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A B S T R A C T   

The true contact area between two surfaces is only a small fraction of the apparent macroscopic contact area; it 
governs many interfacial properties such as friction and contact resistance and depends sensitively on roughness. 
However, for real-world multi-scale surface topography, it is not clear which size scales of roughness govern the 
true contact area. This study investigates true contact area for a real-world surface that has been characterized 
across all scales from Angstroms to centimeters. Elastic and elastic-plastic contact is investigated using both a 
multiscale framework and a statistical roughness model. The multiscale method is a rough-surface contact- 
modeling technique based on Archard’s stacked scales from a spectrum of the surfaces, which has shown promise 
when compared to previous experimental and numerical results. In contrast, statistical models assume that the 
asperities follow a defined height distribution and are in contact when taller than the mean surface separation. 
The results show that even the smallest scales can have a significant influence on the contact area, especially 
when the contact is elastic. However, when the contact is elastic-plastic, the influence of smaller scales can be 
limited depending on the character of the roughness. For self-similar, fractal-like roughness across some scales, 
the pressure tends to saturate at those scales. This work also explores the inclusion of scale-dependent yield 
strength. Both the multiscale and statistical models predict that the inclusion of scale-dependent strength causes 
the predicted contact area of the elastic-plastic models to come into closer agreement with that of the elastic 
model, especially when a wider range of size scales are included. In addition, both types of models predict that 
below a certain scale, smaller asperities flatten under contact pressure and will no longer influence the predicted 
contact area. Taken together, this work helps to guide the accurate modeling of rough-surface contact, and 
provides insights into which scales can be modified to improve performance in manufactured components.   

1. Introduction 

Surface topography governs the performance of rough contacts. This 
has been clear since Coulomb suggested that roughness and the real area 
of contact played a role in the magnitude of friction between solids and, 
later, when Tabor and Bowden provided an in-depth analysis of the role 
roughness plays in the mechanism of friction (Bowden and Tabor, 1939). 
The importance of roughness in predicting friction has continued to 
more recent models of static friction (Patil and Eriten, 2014). It is 
straightforward to predict the dependence of contact properties on 
simple models of roughness, such as single-scale sinusoids. However, the 
prediction of roughness-dependent surface properties is complicated by 
the fact that real-world surface roughness exists across many different 
length scales. Recently, several approaches have been developed to 

account for multi-scale roughness; with a useful comparison published 
recently to show how different models agree and differ (Müser et al., 
2017; Müser and Nicola, 2022). There have been several fractal-based 
multiscale models of rough-surface contact, such as where Majumdar 
and Bhushan (1991) used truncation of the fractal with a flat to predict 
contact area. Persson (2006) also developed a popular multiscale con
tact model that uses a diffusion theory to solve the elastic contact of 
self-affine fractal-like surfaces. Another type of multiscale model 
evolved from Archard’s (Archard, 1957) stacked-asperity model that 
assumes all asperities of a certain size are stacked on top of larger as
perities. Therefore, each scale of asperities carries the same load (i.e., 
different scales are in mechanical series). That load is then distributed 
uniformly over all of the asperities on each scale (i.e., individual as
perities are in mechanical parallel). Ciavarella and Demelio (2001) 
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developed this further for fractal elastic contact and later Jackson and 
Streator (2006) extended the concept to measured surface spectra and 
elasto-plastic asperities. In simplifying this stacked multiscale contact 
method it was proposed that the key parameter of describing 
rough-surface contact is the upper limit of roughness within the flat
tening contact areas (Jackson, 2010a; Jackson et al., 2009). These are 
the tallest and most acute peaks that require the highest pressure to be 
compressed within the contact areas. While the statistical and multiscale 
models discussed above differ from the versions used in Muser et al. 
(Müser et al., 2017), one of the stacked multiscale models used in that 
work agreed closely with the predictions of Green’s function molecular 
dynamics. However, a key remaining question is which size scales must 
be considered and included to accurately predict the 
roughness-dependent contact area. 

One limitation of some of the prior work on roughness-dependent 
properties is its reliance on the assumption of self-affine fractal-like 
roughness. While experimental measurements of the real contact area at 
the nanoscale show what appears to be a fractal-like structure (Xu et al., 
2018, 2020) (similar to the islands and coastlines originally used by 
Mandelbrot (1967) to conceptualize fractals and by Richardson who 
observed the phenomenon (Richardson, 1961)), there remain questions 
about the fidelity of fractals to real surfaces. Notably, natural surfaces 
may have multi-scale roughness but still not adhere to fractal-like 
self-affinity (Borodich et al., 2016; Whitehouse, 2001; Zhang and 
Jackson, 2017), or may be difficult to effectively characterize experi
mentally due to instrument limitations (Jacobs et al., 2017). It is well 
known that the conventional surface parameters such as roughness, 
slope and curvature all change with scale. In contrast, the idea of 
characterizing a surface as a fractal is powerful if it can provide a 
scale-independent parameter. Whitehouse argued that fractals are not 
particularly useful unless this is true (Whitehouse, 2001). He also 
showed that typical engineering surfaces follow a Markov process and 
produce at least surfaces with a bi-fractal spectrum, if not more varia
tions with scale. This same multi-fractal structure has been observed by 
others as well on both manufactured and natural surfaces (Borri and 
Paggi, 2015; Bhushan and Majumdar, 1992). 

Another limitation of much of the prior work is the assumption of a 
single value of strength, regardless of size-scale. Since the features or 
asperities of rough surfaces are composed of a wide range of scales, the 
scale-dependence of material properties becomes important. The 
“smaller-is-stronger” trend is well established in the nanomechanics 
community and is often attributed to a starvation of dislocations and 
sources in small volumes. The effective yield strength, especially, will 
most likely increase with smaller scales (Broitman, 2016). The limita
tions of indentation measurements due to scale effects were reviewed by 
Broitman (2016). Concepts such as dislocation-based and 
strain-gradient theories can be used to account for these scale-dependent 
strengths in continuum contact models of rough surfaces (Jackson, 
2006). For instance, strain-gradient plasticity was employed in a recent 
investigation using a fractal contact model to incorporate the 
scale-dependent strength (Zhang et al., 2022). That investigation 
showed that the inclusion of strain-gradient plasticity resulted in a 
four-fold increase in the asperity contact pressure past the conventional 
hardness. 

In another example showing scale-dependent strength, Venugopalan 
and Nicola (2019) used Green’s function dislocation dynamics to 
describe an indenter with self-affine roughness. Surprisingly, due to 
limited dislocation availability and geometric effects, Venugopalan and 
Nicola predicted contact pressures up to 40 times larger than conven
tional hardness. Geometric effects such as fractal-driven sharp asperity 
aspect ratios and asperity coalescence can increase the contact pressure 
in addition to scale-dependent plasticity. These results confirm the 
predictions of previous continuum asperity and rough-surface contact 
models (Jackson, 2006; Jackson et al., 2015; Krithivasan and Jackson, 
2007; Manners, 2008). These investigations find that the hardness or 
material strength in fractal models of rough-surface contact must be 

adjusted for scale and shape effects (Venugopalan et al., 2019). There
fore, one of the aims of the current work is to include scale-dependent 
plasticity in rough-surface contact analysis while considering a wider 
range of roughness scales. 

Although adhesion is not included in the current work, previous 
investigations have examined the influence of scales of roughness on 
elastic adhesive contact (Papangelo and Ciavarella, 2021; Violano et al., 
2021). They found that for soft surfaces that the adhesion persists with 
little influence of the range of roughness included in the analysis (Vio
lano et al., 2021). In the more recent work (Papangelo and Ciavarella, 
2021), the same nearly complete surface spectrum considered in the 
current work is employed. Through comparison to experimental results 
(Dalvi et al., 2019), they also found that several models adequately 
predicted the adhesion between the surfaces for the case of loading 
(Persson and Tosatti, 2001). However, for unloading the results are not 
as straightforward due to hysteresis. Regardless, they provide fitting 
models that predict the experimentally measured adhesion down to 
extremely small scales. 

The purpose of the present investigation is to elucidate the contri
bution to elastic-plastic real contact area by different size scales of 
roughness. This will be achieved by using two different modeling ap
proaches, a stacked multiscale model and a statistical model, and by 
addressing the two aforementioned limitations of some of the prior 
work: the assumption of fractal-like roughness and the assumption of 
scale-invariant strength. To eliminate the fractal-like assumption, we 
will use a comprehensive characterization of a real-world surface by 
Gujrati et al. (2018) that combined transmission electron microscopy 
with conventional techniques to characterize roughness spanning eight 
orders of magnitude in size. The authors published their work using the 
freely available web application contact.engineering (Röttger et al., 
2022) and thus, all data and the measurements and characterization 
tools from that investigation are publicly available (Gujrati et al., 
2022a). The statistical models will consider both spherical and sinu
soidal asperities. The present analysis was also run with and without an 
accounting for scale-dependent strength. 

2. Analysis of surface-topography data 

This work uses as raw input the composite power spectral density 
PSD from Gujrati et al. (2018) in its analysis of surface parameters and 
rough-surface contact. The power spectral density is a mathematical tool 
that separates contributions from different length scales, and is equal to 
the square of the Fourier transform of the measured surface heights 
(Jacobs et al., 2017). It can be computed for individual measurements, 
but also presents a useful method for combining many measurements 

Fig. 1. The composite power spectrum of a surface obtained by multiple 
measurements from different instruments. 
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across different scales. The composite spectrum, shown in Fig. 1, is the 
log-space average of all individual measurements from stylus profil
ometry, atomic force microscopy, and transmission electron micro
scopy. All raw data associated with the original surface can be accessed 
at Ref. 37. 

In several previous studies (Kogut and Jackson, 2005; Sayles and 
Thomas, 1978), it has been shown that many surface roughness and 
statistical parameters vary with scale. This was one of the driving factors 
giving rise to the usage of fractals for describing surfaces (Majumdar and 
Tien, 1990). In the paper by Kogut and Jackson (2005), the trends of the 
spectral moments were only examined over two orders of magnitude of 
length scale from a generated fractal surface. The statistical variance m0 
changed least with the inclusion of smaller scales, but m2 and m4 both 
changed by many orders of magnitude. Later, Green provided 
closed-form solutions to the spectral moments of fractal surfaces 
following the Weierstrass-Mandelbrot formulation (Green, 2019). 
Brown et al. reviewed the methods to characterize multiscale surfaces 
(Christopher et al., 2018). According to Parseval’s law, surface de
scriptors should be able to be calculated equivalently in real- or 
frequency-space, although Kalin et al. (2016) showed that the 
spectral-based parameters of rough surfaces often differ from those ac
quired directly from the surface by deterministic counting of the as
perities. They attribute the differences to varying definitions of 
asperity-peaks between deterministic and statistical analysis. 

For the present modeling approach, scale-dependent moments were 
calculated, and then used to compute key roughness descriptors using 
the method of McCool (1986). First, spectral moments from the com
posite spectrum were computed according to Gujrati et al. (2018): 

mk =

∫λu

λc

(2π)k+1
(λ)− (2+k)PSD ⋅ dλ (1) 

The wavevector ω is often used in previous literature (Gujrati et al., 
2018) and is related to the wavelength λ by ω = 2π/λ. Equation (1) is 
numerically integrated to obtain the needed spectral moments (m0, m2 
and m4) over the range of scales available, i.e. between λu and λc, the 
upper and lower limit of the wavelengths of the composite spectrum. 
Ideally, λu is ∞ and λc is 0, but this is not obtainable for experimental 
surface data. λc is also referred to as the cut-off wavelength and repre
sents the smallest scale of roughness considered. 

The results of this integration agree well with the real-space surface 
parameters measured directly in Gujrati et al. (2018). By interrupting 
the integration given in Eq. (1) at different ranges of scale, or in other 
words by varying λc, one can evaluate the influence of smaller and 
smaller surface features as compared to what was available in prior 
studies that used conventional topography measurements. The results of 
this analysis are shown in Fig. 2. These scale-dependent spectral mo
ments are similar to the scale-dependent roughness parameters dis
cussed in Sanner et al. (2022) and for other surfaces in a previous work 
(Kogut and Jackson, 2005). The results show that the moments can 
change by many orders of magnitude with the inclusion of increasing 
details of roughness (especially m2 and m4). 

The aforementioned spectral moments are related to real-space pa
rameters to be used as inputs to the statistical model using the approach 
of McCool (1982). In the current work, the statistical model will 
consider both spherical and sinusoidal shaped asperities, and therefore 
we will start with the original parameters of the spherical asperity-based 
statistical models. The expression of m0 is the same as the square of the 
RMS roughness, Rq, i.e., m0 = (Rq)2 (Patil and Eriten, 2014). The 
moment m2 is related to the RMS slope, g, of a line contour such that 
(note that for a surface a factor of 

̅̅̅
2

√
must be included) 

g=
̅̅̅̅̅̅
m2

√
(2) 

Finally, the moment m4 is related to the RMS curvature of the sur
face. However, to find the RMS radius of curvature at the tips of the 

asperities on the surface, the following equation from McCool (1987) is 
employed. This will be used later when employing the statistical contact 
model to evaluate the effect of roughness on contact area. 

R= 0.375
̅̅̅̅̅̅
π

m4

√

(3)  

in addition, the areal asperity density is computed as: 

η= m4

6π
̅̅̅
3

√
m2

(4) 

The elastic modulus, E, and the Poisson’s ratio, ν, of the UNCD ma
terial is taken to be 463 GPa and 0.20, respectively, from Ref. (Mohr 
et al., 2014). Following the same work, the strength of the UNCD is 1.8 
GPa. The composite modulus E* between the surfaces is then calculated 
by assuming that the opposing surface is rigid. 

Another method to evaluate the surfaces is to compute the amplitude 
spectrum of the surface Δi, which yields the amplitudes of the sine waves 
in the Fourier spectrum. Specifically, the amplitude of the composite 
PSD at each wavelength was extracted by taking the square root and 
dividing by wavelength. Note that a scaling factor of 1.5 was included 
(Randall, 2004) because a Hanning window was used to produce the 
PSD. Thus, the function to calculate amplitude from the PSD is 

Δi =

̅̅̅̅̅̅̅̅̅̅
PSDi

1.5λi

√

(5)  

where i denotes the index in the power-spectrum array. This trans
formation results in the amplitude spectrum shown in Fig. 3. 

In an investigation analyzing the multiscale nature of rough-surface 
contact using a stacked, or Archard framework, an alternative spectrum 
was used: the aspect-ratio spectrum, which is computed by normalizing 
the amplitude by wavelength (Jackson, 2010a). The resulting values 
indicate the aspect ratio of the asperities at each wavelength, thus 
indicating how pointy or blunt the asperities are at each scale. As shown 
for elastic and elastic-plastic solutions of wavy surface contact, the 
pressure required to flatten the asperities is proportional to this ratio, 
Δi/λi, to which the variable B has been assigned (Jackson, 2010; Wilson 
et al., 2010). The aspect-ratio spectrum using this method is shown in 
Fig. 3b. 

If B were constant across all scales, this would indicate that a sur
face’s asperities (the peaks on a rough surface) have the same aspect 
ratio or shape across all scales. This structure would indicate a self- 

Fig. 2. The normalized spectral moment obtained from the composite spectrum 
as increasingly smaller scales of roughness are included (indicated 
by wavelength). 
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similar fractal surface. Alternatively, the plotted B will have a sloped line 
for self-affine surfaces. In the resulting curve shown in Fig. 3b, the curve 
is nearly linear over many scales, but bends and becomes horizontal 
(nearly constant) at smaller wavelengths. Therefore, it appears that the 
spectrum of the surface is nearly self-affine across most size scales, but is 
nearly self-similar at the very smallest wavelengths (below approxi
mately 10 nm). 

3. Results and discussion 

3.1. Elastic and elastic-plastic models of contact for a real-world multi- 
scale surface 

The amplitude spectrum depicted in Fig. 3 is used as input to the 
multiscale model as originally described by Archard (1957) and later 
refined by Ciavarella and Demelio (2001) for fractal elastic contact and 
by Jackson and Streator (2006) for general elastic-plastic rough surface 
contact. The latest iteration of the model uses sinusoid-shaped contact 
models to render the asperities characterized by the waves of the spec
trum (Chu et al., 2021; An et al., 2019). The usefulness of this method is 
that it considers the multiscale nature of surfaces but does not assume 
that they are purely fractal. 

The stacked multiscale models do make several assumptions that 
result in limitations. The version of the stacked models used in this work 
assume that all of the asperities at a given scale have uniform amplitudes 
and wavelengths. Therefore the statistical variation at these scales is not 
considered. In addition, the model uses an elastic-perfectly plastic wavy 
contact model that neglects strain hardening. Adhesion is also neglected, 
but in many cases may not be important. The stacked model assumes 
that the scales of asperities are stacked in mechanical series, with 
smaller scale asperities higher in the stack. The scale is defined by the 
wavelength of the asperities. This would neglect that a small scale 
wavelength of asperities might actually be taller than other scales and 
bypass the hierarchal stacking. However the model does capture some 
important mechanisms, including the coupling and coalescing between 
adjacent asperities, and that in many cases smaller scale asperities 
would be superimposed upon larger asperities. 

The results of the multiscale model using the full amplitude spectrum 
are shown in Fig. 4. Although the model predicts different contact areas 
for different loads, and with and without plastic deformation included, 
interestingly the contact area appears to converge at the same wave
length of approximately 5.65 nm. This scale or wavelength is also close 
to the range predicted by Thimons et al. (2021). This wavelength 
actually corresponds to a peak in the B value shown in the flattened 
region of Fig. 3b. This wavelength location turns out to also be the 
maximum value of B (0.0463) for this surface. That this maximum value 
of B corresponds to the real contact area agrees in concept with a pre
vious simplified version of the model (Jackson, 2010a; Jackson et al., 
2009) that theorizes that the real area of contact is approximately equal 
to force divided by the pressure to flatten the most resistant peaks. In 
this case the most resistant peaks would be the wavelengths with the 
highest value of B. Although the scale of the most resistant peaks could 
shift with scale-dependent strength (See Sect. 3.2). In addition, Fig. 4 
shows that the real contact pressures predicted by the elastic-plastic 
models are approximately eight times higher than the hardness 
(conventionally three times the yield strength). This is consistent with 
earlier investigations where contact pressure exceeded the hardness 
(Krithivasan and Jackson, 2007; Manners, 2008). This occurs from as
perities coalescing and resulting in hydrostatic stress rather than 
deviatoric stress. 

In addition to the multi-scale model, four different versions of sta
tistical rough surface contact models were also used to make predictions 
of the real area of contact (see Table 1). All of the statistical models 
assume a Gaussian height distribution. The previously described spectral 
moments and statistical parameters are employed (Eqs. (1)–(4)). The 

Fig. 3. Amplitude spectrum computed from the composite PSD (a), and the 
wavelength-normalized spectrum of the surface, also called the aspect-ratio 
spectrum (b). 

Fig. 4. Real contact area predicted by the stacked multiscale type model as 
smaller wavelength scales are included. 
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first elastic statistical model employs the elastic Hertz contact solution 
for the asperities (i.e. the Greenwood and Williamson model, 1966). 
Elastic-plastic spherical asperity contact was also used in the statistical 
model for comparison (see (Jackson and Green, 2006) for details). In the 
elastic-plastic spherical asperity model the ratio between the fully 
plastic pressure (i.e. hardness) and yield strength decreases as the con
tact area increases. In addition, some of the taller asperities can be 
heavily loaded and flattened. In those cases the contact area of a single 
asperity was limited by the projected area of the spherical asperity 
(πR2). 

As an alternative, elastic and elastic-plastic sinusoidal asperity 
models (Johnson et al., 1985) were also used within the statistical 
framework (details are in (Chu et al., 2021)). There are multiple 
methods of converting the statistical surface parameters to amplitude, Δ, 
and wavelength, λ, in the statistical models; the present technique was 
proven effective in prior work (Chu et al., 2021). In this method the 
wavelength of the asperities is obtained based on the areal asperity 
density, or 

λ=

̅̅̅
2
η

√

(6) 

Next, the amplitude is predicted based on the asperity curvature as 

Δ=
1
R

(
λ

2π

)2

(7) 

Other details of the elastic-plastic sinusoidal asperity model are 
found in (Chu et al., 2021; Ghaednia et al., 2017). 

The statistical model, although probably the most widely used rough 
surface contact model, is also built upon assumptions and has limita
tions. The statistical model used in this work assumes that all asperities 
possess the same average radius of curvature, R, even though they have 
different heights that are based on a Gaussian distribution. This of course 
neglects that asperities can vary in curvature, can be elliptical, and not 
follow the Gaussian distribution. In contrast to statistical models more 
closely related to the original GW model, the current model does 
consider some lateral interaction between asperities and substrate 
deformation by employing elastic and elastic-plastic sinusoidal asperity 
models as previously noted. One might observe that the stacked and 
statistical model assumptions differ and complement each other. 

The resulting predictions of the elastic and elastic-plastic spherical 
statistical models are shown in Fig. 5. Note that it is plotted differently 
than the multiscale model because the statistical models are formulated 
to predict contact area and force as functions of mean surface separation, 
whereas the stacked multiscale model makes predictions of contact area 
directly from the force. As expected, the elastic statistical contact models 
predict much lower contact areas than the elastic-plastic version of the 
models. The elastic models appear to be exceptionally dependent on the 
cut-off wavelength (i.e., λc, the smallest considered wavelength of the 
spectrum). The contact area varies by approximately one order of 
magnitude when the cutoff wavelength (λc) is varied by two orders of 
magnitude. However, the elastic-plastic models do not appear to vary as 
much with cutoff wavelength (λc). This agrees with the multiscale model 
findings that at a wavelength on the order of 10 nm the predicted contact 

area levels off, which is approximately 10 times λu (the smallest 
measured wavelength). Following this trend, the prediction of the 
elastic-plastic statistical model for 100λu appears to start to deviate 
slightly from the predictions considering smaller scales. 

Since the scales of considered spectrum clearly influence the pre
dictions of the multiscale model, a similar evaluation of the statistical 
models is desirable. Therefore the real contact area from the statistical 
model was calculated at constant loads as a function of cutoff wave
length. To accomplish this the results for the specific loads must be 
searched for numerically since, in the statistical model, contact area and 
force equations are functions of the surface separation, as opposed to the 
multiscale model which are functions of load. The resulting predictions 
of the elastic and elastic-plastic spherical and sinusoid asperity statisti
cal model are shown in Fig. 6. From Fig. 6, only the elastic-plastic 
spherical based statistical models make predictions that are in qualita
tive agreement with the multiscale models. The slope of the elastic 
Hertz-based statistical model does start to flatten with smaller scales, but 
it never becomes horizontal. The elastic sinusoidal-based statistical 
model is not shown in Fig. 6a, but Fig. 6b shows the isolated results of 
both the sinusoidal-based statistical models. All versions of the statistical 
models suggest that with the inclusion of smaller scales of asperities, 
that the contact area decreases. Both the elastic-plastic spherical and 
sinusoidal asperity-based statistical models predict a marked increase in 
contact area compared to the elastic models starting at a cutoff wave
lengths (λc) below 1–10 μm. The elastic sphere and sinusoidal statistical 
models do not have a convergence scale or wavelength at which the 
contact area no longer decreases. This is probably due to the funda
mental differences in the statistical and multiscale methodologies, and 
the spherical and sinusoidal asperity behaviors, which will be discussed 
in greater detail in Section 3.3. Nonetheless, the elastic-plastic spherical 
statistical models do predict that the contact area converges or stops 
decreasing with scale at a cutoff wavelength (λc) of approximately 100 
nm, which is similar to that predicted by the multiscale models. How
ever, even the contact area predicted by the elastic-plastic spherical- 
based statistical does decrease in the last decade of included scales. This 
decrease in contact area at the smallest scales does not appear to 
decrease lower than when the contact area dipped at approximately 1 
μm. As with the multiscale models, the wavelength of convergence of the 
elastic-plastic sphere-based statistical model appears to be independent 
of load, at least within the range of loads considered. 

The multiscale stacked model and the statistical model are 

Table 1 
List of considered statistical rough surface contact models.  

Asperity Model Abbreviation References 

Elastic Hertz Statistical Model Elastic Hertz 
Stat. 

Greenwood and Williamson 
(1966) 

Elastic-plastic Spherical 
Statistical Model 

EP Sphere Stat. Jackson and Green (2006) 

Elastic Sinusoidal Statistical 
Model 

Elastic Sine 
Stat. 

(Chu et al., 2021; Johnson 
et al., 1985) 

Elastic-plastic Sinusoidal 
Statistical Model 

EP Sine. Stat. (Chu et al., 2021; Ghaednia 
et al., 2017)  

Fig. 5. Real contact area predicted by statistical models as different ranges of 
wavelength scales are included. The elastic-plastic sphere-based statistical 
models all fall on nearly the same curve (red, green and black). (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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formulated from different mechanical and mathematical frameworks. 
The multiscale model assumes that the scales of asperities are stacked on 
each other, but there is no variation in their height within one scale. In 
contrast, the statistical models assume that all of the asperities are on the 
same scale (via the radius of curvature) but have different heights 
following the Gaussian distribution. Despite these differences, they both 
make similar qualitative predictions about the influence of smaller 
scales of asperities on contact area. They both predict that the contact 
area reduces with smaller scales. The stacked multiscale models and 
elastic plastic spherical statistical model also all predict that a scale of 
saturation or convergence is reached. 

3.2. The effect of including a scale-dependent strength 

As mentioned, the strength of many materials often increases at 

smaller scales. Since rough-surface contact occurs on different scales 
simultaneously (ranging from the smallest to largest asperities), and at 
different loads on different scales of asperities, then the asperity contact 
areas will cover many orders of magnitude in size. In this work the 
strain-gradient model was used to approximately include the depen
dence of strength on size scale. This is similar to several previous studies, 
such as where Jackson (2006) included scale effects in a statistical 
model, and other similar models that followed using a stacked multiscale 
framework (Jackson et al., 2015). The present advantage over prior 
work is the consideration of strain-gradient plasticity over the broad 
window of surface topography included here. Fleck et al. developed the 
strain-gradient plasticity theory as a way to consider these 
scale-dependent effects (Fleck et al., 1994). Using this theory, Nix and 
Gao (1998) predicted the hardness of a contact to be approximated by: 

Fig. 6. Real contact area predicted by statistical models for constant loads as a function of the cutoff wavelength based on (a) elastic Hertz, elastic-plastic spherical 
and elastic-plastic sinusoidal asperities and (b) elastic sinusoidal asperities. 
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Sy = So

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
h*

hp

√

(8)  

where So is the macroscopic yield strength, Sy is the corrected scale- 
dependent yield strength, h* is a length scale for the effect, and hp is 
the depth of plastic deformation caused by the indentation. Eqn 8 is then 
used as part of the multiscale surface contact model to consider these 
scale-dependent effects. The main difficulty in using this model is 
finding the values of h*. Usually h* is on the order of micrometers for 
polycrystalline materials. 

First, note that the upper limit of yield strength is often considered to 
be approximately a tenth of the elastic modulus, E (Ashby et al., 2018). 
In this case that would be approximately 40–45 GPa, which is in the 
upper end of what is predicted in the study on the properties of UNCD by 
Mo et al. (2012) for indentations of a few nanometers. The hardness has 
been reported to be 88 GPa in another paper which results in strength of 
approximately 29 GPa at indentations depths of 10–40 nm using a 
Vickers indenter (Krauss et al., 2001). 

For modeling purposes and to approximately demonstrate the in
fluence of scale-dependent strength in this work, a value for h* of 5 μm is 
assumed. Then Eq. (8) is used both in the previously described multi
scale and statistical models. In the multiscale model, the yield strength is 
calculated from the deformation of the previous scale using equations 
relating contact pressure to average surface separation at that scale 
(Rostami and Jackson, 2013). The value of hp is then given by: 

hp =Δ − g (9)  

where from (Rostami and Jackson, 2013) 

g
Δ
=

⎛

⎝1 −

(
p

p*
ep

)A1
p

p*
ep
+A2
⎞

⎠

5/2

(10)  

where 

A1 = − 0.1 ln
(

Δ
Δc

)

(11)  

A2 =
1
15

(
Δ
Δc

− 1
)0.44

+ 0.99
0.44

(

Δ
Δc − 1

)

−
1
2

(12)  

In the statistical model, hp is calculated based on the asperity-level 
interference before the area and force are calculated. Specifically, hp 
= h-d. 

The resulting contact area predicted by the multiscale model 
including the strain-gradient strength (Eq. (8)) are shown in Fig. 7 as a 
function of the cutoff wavelength λc (the smallest wavelength included 
in the model). Note that the nominal pressures in the legend are 
normalized by the bulk or macro-scale hardness, H, that does not include 
strain-gradient plasticity. As expected, including the strain-gradient 
model results in the models predicting lower contact areas, because 
the effective yield strength is higher. The final contact areas predicted by 
the strain-gradient elastic-plastic models appear to approach the purely 
elastic models when all the asperity scales are included, although there 
are minor differences at intermediate scales. Essentially, for the UNCD 
surface and properties used in this work, the strain-gradient strength 
causes the multiscale model to become elastic on the final asperity scales 
in contact. Also, the contact area appears to converge and not decrease 
with additional scales at a wavelength between 1 and 10 nm. This 
suggests that the asperities at scales smaller than this are effectively 
flattened out. As smaller scales are included the contact area decreases, 
which also increases the contact pressure. This pressure eventually 
overcomes all asperities at smaller scales, even despite the increasing 
hardness at these scales. 

Finally, the results of the spherical asperity-based statistical model 

including the strain-gradient strength are plotted in Fig. 8 and the si
nusoidal asperity-based results are shown in Fig. 9. The statistical 
models with strain-gradient plasticity were again recalculated at con
stant loads while varying the cutoff wavelength (λc). As with the mul
tiscale models, the contact area predicted when including the scale- 
dependent strength generally decreases the contact area because the 
strength is increased. However, in contrast to the multiscale model 
presented in Fig. 7, the predictions of the elastic-plastic spherical and 
sinusoidal asperity-based statistical models still differ from the purely 
elastic models’ predictions. The results also suggest that the elastic 
models depend more on smaller-scale roughness features than when 
plasticity is included. The smaller spherical asperities get plastically 
flattened out, even despite their increasing scale-dependent strength. 
However, at the smallest wavelengths of less than a nanometer, the 
contact area predicted by the elastic-plastic spherical-based statistical 
models begin to decrease again. For the elastic-plastic spherical asperity- 
based statistical model results, the contact area appears to approach a 
converged prediction at a cutoff wavelength of approximately 0.1 μm, 
which is earlier than but approximate agreement with the multiscale 
models, and also in approximate agreement with a previous investiga
tion focused on the effect of roughness scale on adhesion (Thimons et al., 
2021). Despite the differences in the underlying assumptions of the 
multiscale and statistical models, they yield similar trends. Note that this 
scale of convergence may also depend on the material properties of the 
surfaces, and the roughness structure outside of these scales. 

3.3. Considering all results together 

It is interesting to compare the elastic and elastic-plastic curves in 
Figs. 8 and 9 and the overall results of all versions of the models. All of 
the models predict an order of magnitude change in contact area with an 
order of magnitude change in load, which suggests that they predict an 
approximately linear relationship between contact area and load, as the 
original statistical and stacked multiscale models did. As the cutoff 
wavelength (λc) decreases, the real contact area begins to generally 
decrease for all the models; but at different rates that change with the 
inclusion of smaller scales and in some cases actually increase, but only 
momentarily. These differences in the statistical model results arise 
because of the wavy surface asperities used in the statistical models are 
effectively stiffer than the elastic Hertz and elastic-plastic spherical 
asperity models. In addition, the elastic-plastic sinusoidal asperity 

Fig. 7. Scale-dependent real contact area predicted by the stacked multiscale 
model with a strain-gradient strength. Of course the elastic calculations are 
unaffected by the strength and so are identical to the curves shown in Fig. 4, but 
they are shown again here for reference. 
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models include the effect of a substrate below them, but the elastic- 
plastic spherical models do not, which a recent work suggests could be 
influential (Liu et al., 2023). 

The stacked multiscale and spherical asperity based statistical 
elastic-plastic models predict that, below a certain scale, the roughness 
no longer influences the real area of contact. In those cases, the contact 
pressure is sufficient that smaller wavelengths are eventually flattened 
and do not further affect the contact area. This also holds when scale- 
dependent strength is considered, but this case comes into closer 
quantitative agreement with the elastic model, because the strength 
increases for the smaller asperities. The statistical models are mostly in 
agreement with the multiscale model trends, except that the elastic 
Hertz and the sinusoid asperity based statistical models does not 
converge (level off) as smaller scales of asperities are included. 

The results show that most of the statistical models do not converge 
as cut-off wavelength decreases, except for the elastic-plastic spherical 
statistical model. This could partly be due to the decoupling of asperities 
by the statistical model, but even wavy asperities which do include some 

coupling still do not converge with the inclusion of additional scales. 
Another possible reason is that the fully plastic pressure (i.e. hardness) 
decreases with deformation for the sphere contact geometry, where in 
contrast it increases for sinusoid geometries. The reason for this is that 
periodic sinusoidal asperities coalesce at higher loads and the stress 
approaches a hydrostatic state. According to distortion energy yield 
theory, hydrostatic stress does not cause plastic deformation. This re
sults in the elastic-plastic sinusoid asperities being more resilient than 
the spherical ones and therefore less likely to flatten with the inclusion 
of smaller scales. 

Most importantly, the statistical model uses a different mathematical 
framework that does not consider how smaller-scale asperities might be 
under higher loads, as the multiscale model does. In reality, smaller 
asperities or roughness features are usually superimposed upon larger 
features. This is similar to the concept of self-similarity in fractal 
roughness. In the multiscale model the pressure increases with the 
stacking of each smaller scale of asperities and results in a higher like
lihood of being flattened. Since the statistical models do not consider 
this, their results should be given less weight in determining the trends 
that apply to real-world surfaces. More complex statistical models that 
include variation of curvature might correct this (Bush et al., 1975). 

Other than the cases of sinusoidal and elastic spherical statistical 
models, the predictions suggest that most materials will have a certain 
scale of features below which the roughness will no longer reduce the 
area of contact. Of course this may vary depending on the particular 
geometrical structure of the surfaces and the material properties. As 
suggested in Ref. (Jackson, 2010), this might depend on the overall slope 
of the surface spectrum, which relates to the self-affinity or 
self-similarity of the spectrum. In general, if surfaces are more self-affine 
and fractal-like in nature, than the asperities will have taller and thinner 
aspect ratios with smaller scales, and thus be more resistant to flat
tening. For the nearly complete surface spectrum considered in this 
work, the surface appeared self-affine at large scales, but then become 
more self-similar at smaller scales (see Fig. 3 where the asperity aspect 
ratio B approaches a constant value at small wavelengths). This enables 
the ability of the increasing contact pressure to overcome the smaller 
asperities and flatten them. Note that real surfaces are not exactly fractal 
and the behavior may deviate from that predicted by pure fractal-based 
modeling. Adhesion is also neglected in this work, though depending on 
the surface energies, could be important in some cases. Despite not 
including adhesion, the predictions of a critical scale of roughness are 

Fig. 8. Scale-dependent real contact area predicted by spherical asperity-based statistical models with the strain-gradient strength included. Once again, elastic 
calculations are unaffected and are shown here for reference. 

Fig. 9. Real area of contact predicted by strain-gradient sinusoid-based statis
tical models at constant loads as a function of the cutoff wavelength. 
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consistent with what has been observed experimentally in an adhesive 
contact (Thimons et al., 2021). 

4. Conclusions 

In this investigation, multiscale stacked and statistical models of 
rough-surface contact were implemented by using the nearly complete 
spectrum of a rough surface. As expected, all the models predict that 
contact area will decrease as smaller scales of asperities are included. 
The elastic Hertz asperity-based and sinusoidal asperity-based statistical 
models predicted that contact area continues to decrease as smaller and 
smaller scales; however, all other models (elastic-plastic spherical 
asperity-based statistical, elastic multiscale, elastic-plastic multiscale) 
predicted that the contact area flattened out, or converged, at a partic
ular wavelength. Even when scale-dependent strength is considered, this 
convergence still occurred, though there was a shift in the relevant size 
scale. It is probable that the critical size at which convergence occurs 
will vary based on the particular geometrical and material structure of a 
surface. The physical implication of this result is that, in some cases, 
roughness need only be considered down to a certain critical size, below 
which it will have no effect on contact area. Since the statistical models 
do not consider the scaled hierarchal nature of surfaces, they may be less 
able to make this prediction accurately. Additionally, all of the models 
predict that, while plasticity does allow the contact area to converge and 
reduce the pressure in comparison to the elastic case, the hardness does 
not limit the contact pressure. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

T. D. B. Jacobs acknowledges support from the National Institute for 
Occupational Safety and Health (NIOSH) under award R21 OH012126. 

References 

An, B., Wang, X., Xu, Y., Jackson, R.L., 2019. Deterministic elastic-plastic modelling of 
rough surface contact including spectral interpolation and comparison to theoretical 
models. Tribol. Int. 135, 246–258. https://doi.org/10.1016/j.triboint.2019.02.039. 

Archard, J., 1957. Elastic deformation and the laws of friction. Proc. Roy. Soc. Lond. 
Math. Phys. Sci. 243, 190–205. 

Ashby, M.F., Shercliff, H., Cebon, D., 2018. Materials: Engineering, Science, Processing 
and Design. Butterworth-Heinemann. 

Bhushan, B., Majumdar, A., 1992. Elastic-plastic contact model for bifractal surfaces. 
Wear 153, 53–64. 

Borodich, F.M., Pepelyshev, A., Savencu, O., 2016. Statistical approaches to description of 
rough engineering surfaces at nano and microscales. Tribology International 103, 
197–207. 

Borri, C., Paggi, M., 2015. Topological characterization of antireflective and hydrophobic 
rough surfaces: are random process theory and fractal modeling applicable? J. Phys. 
Appl. Phys. 48, 045301. 

Bowden, F.P., Tabor, D., 1939. The area of contact between stationary and moving 
surfaces. Proc. Roy. Soc. Lond. Math. Phys. Sci. 169, 391–413. 

Broitman, E., 2016. Indentation hardness measurements at macro-, micro-, and 
nanoscale: a critical overview. Tribol. Lett. 65, 23. https://doi.org/10.1007/s11249- 
016-0805-5. 

Bush, A.W., Gibson, R.D., Thomas, T.R., 1975. The elastic contact of a rough surface. 
Wear 35, 87–111. https://doi.org/10.1016/0043-1648(75)90145-3. 

Christopher, A.B., et al., 2018. Multiscale analyses and characterizations of surface 
topographies. CIRP Annals 67, 839–862. https://doi.org/10.1016/j. 
cirp.2018.06.001. 

Chu, N.R., Jackson, R.L., Wang, X., Gangopadhyay, A., Ghaednia, H., 2021. Evaluating 
elastic-plastic wavy and spherical asperity-based statistical and multi-scale rough 
surface contact models with deterministic results. Materials 14, 3864. 

Ciavarella, M., Demelio, G., 2001. Elastic multiscale contact of rough surfaces: archard’s 
model revisited and comparisons with modern fractal models. J. Appl. Mech. 68, 
496–498. 

Dalvi, S., et al., 2019. Linking energy loss in soft adhesion to surface roughness. Proc. 
Natl. Acad. Sci. USA 116, 25484–25490. 

Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W., 1994. Strain gradient 
plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487. 

Ghaednia, H., et al., 2017. A review of elastic–plastic contact mechanics. Appl. Mech. 
Rev. 69 https://doi.org/10.1115/1.4038187. 

Green, I., 2019. Exact spectral moments and differentiability of the weierstrass- 
mandelbrot fractal function. J. Tribol. 142 https://doi.org/10.1115/1.4045452. 

Greenwood, J.A., Williamson, J.P., 1966. Contact of nominally flat surfaces. Proc. Roy. 
Soc. Lond. Math. Phys. Sci. 295, 300–319. 

Gujrati, A., Khanal, S.R., Pastewka, L., Jacobs, T.D.B., 2018. Combining TEM, AFM, and 
profilometry for quantitative topography characterization across all scales. ACS 
Appl. Mater. Interfaces 10, 29169–29178. https://doi.org/10.1021/ 
acsami.8b09899. 

Gujrati, A., Khanal, S.R., Pastewka, L., Jacobs, T.D.B., 2022. Ultrananocrystalline 
Diamond (UNCD) (Version 2). https://doi.org/10.57703/ce-5cz7a. https://contact. 
engineering. 

Jackson, R.L., 2006. The effect of scale-dependent hardness on elasto-plastic asperity 
contact between rough surfaces. Tribol. Trans. 49, 135–150. https://doi.org/ 
10.1080/05698190500544254. 

Jackson, R.L., 2010. An analytical solution to an archard-type fractal rough surface 
contact model. Tribol. Trans. 53, 543–553. https://doi.org/10.1080/ 
10402000903502261. 

Jackson, R.L., Green, I., 2006. A statistical model of elasto-plastic asperity contact 
between rough surfaces. Tribol. Int. 39, 906–914. https://doi.org/10.1016/j. 
triboint.2005.09.001. 

Jackson, R.L., Streator, J.L., 2006. A multi-scale model for contact between rough 
surfaces. Wear 261, 1337–1347. 

Jackson, R.L., Malucci, R.D., Angadi, S., Polchow, J.R., 2009. Proceedings of the 55th 
IEEE Holm Conference on Electrical Contacts. IEEE, pp. 28–35. 

Jackson, R.L., Crandall, E.R., Bozack, M.J., 2015. Rough surface electrical contact 
resistance considering scale dependent properties and quantum effects. J. Appl. 
Phys. 117, 195101. 

Jacobs, T., Junge, T., Pastewka, L., 2017. Quantitative characterization of surface 
topography using spectral analysis. Surf. Topography: Metrol. Prop. 5, 013001. 

Johnson, K., Greenwood, J., Higginson, J., 1985. The contact of elastic regular wavy 
surfaces. Int. J. Mech. Sci. 27, 383–396. 
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