researchers conducted general linear model (GLM) logistic analy-

es in R v 4.0.3. [16] Using the original 3-incident type ( EMS, Fire,

nd Other ) and the newly coded 5-incident type ( EMS, Fire, Other, Haz-

at, and Motor Vehicle ) variables. Before completing the regressions,

esearchers added to the dataset as a control variable, the monthly av-

rage of new, confirmed COVID-19 cases (reported for the counties that

ach fire department served), in monthly aggregates using public data.

hese data were separate from the potential SARS-CoV-2 exposures re-

orted in the NFORS dataset and were obtained from the New York

imes GitHub public data source [17] . Controlling for the monthly av-

rage of new COVID-19 cases added within each county that partici-

ating fire departments served was desirable to more accurately know
169 
ow and to what degree incident type may predict potential exposure

o SARS-CoV-2. Additionally, county-level data was the lowest level of

eporting available and is a good proxy for the incidence of COVID-19

or the municipalities that each fire department served. 

Researchers used the original 3-incident type variable and the newly

oded 5-incident type variable (coded by researchers) to complete Logit

egression analyses. Each logistic regression tested whether incident

ype (3-type variable: EMS, Fire , and Other , 5-type variable: EMS, Fire,

ther, Hazmat, and Motor Vehicle ) was associated with potential expo-

ure to SARS-CoV-2 controlling for state (i.e., fire department), sea-

on, total population (using Federal Information Processing Series (FIPS)

odes), and the confirmed number of monthly reported COVID-19 cases

y county added from the GitHub source previously referenced. 

. Results 

.1. Model 1 and model 2: including all NFORS data 

Controlling for all variables previously discussed, Model 1 (3-

ncident type variable that includes all data from NFORS), shows that

ncident types coded as a Fire call versus an EMS call were 84% less likely

o be associated with potential exposure to SARS-CoV-2 and Other inci-

ent types were 72% less likely to be associated with potential exposure

o SARS-CoV-2 when compared to EMS calls. Adding time (season) as a

ummy variable into the model did not significantly change the results.

In Model 2 (including all data from NFORS), the 5-incident type vari-

ble was tested. Controlling for all variables, results for Model 2 showed

hat incident type codes as a Fire call versus EMS call were 77% less

ikely to be associated with potential exposure to SARS-CoV-2 and for

ther calls, responders were 80% less likely to be exposed compared to

MS calls. Responding to Hazmat and Motor Vehicle incidents also had

ess likelihood of exposure than EMS incidents. 

Although increased exposure risk for EMS calls compared to the

ther incident types is not surprising, comparing the results from Model

 to Model 2 shows unique differences in potential SARS-CoV-2 expo-

ure risks for the other types of calls. Specifically, potential SARS-CoV-2

xposure increased by 8% for incident types coded as Fire calls and de-
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Table 2 

Incident recoding with new incident variables and sub-descriptions. ( The sub-descriptions are provided to help provide 

the context of how incidents are described) . 

Recoded Incident Types with Example 

Subtypes Example of Original Incident Sub-Description 

1. Fire 

Outdoor fire Grass fire; out fire; brush/rubbish/grass fire/; trash fire 

Structure fire Fire – high rise; structural related fire 

Other fire Township fire; electrical fire assignment 

Misc. alarms specified Water flow alarm; carbon monoxide alarm; elevator alarm; fire alarm 

2. Motor Vehicle (new) 

Motor vehicle accident Vehicle struck structure; auto accident entrapment; vehicle accident 

Motor vehicle incident Motor vehicle fire; vehicle accident involving fire 

3. Hazmat (new) 

Hazmat/bomb/gas Hazardous condition or materials; bomb response; investigate odor; natural gas leak 

4. EMS 

Overdose/poison control Poisoning; poisoning/overdose; conscious overdose; unconscious overdose 

Bodily pain/reaction Back pain; eye injury; burns; injured from fall; allergic reaction; animal bite 

Trauma/injury Injured from assault; trauma; advanced life support; person down 

Emergency illness Stroke; seizure; difficulty breathing; medical emergency 

Suicide attempt/psychological Suicide attempt; attempt – jumping; psychiatric problems 

Contagious emergency COVID-19 or symptoms of COVID-19 

5. Other Incidents 

Public service assistance Advice asked for; canine search; service; good intent call; lockout/lock in 
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reased by 8% for Other calls. This difference in exposure odds between

odels 1 and 2 shows the variability of exposure risk when reclassifying

to correct) incident types. 

.2. Model 3 and model 4: excluding NFORS data that was coded 

ontagious emergency 

Researchers then completed the same analyses for the 3-incident

ype variable and 5-incident type variable with data excluding those

ncidents within the NFORS data that were only coded as a Contagious

mergency . In Model 3 (using the 3-incident type variable), the logistic

egression showed that responding to a Fire incident versus an EMS in-

ident was 78% less likely to be associated with potential exposure to

ARS-CoV-2, controlling for the state, season, the total population, and

onfirmed COVID-19 cases included from GitHub. Note that Model 3

sed the new dataset excluding incidents that were already coded as a

ontagious Emergency ; thus, the difference in potential exposure between

MS and Fire in Model 3 is lower than in Model 1. 

In Model 4 (5-incident type variable), those responding to Fire in-

idents were 70% less likely to be associated with potential exposure

o SARS-CoV-2 than when responding to EMS incidents. Responding

o Other, Hazmat , and Motor Vehicle incidents had even less associa-

ion with a potential exposure than EMS incidents. In comparing the

esults from Model 3 to Model 4, responders’ association with poten-

ial exposure to SARS-CoV-2 increased by 8% during Fire calls and

ecreased by 10% for Other calls. This difference in potential expo-

ure between Models 3 and 4 again shows the variability of expo-

ure risk when reclassifying (to correct) incident types. In all mod-

ls, total population, and averaged monthly COVID-19 cases by county

rom GitHub were positively associated with possible exposure, hold-

ng all other variables constant. See Table 3 for results from all four

odels. 

. Discussion 

Like the effort outlined in the current study, previous research has

ried to better understand, validate, or standardize 9–1–1 dispatch codes

anually. In one study, researchers took an existing set of low-priority

ispatch codes and derived a new list of 21 incident types that were in-

egrated into dispatch protocols for one year. At the end of the year, 11

f these incident-type codes were validated and recommended as per-

anent for low-acuity responses [18] . Other studies have shown that
170 
ertain incident types can predict negative health outcomes or supply

nd demand issues. For example, one study found that daily response

ncidents that were tagged as COVID-19 were strongly correlated with

he eventual use of beds in intensive care units, informing supply and

emand during subsequent pandemic waves [19] . Other studies have

orrelated certain incidents with personal protective equipment (PPE)

emands during emergency responses [20–22] . For example, some re-

ponders may wear face shields over their existing mask or respiratory

rotection if a close patient encounter is expected. However, studies

ave not aimed to show the differences among incident type coding

ithin the same dataset and what this may mean for associating re-

ponders’ risks on the job. 

Findings from previous research [18] , as well as the current study,

how that incident-type codes can be predictive, and that manual cod-

ng and in some cases recoding, can impact the accuracy of prepared-

ess and response efforts. The current results also show the possibility

f being inadequately prepared with insufficient people, PPE, or other

esources if response data is not standardized. Further, results illustrate

he value of data standardization and modernization to inform decision

aking during emergencies. Specifically, partnering across the EMS and

re services to make universal improvements to government and com-

ercial surveillance systems provides the opportunity for greater pre-

ision in incident-type assignment, more robust modeling efforts, and

ubsequent response by personnel. 

.1. Implications for future incident type coding methodology 

Based on differences in study results between the 3- and 5-incident

ype variables, EMS incident types can be further examined and perhaps

eassessed to determine whether some of the sub-descriptions within

hem should be pulled out into their own “parent ” incident type that

ould aid in decision making and resource allocation prior to a response.

dditionally, as the coding was manually corrected, the potential risk of

ARS-CoV-2 exposure for those responding to Fire calls increased while

xposure risk during Other calls decreased. These changes indicate that

ncidents with more coding ambiguity, such as Motor Vehicle Incidents ,

here the coding split was 60% Fire and 40% EMS in the original 3-

ncident model, can impact accuracy. These results are important be-

ause any information that can be gleaned prior to arriving on the scene

an help responders make more refined decisions in determining what

quipment, supplies, and extra precautions they should take when re-

ponding to an emergency [ 23 , 24 ]. 
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Table 3 

Logit analysis results. 

Independent Variables 

Model 1 

Odds Ratio [CI 95%] 

(all cases) 

Model 2 

Odds Ratio [CI 95%] 

(all cases) 

Model 3 

Odds Ratio [CI 95%] 

(without Contagious 

Emergency incidents) 

Model 4 

Odds Ratio [CI 95%] 

(without Contagious 

Emergency incidents) 

T as(intercept) 0.046 [0.042, 0.051] 0.035 [0.032, 0.038] 0.041 [0.037, 0.046] 0.032 [0.029, 0.036] 

Call Type (3) 

EMS 

Fire 

Other 

ref 

0.164 [0.154, 0.175] 

0.282 [0.256, 0.311] 

ref 

0.217 [0.202, 0.232] 

0.346 [0.313, 0.383] 

Call Type (5) 

EMS 

Fire 

Other 

Hazmat 

Motor vehicle 

ref 

0.234 [0.219, 0.250] 

0.206 [0.172, 0.245] 

0.096 [0.068, 0.131] 

0.050 [0.039, 0.064] 

ref 

0.304 [0.283, 0.326] 

0.254 [0.211, 0.304] 

0.129 [0.091, 0.177] 

0.078 [0.060, 0.099] 

State 

Massachusetts 

New York 

Ohio 

ref 

1.520 [1.396, 1.654] 

0.526 [0.501, 0.553] 

ref 

2.068 [1.901, 2.248] 

0.693 [0.662, 0.726] 

ref 

1.508 [1.384, 1.643] 

0.235 [0.222, 0.249] 

ref 

1.972 [1.810, 2.146] 

0.299 [0.284, 0.316] 

Total population a 1.00003 [1.00002, 1.00004] 1.00003 [1.00002, 1.00004] 1.00003 [1.00002, 1.00004] 1.00003 [1.00002, 1.00004] 

Monthly average of 

COVID-19 by county a

1.004 [1.003, 1.004] 1.004 [1.003, 1.004] 1.004 [1.004, 1.005] 1.004 [1.004, 1.005] 

Season b 
Fall (Sept) 

Spring (Mar-May) 

Summer (June-Aug) 

ref 

3.428 [3.193, 3.684] 

1.824 [1.697, 1.962] 

ref 

3.382 [3.150, 3.634] 

1.813 [1.687, 1.950] 

ref 

2.704 [2.467, 2.970] 

1.975 [1.802, 2.169] 

ref 

2.671 [2.437, 2.934] 

1.958 [1.787, 2.150] 

Sample size 162,766 162,766 157,797 157,797 

a Total population and monthly average COVID-19 by county are continuous variables. The odds ratios are to be interpreted without reference group. 

All other variables are categorical. 
b Season was assigned as the following: Spring: March–May; Summer: June–August; Fall: September. Seasonal data is not cumulated, but is the count 

of incidents for each season, meaning we have more data points for Spring and Summer than for Fall. In this table, logit does not use accumulated 

data, we just have more datapoints for Spring/Summer than Fall. 
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Results suggest that the accurate interpretation and coding of inci-

ent types can be improved. Generally, screening processes are com-

leted by 9–1–1 telecommunicators, who use scripts and other guides

o standardize data as much as possible. Although guidelines and pro-

ocols vary, there are public safety answering points and modified

aller queries (MCQ) that are often updated during disease outbreaks

r emergency illnesses [25–29] . Although the 9–1–1 telecommunica-

or often conducts the emergency medical dispatch questioning, com-

ercial ambulance services or EMS coordination centers may complete

all screenings. They could use a different set of guidelines or proto-

ols. Most recently, McCann et al. [23] have suggested recommenda-

ions to update MCQs to assist responder decision making in being able

o adequately don the appropriate level of PPE prior to arriving on

cene. 

Even as more is learned about disease symptoms and screening tools

re updated, there are still barriers related to the individual interpreta-

ion of each incident and its type. To illustrate, a national EMS database

eferenced by Unitek [30] compared 9–1–1 incident interpretations to

he responding EMS’s impressions of the patient’s symptoms and condi-

ion and found a significant difference between the two. Similarly, the

urrent study’s results support varying interpretations among telecom-

unicators. Without clear guidance on what information triggers the

se of a new code, telecommunicators may assess caller-provided de-

ails differently. To illustrate, Kinsey and Ahrens [15] found that, even

mong individuals with years of incident coding experience, agreement

n incident assignments and final coding decisions of the narratives are

ot consistent. This issue of incident data reliability has been discussed

reviously [15] with recommendations for developing clearer coding

uidance and using social science expertise to design future coding guid-

nce. Moving forward, rather than try to repeatedly modify screening

ools and data codes, more sophisticated data cleaning efforts, includ-

ng artificial intelligence and machine learning, should be leveraged to

id data accuracy and subsequent decision making by fire-based EMS

ersonnel. 
171 
.2. Public safety data modernization 

Fortunately, many agencies have promoted data modernization ef-

orts, with the CDC supporting the movement away from siloed public

ealth and safety surveillance systems to connected, resilient, adaptable,

nd sustainable systems that can predict and accurately respond to prob-

ems [31–34] . Machine learning to train models and recognize patterns

ithin similar emergency response call scenarios has found that such

ethods can not only more accurately identify certain risks but may

e faster [33] . Other studies have shown the value of machine learn-

ng methods to extract and label critical information from emergency

ncidents to assist in appropriate decision making on the dispatch side,

ventually informing responders’ decision making [35] . Using machine

earning may help improve this identified gap in data standardization.

he current national incident reporting system defined earlier [1] relies

n a highly heterogeneous volunteer reporting strategy which includes

ossible variables that are not universally reported across departments

r systems, resulting in a high reporter burden and low data useability.

hus, incident-type codes not only need to be standardized but also agile

nough to minimize reporter burden. 

Of course, small scale studies can occur first to assess the utility of

achine learning for this problem. A possible pilot effort to explore the

ccuracy and utility of machine learning could include fire-based EMS

esponders temporarily completing a short report post response. This

rite up could then be compared and used to help identify and code

n accurate call type based on the actual findings on the scene. Apply-

ng these data using a small-scale machine learning strategy may help

dentify if key indicators selected by personnel, such as chest pain, are

onfirmed through the final patient care report that is completed. If this

riangulated effort yields high accuracy, additional machine learning

ethods could be deployed to effectively identify specific incident types

eyond EMS, Fire, and Other to be more accurate (i.e., the researcher’s 5-

ncident type variable) and provide recommendations to optimize and

tandardize a surveillance reporting system for greater usability. It is
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ossible that combining emergency response data from several depart-

ents can create holistic machine learning models to train, test, and ul-

imately support telecommunicators during the coding of incident types.

uture research should be explored in this area, particularly during the

OVID-19 pandemic when new protocols were initiated and consistently

pdated [23] . 

.3. Limitations 

Although the results of our study illustrate the potential for data

tandardization and the need for more accurate coding to improve emer-

ency planning, some limitations must be considered. First, potential ex-

osure to SARS-CoV-2 was only used as an illustrative case example in

he current study and, although not the purpose of this paper, is subject

o limitations as the interpretation of the incident is assigned by telecom-

unicators, and it is unknown if these potential exposures resulted in a

OVID-19 diagnosis. The emergency medical dispatch personnel were

ikely using standardized questions to identify potential COVID-19 in-

idents, such as the Emergency Infectious Disease Surveillance Tool for

OVID-19 [36] . Although these tools performed moderately well at the

nset of the pandemic, sensitivity and specificity of telephonic screen-

ng for COVID-19 were 75% and 46%, respectively [23] . Therefore, it

s likely that the accuracy of the designation of a potential SARS-CoV-2

xposure in the current dataset was limited. Researchers controlled for

onfirmed, monthly COVID-19 cases by fire department county to help

ccount for this limitation. 

Similarly, incident descriptions are entered based on the individual

elecommunicator, who may interpret and record things differently than

ther telecommunicators. It is unknown if these incident descriptions

re updated after a response has been completed and the incident type

s assigned. It is likely that if there was no definitive root cause as to what

as wrong during the initial incident response, it was coded in one cat-

gory and never updated to reflect the diagnosis after the responding

nits arrived at the scene. However, these differences in interpretation

ake the need for accurate coding even more important to ensure con-

istency in surveillance both nationally and internationally. 

. Conclusions 

As previously indicated, voluntary standards exist to code emergency

esponse incident types. However, the increase in incident-type coding

ptions has served as an impetus to further consider data quality issues.

his study aimed to understand the nuances of incident types and how

he assignment of incident type codes could be improved to function

s an emergency planning tool. Despite the current study’s limitations,

hese results show the need and potential ability to improve the stan-

ardization, validity, and reliability of public safety surveillance data

n fire services. With numerous data elements and inconsistent report-

ng guidelines, it is not practical to suggest data standardization in one

tudy or paper. However, it is possible to begin exploring which data

lements are most informative. 

Moving forward, future studies should examine subsets of EMS inci-

ent types such as poisoning/overdose instances, suicide attempts, and

ther higher-frequency incidents to see if the results change other types

f contaminant exposure probability as it did in the current study for

otor Vehicle incidents and the association with potential exposure to

ARS-CoV-2. Subsets of Fire incidents should also be further examined

o identify calls that may place responders at greater exposure risks. For

xample, tracking the potential presence of lithium-ion batteries is a

ignificant hazard that first responders face and could inform prepared-

ess efforts going into a response scenario. As additional EMS and Fire

ncident types are analyzed individually, perhaps research can identify

he scenarios in which responders face the highest risk of occupational

xposures. Finally, these results demonstrate the importance not only

f individual interpretation of incident descriptions but also the value
172 
f developing algorithms to improve emergency management and re-

ponse. 

In summary, this study provides implications for future data mod-

rnization efforts to improve how incident types are classified within

hese already-established data reporting systems and suggest the need

or nationwide data standardization to more accurately identify specific

isks that fire station personnel may encounter. Such standardization

rovides a pathway for robust modeling efforts with greater confidence

n future models. With greater confidence, these models may then be

sed to reveal a more refined, accurate incident coding system to be

xecuted nationally. 
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