Emerg Infect DisEmerging Infect. DisEIDEmerging Infectious Diseases1080-60401080-6059Centers for Disease Control and Prevention24751182401279313-078310.3201/eid2005.130783Letters to the EditorLetterLinezolid-Resistant Staphylococcus epidermidis, Portugal, 2012Linezolid-Resistant Staphylococcus epidermidisBarrosMarianaBranquinhoRaquelGrossoFilipaPeixeLuísaNovaisCarlaFaculdade de Farmácia da Universidade do Porto, Porto, PortugalAddress for correspondence: Carla Novais, Laboratório de Microbiologia. Faculdade de Farmácia da Universidade do Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; email: casilva@ff.up.pt52014205903905Keywords: Staphylococcus epidermidislinezolid resistancebiofilmoutbreak23S rRNA mutationsL3 protein mutationsbacteria

To the Editor: Linezolid is a therapeutic option for skin and soft tissue infections and pneumonia caused by multidrug-resistant gram-positive bacteria (e.g., Staphylococcus spp.), which occur at higher rates in Portugal than in other European countries (www.ecdc.europa.eu/en/publications/Publications/annual-epidemiological-report-2013.pdf). Staphylococcus epidermidis are skin and mucosal commensal bacteria; infections in humans are mostly linked to indwelling medical devices. The ability of S. epidermidis to acquire resistance to antimicrobial drugs and to produce biofilm can seriously compromise the success of therapy; in many institutions worldwide, rates of methicillin resistance are >70% (1). Rates of S. epidermidis linezolid resistance on various continents have been low and are associated with mutations in the central loop of 23S rRNA V domain or ribosomal proteins (L3, L4, and L22) and with acquisition of the cfr gene, which codifies for ribosomal methyltransferase (13).

To our knowledge, in Portugal only 1 linezolid-resistant S. epidermidis isolate, from a dog with severe otitis, has been described (4). We report nosocomial emergence of methicillin- and linezolid-resistant S. epidermidis in Portugal.

We characterized 5 linezolid-resistant Staphylococcus isolates recovered during May–November 2012 from blood and catheters of patients in 4 wards of a 362-bed hospital in central Portugal. The origin of 1 isolate is unknown. Epidemiologic features are described in the Table. The patients had received linezolid during the present (n = 2 patients) or previous (n = 2 patients) hospitalizations, suggesting that the latter 2 patients could have been colonized with linezolid-resistant strains when discharged from the first hospitalization. Information about receipt of linezolid was not available for 1 patient.

S. epidermidis was identified by using a Vitek II system (bioMérieux, Marcy L’Étoile, France), and susceptibility to antimicrobial drugs was studied by using agar dilution (linezolid, vancomycin) or disk diffusion (another 10 drugs; Table) (5). All isolates were screened by PCR and sequenced for the cfr gene and for mutations in the 23S rRNA V domain and in genes (rplC, rplD and rplV) encoding the L3, L4, and L22 ribosomal proteins (68). Clonal relatedness was determined by pulsed-field gel electrophoresis (macrorestriction with SmaI) and by multilocus sequence typing (www.cdc.gov/hai/pdfs/labsettings/ar_mras_pfge_s_aureus.pdf and http://sepidermidis.mlst.net). S. epidermidis from patient 1 was searched for in vitro adherence to abiotic surfaces by using a biomass quantification assay (9) and strain ICE9 as a positive control.

All S. epidermidis isolates were resistant to multiple drugs, including linezolid (MIC>32 mg/L), cefoxitin, chloramphenicol, cotrimoxazole, ciprofloxacin, clindamycin, and aminoglycosides, and susceptible to only 4 drugs tested, including vancomycin (MIC = 2 mg/L) (Table). To characterize linezolid resistance, we compared the study isolates with linezolid-susceptible S. epidermidis RP62A/American Type Culture Collection 35984 sequence (GenBank accession no. CP000029). Study isolates contained the mutations T2530A, T2504A, and G2631T, although T2504A and G2631T were also present in linezolid-susceptible S. epidermidis RP62A (1,2). The most commonly reported G2576T mutation was not detected (1,2). We also compared study isolates with S. epidermidis RP62A and observed nucleotide mutations consistent with L94V (L101V from S. epidermidis American Type Culture Collection 12228, not associated with linezolid resistance) and G152D amino acid changes (2,8) and amino acid changes in the new D159E and A160P in L3 ribosomal protein. Mutations in this protein were linked to linezolid resistance, although definitive conclusions are not available (8). The cfr gene and mutations in ribosomal proteins L4 or L22 were not detected in the study isolates.

Epidemiologic features and antimicrobial drug resistance of linezolid -resistant <italic>Staphylococcus epidermidis</italic> isolates from a hospital, Portugal, 2012*
CharacteristicPatient no.†
12345
Epidemiologic features
Date of isolation2012 May 82012 Aug 72012 Oct 232012 Nov 72012 Nov 11
Hospital wardMen’s surgeryUnknownMedicine IEmergency unit‡Emergency unit‡
PathologyGastric neoplasia§¶UnknownMultiple§Acute lung edemaMultiple
Clinical sampleCatheterBloodCatheterBloodBlood
Patient sex/age, yM/75UnknownF/87M/78M/87
Previous linezolid YesUnknownYes#Yes‡Yes‡
PFGE typeAAAAA
Sequence type2**
Biofilm production (OD570nm)
Strong (2.33 ± 0.34)**††




Drug resistance
Linezolid (MIC, mg/L)R (32)R (32)R (32)R (32)R (32)
Vancomycin (MIC, mg/L)S (2)S (2)S (2)S (2)S (2)
Cefoxitin RRRRR
GentamicinRRRRR
TobramycinRRRRR
CiprofloxacinRRRRR
ClindamycinRRRRR
ErythromycinSISIS
Quinupristin–dalfopristinSSSSS
ChloramphenicolRRRRR
TetracyclineSSSSS
Cotrimoxazole
R
R
R
R
R
Molecular features
cfr gene
23S rRNA mutations
T2504A+++++
G2631T+++++
T2530A+++++
L3 ribosomal protein mutations
Leu94Val+**
Gly152Asp+**
Asp159Glu+**
Ala160Pro+**
L4 or L22 ribosomal protein mutationsNone

*PFGE, pulsed-field gel electrophoresis; OD, optical density; R, resistant; S, susceptible; I, Intermediate resistance; –, negative; +, positive. Blank cells indicate not tested.
†A sixth linezolid-resistant S. epidermidis isolate was detected in December 2012; however, access to this isolate was not possible during this study.
‡Patients 4 and 5 were hospitalized in Medicine II a month before linezolid-resistant S. epidermidis was isolated. Therapy with linezolid was started during this first hospitalization. For patient 4, duration of linezolid therapy was at least 12 d. For patient 5, duration of therapy is unknown.
§Long-stay hospitalization.
¶Followed up in oncology ward since 2011.
#Patient 3 received linezolid for 11 d before linezolid-resistant S. epidermidis was detected.
**Studied in S. epidermidis from patient 1 only, representative isolate of the PFGE type A.
††For the interpretation of the results, the cutoff optical density (ODc) was defined as 3 SDs above the mean OD of the negative control (culture medium). Strains were classified as nonadherent (OD<ODc), weakly adherent (ODc<OD<2×ODc), moderately adherent (2xODc<OD<4×ODc), or strongly adherent (4×ODc<OD).

All isolates recovered had the same pulsed-field gel electrophoresis type and belonged to sequence type (ST) 2/clonal complex (CC) 5 (ST2 formerly belonged to CC2) (10) also detected among linezolid-resistant S. epidermidis from Europe, Brazil, and the United States (13). S. epidermidis from patient 1, considered representative of the observed clone, revealed a high ability to adhere to abiotic surfaces and grow in the biofilm form, which can facilitate infections associated with indwelling medical devices. This strain was classified as strongly adherent and had higher optical density (OD570nm = 2.33 ± 0.34) than a blank sample (culture medium: Luria Bertani broth + glucose; OD570nm = 0.2 ± 0.03). The OD570nm of the positive-control was 2.69 ± 0.44.

S. epidermidis ST2/CC5 is disseminated in hospital settings worldwide and is characterized by a high level of genetic diversity, an increased recombination/mutation rate, biofilm production ability, and acquisition of a high number of staphylococcal cassette chromosome mec elements (10). In Portugal, S. epidermidis ST2/CC5 has been observed in the community (10). We report emergence of methicillin- and linezolid-resistant S. epidermidis in a hospital in Portugal and its persistence for at least 7 months. Identification of the successful multidrug-resistant S. epidermidis ST2/CC5 clonal lineage highlights the need for strict infection control procedures and revision of therapeutic strategies (e.g., linezolid use for the treatment of methicillin-resistant Staphylococcus spp. only when vancomycin is not a treatment option because of elevated MIC or clinical failures) to preserve therapeutic effectiveness of linezolid. Effective control of linezolid-resistant S. epidermidis, including among hospital-discharged patients who had received linezolid, is critical for preventing the potential for an epidemic in this hospital, and, on a larger scale, in Portugal, as has occurred for other gram-positive methicillin-resistant S. aureus and vancomycin-resistant enterococci.

Suggested citation for this article: Barros M, Branquinho R, Grosso F, Peixe L, Novais C. Linezolid-resistant Staphylococcus epidermidis, Portugal, 2012 [letter]. Emerg Infect Dis [Internet]. 2014 May [date cited]. http://dx.doi.org/10.3201/eid2005.130783

Acknowledgments

We thank Conceição Faria, Sofia Almeida, and other members of the Serviço de Patologia Clínica do Centro Hospitalar da Cova da Beira (Covilhã, Portugal), who kindly provided the linezolid-resistant S. epidermidis.

This project was funded by a research grant from the Fundação para a Ciência e Tecnologia (PEst-C/EQB/LA0006/2011). R.B. is supported by a PhD fellowship of the Fundação para a Ciência e Tecnologia (grant no. SFRH/BD/61410/2009).

ReferencesMendes RE, Deshpande LM, Costello AJ, Farrell DJ. Molecular epidemiology of Staphylococcus epidermidis clinical isolates from U.S. hospitals. Antimicrob Agents Chemother. 2012;56:465661 . 10.1128/AAC.00279-1222687512de Almeida LM, Lincopan N, Araújo MR, Mamizuka EM. Dissemination of the linezolid-resistant Staphylococcus epidermidis clone ST2 exhibiting the G2576T mutation in the 23S rRNA gene in a tertiary-care hospital, Brazil. J Antimicrob Chemother. 2012;67:7689 10.1093/jac/dkr53822186879Liakopoulos A, Spiliopoulou I, Damani A, Kanellopoulou M, Schoina S, Papafragas E, Dissemination of two international linezolid-resistant Staphylococcus epidermidis clones in Greek hospitals. J Antimicrob Chemother. 2010;65:10701 . 10.1093/jac/dkq06520207718Seixas R, Monteiro V, Carneiro C, Vilela CL, Oliveira M. First report of a linezolid-resistant MRSA (methicillin resistant Staphylococcus aureus) isolated from a dog with a severe bilateral otitis in Portugal. Revista Veterinaria. 2011;22:814Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: twentieth informational supplement M100–S21. Wayne (PA): The Institute; 2010Kehrenberg C, Schwarz S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother. 2006;50:115663 10.1128/AAC.50.4.1156-1163.200616569824Toh SM, Xiong L, Arias CA, Villegas MV, Lolans K, Quinn J, Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol Microbiol. 2007;64:150614 10.1111/j.1365-2958.2007.05744.x17555436Locke JB, Hilgers M, Shaw KJ. Novel ribosomal mutations in Staphylococcus aureus strains identified through selection with the oxazolidinones linezolid and torezolid (TR-700). Antimicrob Agents Chemother. 2009;53:526574 10.1128/AAC.00871-0919752277Novais A, Pires J, Ferreira H, Costa L, Montenegro C, Vuotto C, Characterization of globally spread Escherichia coli ST131 isolates (1991 to 2010). Antimicrob Agents Chemother. 2012;56:39736 10.1128/AAC.00475-1222491693Rolo J, Lencastre H, Miragaia M. Strategies of adaptation of Staphylococcus epidermidis to hospital and community: amplification and diversification of SCCmec. J Antimicrob Chemother. 2012;67:133341 10.1093/jac/dks06822422509