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ABSTRACT

The true contact area between two surfaces is only a small fraction of the apparent macroscopic contact area; it
governs many interfacial properties such as friction and contact resistance and depends sensitively on roughness.
However, for real-world multi-scale surface topography, it is not clear which size scales of roughness govern the
true contact area. This study investigates true contact area for a real-world surface that has been characterized
across all scales from Angstroms to centimeters. Elastic and elastic-plastic contact is investigated using both a
multiscale framework and a statistical roughness model. The multiscale method is a rough-surface contact-
modeling technique based on Archard’s stacked scales from a spectrum of the surfaces, which has shown promise
when compared to previous experimental and numerical results. In contrast, statistical models assume that the
asperities follow a defined height distribution and are in contact when taller than the mean surface separation.
The results show that even the smallest scales can have a significant influence on the contact area, especially
when the contact is elastic. However, when the contact is elastic-plastic, the influence of smaller scales can be
limited depending on the character of the roughness. For self-similar, fractal-like roughness across some scales,
the pressure tends to saturate at those scales. This work also explores the inclusion of scale-dependent yield
strength. Both the multiscale and statistical models predict that the inclusion of scale-dependent strength causes
the predicted contact area of the elastic-plastic models to come into closer agreement with that of the elastic
model, especially when a wider range of size scales are included. In addition, both types of models predict that
below a certain scale, smaller asperities flatten under contact pressure and will no longer influence the predicted
contact area. Taken together, this work helps to guide the accurate modeling of rough-surface contact, and
provides insights into which scales can be modified to improve performance in manufactured components.

1. Introduction

account for multi-scale roughness; with a useful comparison published
recently to show how different models agree and differ (Miiser et al.,

Surface topography governs the performance of rough contacts. This
has been clear since Coulomb suggested that roughness and the real area
of contact played a role in the magnitude of friction between solids and,
later, when Tabor and Bowden provided an in-depth analysis of the role
roughness plays in the mechanism of friction (Bowden and Tabor, 1939).
The importance of roughness in predicting friction has continued to
more recent models of static friction (Patil and Eriten, 2014). It is
straightforward to predict the dependence of contact properties on
simple models of roughness, such as single-scale sinusoids. However, the
prediction of roughness-dependent surface properties is complicated by
the fact that real-world surface roughness exists across many different
length scales. Recently, several approaches have been developed to
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2017; Miiser and Nicola, 2022). There have been several fractal-based
multiscale models of rough-surface contact, such as where Majumdar
and Bhushan (1991) used truncation of the fractal with a flat to predict
contact area. Persson (2006) also developed a popular multiscale con-
tact model that uses a diffusion theory to solve the elastic contact of
self-affine fractal-like surfaces. Another type of multiscale model
evolved from Archard’s (Archard, 1957) stacked-asperity model that
assumes all asperities of a certain size are stacked on top of larger as-
perities. Therefore, each scale of asperities carries the same load (i.e.,
different scales are in mechanical series). That load is then distributed
uniformly over all of the asperities on each scale (i.e., individual as-
perities are in mechanical parallel). Ciavarella and Demelio (2001)
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developed this further for fractal elastic contact and later Jackson and
Streator (2006) extended the concept to measured surface spectra and
elasto-plastic asperities. In simplifying this stacked multiscale contact
method it was proposed that the key parameter of describing
rough-surface contact is the upper limit of roughness within the flat-
tening contact areas (Jackson, 2010a; Jackson et al., 2009). These are
the tallest and most acute peaks that require the highest pressure to be
compressed within the contact areas. While the statistical and multiscale
models discussed above differ from the versions used in Muser et al.
(Miiser et al., 2017), one of the stacked multiscale models used in that
work agreed closely with the predictions of Green’s function molecular
dynamics. However, a key remaining question is which size scales must
be considered and included to accurately predict the
roughness-dependent contact area.

One limitation of some of the prior work on roughness-dependent
properties is its reliance on the assumption of self-affine fractal-like
roughness. While experimental measurements of the real contact area at
the nanoscale show what appears to be a fractal-like structure (Xu et al.,
2018, 2020) (similar to the islands and coastlines originally used by
Mandelbrot (1967) to conceptualize fractals and by Richardson who
observed the phenomenon (Richardson, 1961)), there remain questions
about the fidelity of fractals to real surfaces. Notably, natural surfaces
may have multi-scale roughness but still not adhere to fractal-like
self-affinity (Borodich et al., 2016; Whitehouse, 2001; Zhang and
Jackson, 2017), or may be difficult to effectively characterize experi-
mentally due to instrument limitations (Jacobs et al., 2017). It is well
known that the conventional surface parameters such as roughness,
slope and curvature all change with scale. In contrast, the idea of
characterizing a surface as a fractal is powerful if it can provide a
scale-independent parameter. Whitehouse argued that fractals are not
particularly useful unless this is true (Whitehouse, 2001). He also
showed that typical engineering surfaces follow a Markov process and
produce at least surfaces with a bi-fractal spectrum, if not more varia-
tions with scale. This same multi-fractal structure has been observed by
others as well on both manufactured and natural surfaces (Borri and
Paggi, 2015; Bhushan and Majumdar, 1992).

Another limitation of much of the prior work is the assumption of a
single value of strength, regardless of size-scale. Since the features or
asperities of rough surfaces are composed of a wide range of scales, the
scale-dependence of material properties becomes important. The
“smaller-is-stronger” trend is well established in the nanomechanics
community and is often attributed to a starvation of dislocations and
sources in small volumes. The effective yield strength, especially, will
most likely increase with smaller scales (Broitman, 2016). The limita-
tions of indentation measurements due to scale effects were reviewed by
Broitman (2016). Concepts such as dislocation-based and
strain-gradient theories can be used to account for these scale-dependent
strengths in continuum contact models of rough surfaces (Jackson,
2006). For instance, strain-gradient plasticity was employed in a recent
investigation using a fractal contact model to incorporate the
scale-dependent strength (Zhang et al., 2022). That investigation
showed that the inclusion of strain-gradient plasticity resulted in a
four-fold increase in the asperity contact pressure past the conventional
hardness.

In another example showing scale-dependent strength, Venugopalan
and Nicola (2019) used Green’s function dislocation dynamics to
describe an indenter with self-affine roughness. Surprisingly, due to
limited dislocation availability and geometric effects, Venugopalan and
Nicola predicted contact pressures up to 40 times larger than conven-
tional hardness. Geometric effects such as fractal-driven sharp asperity
aspect ratios and asperity coalescence can increase the contact pressure
in addition to scale-dependent plasticity. These results confirm the
predictions of previous continuum asperity and rough-surface contact
models (Jackson, 2006; Jackson et al., 2015; Krithivasan and Jackson,
2007; Manners, 2008). These investigations find that the hardness or
material strength in fractal models of rough-surface contact must be
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adjusted for scale and shape effects (Venugopalan et al., 2019). There-
fore, one of the aims of the current work is to include scale-dependent
plasticity in rough-surface contact analysis while considering a wider
range of roughness scales.

Although adhesion is not included in the current work, previous
investigations have examined the influence of scales of roughness on
elastic adhesive contact (Papangelo and Ciavarella, 2021; Violano et al.,
2021). They found that for soft surfaces that the adhesion persists with
little influence of the range of roughness included in the analysis (Vio-
lano et al., 2021). In the more recent work (Papangelo and Ciavarella,
2021), the same nearly complete surface spectrum considered in the
current work is employed. Through comparison to experimental results
(Dalvi et al., 2019), they also found that several models adequately
predicted the adhesion between the surfaces for the case of loading
(Persson and Tosatti, 2001). However, for unloading the results are not
as straightforward due to hysteresis. Regardless, they provide fitting
models that predict the experimentally measured adhesion down to
extremely small scales.

The purpose of the present investigation is to elucidate the contri-
bution to elastic-plastic real contact area by different size scales of
roughness. This will be achieved by using two different modeling ap-
proaches, a stacked multiscale model and a statistical model, and by
addressing the two aforementioned limitations of some of the prior
work: the assumption of fractal-like roughness and the assumption of
scale-invariant strength. To eliminate the fractal-like assumption, we
will use a comprehensive characterization of a real-world surface by
Gujrati et al. (2018) that combined transmission electron microscopy
with conventional techniques to characterize roughness spanning eight
orders of magnitude in size. The authors published their work using the
freely available web application contact.engineering (Rottger et al.,
2022) and thus, all data and the measurements and characterization
tools from that investigation are publicly available (Gujrati et al.,
2022a). The statistical models will consider both spherical and sinu-
soidal asperities. The present analysis was also run with and without an
accounting for scale-dependent strength.

2. Analysis of surface-topography data

This work uses as raw input the composite power spectral density
PSD from Gujrati et al. (2018) in its analysis of surface parameters and
rough-surface contact. The power spectral density is a mathematical tool
that separates contributions from different length scales, and is equal to
the square of the Fourier transform of the measured surface heights
(Jacobs et al., 2017). It can be computed for individual measurements,
but also presents a useful method for combining many measurements
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Fig. 1. The composite power spectrum of a surface obtained by multiple
measurements from different instruments.
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across different scales. The composite spectrum, shown in Fig. 1, is the
log-space average of all individual measurements from stylus profil-
ometry, atomic force microscopy, and transmission electron micro-
scopy. All raw data associated with the original surface can be accessed
at Ref. %7,

In several previous studies (Kogut and Jackson, 2005; Sayles and
Thomas, 1978), it has been shown that many surface roughness and
statistical parameters vary with scale. This was one of the driving factors
giving rise to the usage of fractals for describing surfaces (Majumdar and
Tien, 1990). In the paper by Kogut and Jackson (2005), the trends of the
spectral moments were only examined over two orders of magnitude of
length scale from a generated fractal surface. The statistical variance my
changed least with the inclusion of smaller scales, but my and my4 both
changed by many orders of magnitude. Later, Green provided
closed-form solutions to the spectral moments of fractal surfaces
following the Weierstrass-Mandelbrot formulation (Green, 2019).
Brown et al. reviewed the methods to characterize multiscale surfaces
(Christopher et al., 2018). According to Parseval’s law, surface de-
scriptors should be able to be calculated equivalently in real- or
frequency-space, although Kalin et al. (2016) showed that the
spectral-based parameters of rough surfaces often differ from those ac-
quired directly from the surface by deterministic counting of the as-
perities. They attribute the differences to varying definitions of
asperity-peaks between deterministic and statistical analysis.

For the present modeling approach, scale-dependent moments were
calculated, and then used to compute key roughness descriptors using
the method of McCool (1986). First, spectral moments from the com-
posite spectrum were computed according to Gujrati et al. (2018):

Ay
me= / Q) (1) * M PSD - da €}

Je

The wavevector o is often used in previous literature (Gujrati et al.,
2018) and is related to the wavelength A by @ = 27/4. Equation (1) is
numerically integrated to obtain the needed spectral moments (myp, my
and my) over the range of scales available, i.e. between 4, and A, the
upper and lower limit of the wavelengths of the composite spectrum.
Ideally, 4, is oo and 4. is 0, but this is not obtainable for experimental
surface data. A is also referred to as the cut-off wavelength and repre-
sents the smallest scale of roughness considered.

The results of this integration agree well with the real-space surface
parameters measured directly in Gujrati et al. (2018). By interrupting
the integration given in Eq. (1) at different ranges of scale, or in other
words by varying A., one can evaluate the influence of smaller and
smaller surface features as compared to what was available in prior
studies that used conventional topography measurements. The results of
this analysis are shown in Fig. 2. These scale-dependent spectral mo-
ments are similar to the scale-dependent roughness parameters dis-
cussed in Sanner et al. (2022) and for other surfaces in a previous work
(Kogut and Jackson, 2005). The results show that the moments can
change by many orders of magnitude with the inclusion of increasing
details of roughness (especially my and my).

The aforementioned spectral moments are related to real-space pa-
rameters to be used as inputs to the statistical model using the approach
of McCool (1982). In the current work, the statistical model will
consider both spherical and sinusoidal shaped asperities, and therefore
we will start with the original parameters of the spherical asperity-based
statistical models. The expression of my is the same as the square of the
RMS roughness, Ry, ie, mg = (Ry)? (Patil and Eriten, 2014). The
moment my is related to the RMS slope, g, of a line contour such that
(note that for a surface a factor of v/2 must be included)

g=vm (2)

Finally, the moment my is related to the RMS curvature of the sur-
face. However, to find the RMS radius of curvature at the tips of the
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Fig. 2. The normalized spectral moment obtained from the composite spectrum
as increasingly smaller scales of roughness are included (indicated
by wavelength).

asperities on the surface, the following equation from McCool (1987) is
employed. This will be used later when employing the statistical contact
model to evaluate the effect of roughness on contact area.

R=0375,/ % 3)
my

in addition, the areal asperity density is computed as:

M
= 67'[\/5’712

The elastic modulus, E, and the Poisson’s ratio, v, of the UNCD ma-
terial is taken to be 463 GPa and 0.20, respectively, from Ref. (Mohr
et al., 2014). Following the same work, the strength of the UNCD is 1.8
GPa. The composite modulus E* between the surfaces is then calculated
by assuming that the opposing surface is rigid.

Another method to evaluate the surfaces is to compute the amplitude
spectrum of the surface A;, which yields the amplitudes of the sine waves
in the Fourier spectrum. Specifically, the amplitude of the composite
PSD at each wavelength was extracted by taking the square root and
dividing by wavelength. Note that a scaling factor of 1.5 was included
(Randall, 2004) because a Hanning window was used to produce the
PSD. Thus, the function to calculate amplitude from the PSD is

PSD;
8=y\1ss, )
where i denotes the index in the power-spectrum array. This trans-
formation results in the amplitude spectrum shown in Fig. 3.

In an investigation analyzing the multiscale nature of rough-surface
contact using a stacked, or Archard framework, an alternative spectrum
was used: the aspect-ratio spectrum, which is computed by normalizing
the amplitude by wavelength (Jackson, 2010a). The resulting values
indicate the aspect ratio of the asperities at each wavelength, thus
indicating how pointy or blunt the asperities are at each scale. As shown
for elastic and elastic-plastic solutions of wavy surface contact, the
pressure required to flatten the asperities is proportional to this ratio,
A;/2;, to which the variable B has been assigned (Jackson, 2010; Wilson
et al., 2010). The aspect-ratio spectrum using this method is shown in
Fig. 3b.

If B were constant across all scales, this would indicate that a sur-
face’s asperities (the peaks on a rough surface) have the same aspect
ratio or shape across all scales. This structure would indicate a self-
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Fig. 3. Amplitude spectrum computed from the composite PSD (a), and the
wavelength-normalized spectrum of the surface, also called the aspect-ratio
spectrum (b).

similar fractal surface. Alternatively, the plotted B will have a sloped line
for self-affine surfaces. In the resulting curve shown in Fig. 3b, the curve
is nearly linear over many scales, but bends and becomes horizontal
(nearly constant) at smaller wavelengths. Therefore, it appears that the
spectrum of the surface is nearly self-affine across most size scales, but is
nearly self-similar at the very smallest wavelengths (below approxi-
mately 10 nm).

3. Results and discussion

3.1. Elastic and elastic-plastic models of contact for a real-world multi-
scale surface

The amplitude spectrum depicted in Fig. 3 is used as input to the
multiscale model as originally described by Archard (1957) and later
refined by Ciavarella and Demelio (2001) for fractal elastic contact and
by Jackson and Streator (2006) for general elastic-plastic rough surface
contact. The latest iteration of the model uses sinusoid-shaped contact
models to render the asperities characterized by the waves of the spec-
trum (Chu et al., 2021; An et al., 2019). The usefulness of this method is
that it considers the multiscale nature of surfaces but does not assume
that they are purely fractal.
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The stacked multiscale models do make several assumptions that
result in limitations. The version of the stacked models used in this work
assume that all of the asperities at a given scale have uniform amplitudes
and wavelengths. Therefore the statistical variation at these scales is not
considered. In addition, the model uses an elastic-perfectly plastic wavy
contact model that neglects strain hardening. Adhesion is also neglected,
but in many cases may not be important. The stacked model assumes
that the scales of asperities are stacked in mechanical series, with
smaller scale asperities higher in the stack. The scale is defined by the
wavelength of the asperities. This would neglect that a small scale
wavelength of asperities might actually be taller than other scales and
bypass the hierarchal stacking. However the model does capture some
important mechanisms, including the coupling and coalescing between
adjacent asperities, and that in many cases smaller scale asperities
would be superimposed upon larger asperities.

The results of the multiscale model using the full amplitude spectrum
are shown in Fig. 4. Although the model predicts different contact areas
for different loads, and with and without plastic deformation included,
interestingly the contact area appears to converge at the same wave-
length of approximately 5.65 nm. This scale or wavelength is also close
to the range predicted by Thimons et al. (2021). This wavelength
actually corresponds to a peak in the B value shown in the flattened
region of Fig. 3b. This wavelength location turns out to also be the
maximum value of B (0.0463) for this surface. That this maximum value
of B corresponds to the real contact area agrees in concept with a pre-
vious simplified version of the model (Jackson, 2010a; Jackson et al.,
2009) that theorizes that the real area of contact is approximately equal
to force divided by the pressure to flatten the most resistant peaks. In
this case the most resistant peaks would be the wavelengths with the
highest value of B. Although the scale of the most resistant peaks could
shift with scale-dependent strength (See Sect. 3.2). In addition, Fig. 4
shows that the real contact pressures predicted by the elastic-plastic
models are approximately eight times higher than the hardness
(conventionally three times the yield strength). This is consistent with
earlier investigations where contact pressure exceeded the hardness
(Krithivasan and Jackson, 2007; Manners, 2008). This occurs from as-
perities coalescing and resulting in hydrostatic stress rather than
deviatoric stress.

In addition to the multi-scale model, four different versions of sta-
tistical rough surface contact models were also used to make predictions
of the real area of contact (see Table 1). All of the statistical models
assume a Gaussian height distribution. The previously described spectral
moments and statistical parameters are employed (Egs. (1)-(4)). The
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Fig. 4. Real contact area predicted by the stacked multiscale type model as
smaller wavelength scales are included.
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Table 1
List of considered statistical rough surface contact models.

Asperity Model Abbreviation References

Elastic Hertz Greenwood and Williamson
Stat. (1966)
EP Sphere Stat. Jackson and Green (2006)

Elastic Hertz Statistical Model

Elastic-plastic Spherical
Statistical Model
Elastic Sinusoidal Statistical

Elastic Sine (Chu et al., 2021; Johnson

Model Stat. et al., 1985)
Elastic-plastic Sinusoidal EP Sine. Stat. (Chu et al., 2021; Ghaednia
Statistical Model et al., 2017)

first elastic statistical model employs the elastic Hertz contact solution
for the asperities (i.e. the Greenwood and Williamson model, 1966).
Elastic-plastic spherical asperity contact was also used in the statistical
model for comparison (see (Jackson and Green, 2006) for details). In the
elastic-plastic spherical asperity model the ratio between the fully
plastic pressure (i.e. hardness) and yield strength decreases as the con-
tact area increases. In addition, some of the taller asperities can be
heavily loaded and flattened. In those cases the contact area of a single
asperity was limited by the projected area of the spherical asperity
(zR2).

As an alternative, elastic and elastic-plastic sinusoidal asperity
models (Johnson et al., 1985) were also used within the statistical
framework (details are in (Chu et al., 2021)). There are multiple
methods of converting the statistical surface parameters to amplitude, A,
and wavelength, /, in the statistical models; the present technique was
proven effective in prior work (Chu et al., 2021). In this method the
wavelength of the asperities is obtained based on the areal asperity
density, or

A== 6)
n

Next, the amplitude is predicted based on the asperity curvature as

1/2)°
A= E@) @

Other details of the elastic-plastic sinusoidal asperity model are
found in (Chu et al., 2021; Ghaednia et al., 2017).

The statistical model, although probably the most widely used rough
surface contact model, is also built upon assumptions and has limita-
tions. The statistical model used in this work assumes that all asperities
possess the same average radius of curvature, R, even though they have
different heights that are based on a Gaussian distribution. This of course
neglects that asperities can vary in curvature, can be elliptical, and not
follow the Gaussian distribution. In contrast to statistical models more
closely related to the original GW model, the current model does
consider some lateral interaction between asperities and substrate
deformation by employing elastic and elastic-plastic sinusoidal asperity
models as previously noted. One might observe that the stacked and
statistical model assumptions differ and complement each other.

The resulting predictions of the elastic and elastic-plastic spherical
statistical models are shown in Fig. 5. Note that it is plotted differently
than the multiscale model because the statistical models are formulated
to predict contact area and force as functions of mean surface separation,
whereas the stacked multiscale model makes predictions of contact area
directly from the force. As expected, the elastic statistical contact models
predict much lower contact areas than the elastic-plastic version of the
models. The elastic models appear to be exceptionally dependent on the
cut-off wavelength (i.e., A, the smallest considered wavelength of the
spectrum). The contact area varies by approximately one order of
magnitude when the cutoff wavelength ()\.) is varied by two orders of
magnitude. However, the elastic-plastic models do not appear to vary as
much with cutoff wavelength (A.). This agrees with the multiscale model
findings that at a wavelength on the order of 10 nm the predicted contact
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Fig. 5. Real contact area predicted by statistical models as different ranges of
wavelength scales are included. The elastic-plastic sphere-based statistical
models all fall on nearly the same curve (red, green and black). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)

area levels off, which is approximately 10 times 4, (the smallest
measured wavelength). Following this trend, the prediction of the
elastic-plastic statistical model for 1004, appears to start to deviate
slightly from the predictions considering smaller scales.

Since the scales of considered spectrum clearly influence the pre-
dictions of the multiscale model, a similar evaluation of the statistical
models is desirable. Therefore the real contact area from the statistical
model was calculated at constant loads as a function of cutoff wave-
length. To accomplish this the results for the specific loads must be
searched for numerically since, in the statistical model, contact area and
force equations are functions of the surface separation, as opposed to the
multiscale model which are functions of load. The resulting predictions
of the elastic and elastic-plastic spherical and sinusoid asperity statisti-
cal model are shown in Fig. 6. From Fig. 6, only the elastic-plastic
spherical based statistical models make predictions that are in qualita-
tive agreement with the multiscale models. The slope of the elastic
Hertz-based statistical model does start to flatten with smaller scales, but
it never becomes horizontal. The elastic sinusoidal-based statistical
model is not shown in Fig. 6a, but Fig. 6b shows the isolated results of
both the sinusoidal-based statistical models. All versions of the statistical
models suggest that with the inclusion of smaller scales of asperities,
that the contact area decreases. Both the elastic-plastic spherical and
sinusoidal asperity-based statistical models predict a marked increase in
contact area compared to the elastic models starting at a cutoff wave-
lengths (4c) below 1-10 pm. The elastic sphere and sinusoidal statistical
models do not have a convergence scale or wavelength at which the
contact area no longer decreases. This is probably due to the funda-
mental differences in the statistical and multiscale methodologies, and
the spherical and sinusoidal asperity behaviors, which will be discussed
in greater detail in Section 3.3. Nonetheless, the elastic-plastic spherical
statistical models do predict that the contact area converges or stops
decreasing with scale at a cutoff wavelength (4.) of approximately 100
nm, which is similar to that predicted by the multiscale models. How-
ever, even the contact area predicted by the elastic-plastic spherical-
based statistical does decrease in the last decade of included scales. This
decrease in contact area at the smallest scales does not appear to
decrease lower than when the contact area dipped at approximately 1
pm. As with the multiscale models, the wavelength of convergence of the
elastic-plastic sphere-based statistical model appears to be independent
of load, at least within the range of loads considered.

The multiscale stacked model and the statistical model are
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Fig. 6. Real contact area predicted by statistical models for constant loads as a function of the cutoff wavelength based on (a) elastic Hertz, elastic-plastic spherical

and elastic-plastic sinusoidal asperities and (b) elastic sinusoidal asperities.

formulated from different mechanical and mathematical frameworks.
The multiscale model assumes that the scales of asperities are stacked on
each other, but there is no variation in their height within one scale. In
contrast, the statistical models assume that all of the asperities are on the
same scale (via the radius of curvature) but have different heights
following the Gaussian distribution. Despite these differences, they both
make similar qualitative predictions about the influence of smaller
scales of asperities on contact area. They both predict that the contact
area reduces with smaller scales. The stacked multiscale models and
elastic plastic spherical statistical model also all predict that a scale of
saturation or convergence is reached.

3.2. The effect of including a scale-dependent strength

As mentioned, the strength of many materials often increases at

smaller scales. Since rough-surface contact occurs on different scales
simultaneously (ranging from the smallest to largest asperities), and at
different loads on different scales of asperities, then the asperity contact
areas will cover many orders of magnitude in size. In this work the
strain-gradient model was used to approximately include the depen-
dence of strength on size scale. This is similar to several previous studies,
such as where Jackson (2006) included scale effects in a statistical
model, and other similar models that followed using a stacked multiscale
framework (Jackson et al., 2015). The present advantage over prior
work is the consideration of strain-gradient plasticity over the broad
window of surface topography included here. Fleck et al. developed the
strain-gradient plasticity theory as a way to consider these
scale-dependent effects (Fleck et al., 1994). Using this theory, Nix and
Gao (1998) predicted the hardness of a contact to be approximated by:
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(8

where S, is the macroscopic yield strength, S, is the corrected scale-
dependent yield strength, h* is a length scale for the effect, and hj, is
the depth of plastic deformation caused by the indentation. Eqn 8 is then
used as part of the multiscale surface contact model to consider these
scale-dependent effects. The main difficulty in using this model is
finding the values of h*. Usually h* is on the order of micrometers for
polycrystalline materials.

First, note that the upper limit of yield strength is often considered to
be approximately a tenth of the elastic modulus, E (Ashby et al., 2018).
In this case that would be approximately 40-45 GPa, which is in the
upper end of what is predicted in the study on the properties of UNCD by
Mo et al. (2012) for indentations of a few nanometers. The hardness has
been reported to be 88 GPa in another paper which results in strength of
approximately 29 GPa at indentations depths of 10-40 nm using a
Vickers indenter (Krauss et al., 2001).

For modeling purposes and to approximately demonstrate the in-
fluence of scale-dependent strength in this work, a value for h* of 5 pm is
assumed. Then Eq. (8) is used both in the previously described multi-
scale and statistical models. In the multiscale model, the yield strength is
calculated from the deformation of the previous scale using equations
relating contact pressure to average surface separation at that scale
(Rostami and Jackson, 2013). The value of h, is then given by:

hp:A_g )

where from (Rostami and Jackson, 2013)

5 5/2
B A.PTJrAz
8 P @
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In the statistical model, h, is calculated based on the asperity-level
interference before the area and force are calculated. Specifically, h,
=h-d

The resulting contact area predicted by the multiscale model
including the strain-gradient strength (Eq. (8)) are shown in Fig. 7 as a
function of the cutoff wavelength 2. (the smallest wavelength included
in the model). Note that the nominal pressures in the legend are
normalized by the bulk or macro-scale hardness, H, that does not include
strain-gradient plasticity. As expected, including the strain-gradient
model results in the models predicting lower contact areas, because
the effective yield strength is higher. The final contact areas predicted by
the strain-gradient elastic-plastic models appear to approach the purely
elastic models when all the asperity scales are included, although there
are minor differences at intermediate scales. Essentially, for the UNCD
surface and properties used in this work, the strain-gradient strength
causes the multiscale model to become elastic on the final asperity scales
in contact. Also, the contact area appears to converge and not decrease
with additional scales at a wavelength between 1 and 10 nm. This
suggests that the asperities at scales smaller than this are effectively
flattened out. As smaller scales are included the contact area decreases,
which also increases the contact pressure. This pressure eventually
overcomes all asperities at smaller scales, even despite the increasing
hardness at these scales.

Finally, the results of the spherical asperity-based statistical model

Mechanics of Materials 184 (2023) 104746

o
<

Elastic-plastic Multiscale F/AO/H=O.25
= Elastic Multiscale F/A /H=0.25

—-=- Elastic-plastic Multiscale F/AO/H=0.5
= = =Elastic Multiscale F/A /H=0.5

........ Elastic-plastic Multiscale F/AO/H=1 .0
..... Elastic Multiscale F/A0/H=1 .0

2 " " |

10710 108 10® 10 102

Fig. 7. Scale-dependent real contact area predicted by the stacked multiscale
model with a strain-gradient strength. Of course the elastic calculations are
unaffected by the strength and so are identical to the curves shown in Fig. 4, but
they are shown again here for reference.

including the strain-gradient strength are plotted in Fig. 8 and the si-
nusoidal asperity-based results are shown in Fig. 9. The statistical
models with strain-gradient plasticity were again recalculated at con-
stant loads while varying the cutoff wavelength (A.). As with the mul-
tiscale models, the contact area predicted when including the scale-
dependent strength generally decreases the contact area because the
strength is increased. However, in contrast to the multiscale model
presented in Fig. 7, the predictions of the elastic-plastic spherical and
sinusoidal asperity-based statistical models still differ from the purely
elastic models’ predictions. The results also suggest that the elastic
models depend more on smaller-scale roughness features than when
plasticity is included. The smaller spherical asperities get plastically
flattened out, even despite their increasing scale-dependent strength.
However, at the smallest wavelengths of less than a nanometer, the
contact area predicted by the elastic-plastic spherical-based statistical
models begin to decrease again. For the elastic-plastic spherical asperity-
based statistical model results, the contact area appears to approach a
converged prediction at a cutoff wavelength of approximately 0.1 pm,
which is earlier than but approximate agreement with the multiscale
models, and also in approximate agreement with a previous investiga-
tion focused on the effect of roughness scale on adhesion (Thimons et al.,
2021). Despite the differences in the underlying assumptions of the
multiscale and statistical models, they yield similar trends. Note that this
scale of convergence may also depend on the material properties of the
surfaces, and the roughness structure outside of these scales.

3.3. Considering all results together

It is interesting to compare the elastic and elastic-plastic curves in
Figs. 8 and 9 and the overall results of all versions of the models. All of
the models predict an order of magnitude change in contact area with an
order of magnitude change in load, which suggests that they predict an
approximately linear relationship between contact area and load, as the
original statistical and stacked multiscale models did. As the cutoff
wavelength (1.) decreases, the real contact area begins to generally
decrease for all the models; but at different rates that change with the
inclusion of smaller scales and in some cases actually increase, but only
momentarily. These differences in the statistical model results arise
because of the wavy surface asperities used in the statistical models are
effectively stiffer than the elastic Hertz and elastic-plastic spherical
asperity models. In addition, the elastic-plastic sinusoidal asperity
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Fig. 8. Scale-dependent real contact area predicted by spherical asperity-based statistical models with the strain-gradient strength included. Once again, elastic

calculations are unaffected and are shown here for reference.
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Fig. 9. Real area of contact predicted by strain-gradient sinusoid-based statis-
tical models at constant loads as a function of the cutoff wavelength.

models include the effect of a substrate below them, but the elastic-
plastic spherical models do not, which a recent work suggests could be
influential (Liu et al., 2023).

The stacked multiscale and spherical asperity based statistical
elastic-plastic models predict that, below a certain scale, the roughness
no longer influences the real area of contact. In those cases, the contact
pressure is sufficient that smaller wavelengths are eventually flattened
and do not further affect the contact area. This also holds when scale-
dependent strength is considered, but this case comes into closer
quantitative agreement with the elastic model, because the strength
increases for the smaller asperities. The statistical models are mostly in
agreement with the multiscale model trends, except that the elastic
Hertz and the sinusoid asperity based statistical models does not
converge (level off) as smaller scales of asperities are included.

The results show that most of the statistical models do not converge
as cut-off wavelength decreases, except for the elastic-plastic spherical
statistical model. This could partly be due to the decoupling of asperities
by the statistical model, but even wavy asperities which do include some

coupling still do not converge with the inclusion of additional scales.
Another possible reason is that the fully plastic pressure (i.e. hardness)
decreases with deformation for the sphere contact geometry, where in
contrast it increases for sinusoid geometries. The reason for this is that
periodic sinusoidal asperities coalesce at higher loads and the stress
approaches a hydrostatic state. According to distortion energy yield
theory, hydrostatic stress does not cause plastic deformation. This re-
sults in the elastic-plastic sinusoid asperities being more resilient than
the spherical ones and therefore less likely to flatten with the inclusion
of smaller scales.

Most importantly, the statistical model uses a different mathematical
framework that does not consider how smaller-scale asperities might be
under higher loads, as the multiscale model does. In reality, smaller
asperities or roughness features are usually superimposed upon larger
features. This is similar to the concept of self-similarity in fractal
roughness. In the multiscale model the pressure increases with the
stacking of each smaller scale of asperities and results in a higher like-
lihood of being flattened. Since the statistical models do not consider
this, their results should be given less weight in determining the trends
that apply to real-world surfaces. More complex statistical models that
include variation of curvature might correct this (Bush et al., 1975).

Other than the cases of sinusoidal and elastic spherical statistical
models, the predictions suggest that most materials will have a certain
scale of features below which the roughness will no longer reduce the
area of contact. Of course this may vary depending on the particular
geometrical structure of the surfaces and the material properties. As
suggested in Ref. (Jackson, 2010), this might depend on the overall slope
of the surface spectrum, which relates to the self-affinity or
self-similarity of the spectrum. In general, if surfaces are more self-affine
and fractal-like in nature, than the asperities will have taller and thinner
aspect ratios with smaller scales, and thus be more resistant to flat-
tening. For the nearly complete surface spectrum considered in this
work, the surface appeared self-affine at large scales, but then become
more self-similar at smaller scales (see Fig. 3 where the asperity aspect
ratio B approaches a constant value at small wavelengths). This enables
the ability of the increasing contact pressure to overcome the smaller
asperities and flatten them. Note that real surfaces are not exactly fractal
and the behavior may deviate from that predicted by pure fractal-based
modeling. Adhesion is also neglected in this work, though depending on
the surface energies, could be important in some cases. Despite not
including adhesion, the predictions of a critical scale of roughness are
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consistent with what has been observed experimentally in an adhesive
contact (Thimons et al., 2021).

4. Conclusions

In this investigation, multiscale stacked and statistical models of
rough-surface contact were implemented by using the nearly complete
spectrum of a rough surface. As expected, all the models predict that
contact area will decrease as smaller scales of asperities are included.
The elastic Hertz asperity-based and sinusoidal asperity-based statistical
models predicted that contact area continues to decrease as smaller and
smaller scales; however, all other models (elastic-plastic spherical
asperity-based statistical, elastic multiscale, elastic-plastic multiscale)
predicted that the contact area flattened out, or converged, at a partic-
ular wavelength. Even when scale-dependent strength is considered, this
convergence still occurred, though there was a shift in the relevant size
scale. It is probable that the critical size at which convergence occurs
will vary based on the particular geometrical and material structure of a
surface. The physical implication of this result is that, in some cases,
roughness need only be considered down to a certain critical size, below
which it will have no effect on contact area. Since the statistical models
do not consider the scaled hierarchal nature of surfaces, they may be less
able to make this prediction accurately. Additionally, all of the models
predict that, while plasticity does allow the contact area to converge and
reduce the pressure in comparison to the elastic case, the hardness does
not limit the contact pressure.
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