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A Bayesian Approach to Estimating Background Flows from a Passive Scalar\ast 

Jeff Borggaard\dagger , Nathan Glatt-Holtz\ddagger , and Justin Krometis\S 

Abstract. We consider the statistical inverse problem of estimating a background flow field (e.g., of air or
water) from the partial and noisy observation of a passive scalar (e.g., the concentration of a solute),
a common experimental approach to visualizing complex fluid flows. Here the unknown is a vector
field that is specified by a large or infinite number of degrees of freedom. Since the inverse problem
is ill-posed, i.e., there may be many or no background flows that match a given set of observations,
we regularize it by laying out a functional analytic and Bayesian framework for approaching this
problem. In doing so, we leverage substantial recent advances in statistical inference and adjoint
methods for infinite-dimensional problems. We then identify interesting example problems that
exhibit posterior measures with simple and complex structure. We use these examples to conduct a
large-scale benchmark of Markov chain Monte Carlo methods developed in recent years for infinite-
dimensional settings. Our results indicate that these methods are capable of resolving complex
multimodal posteriors in high dimensions.
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1. Introduction. A common approach to investigating complex fluid flows is through
measurement of a substance moving within the fluid. For example, dye, smoke, or neutrally
buoyant particles are injected into fluids to visualize vortices or other structures in turbulent
flows [34, 35, 58, 51]. In this work we consider the inverse problem of estimating a background
fluid flow from partial, noisy observations of a dye, pollutant, or other solute advecting and
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BAYESIAN ESTIMATION OF FLOWS FROM A PASSIVE SCALAR 1037

diffusing within the fluid. The initial condition is assumed to be known, so the problem can
be interpreted as a controlled experiment, where a substance is added at known locations and
then observed as the system evolves to investigate the structure of the underlying flow.

The physical model considered is the two-dimensional advection-diffusion equation on the
periodic domain T2 = [0, 1]2:

(1.1)
\partial 

\partial t
\theta (t,x) =  - v(x) \cdot \nabla \theta (t,x) + \kappa \Delta \theta (t,x), \theta (0,x) = \theta 0(x).

Here, the following hold:
\bullet \theta : R+ \times T2 \rightarrow R is a passive scalar, typically the concentration of some solute of
interest, which is spread by diffusion and the motion of a (time-stationary) fluid flow
v. This solute is ``passive"" in that it does not affect the motion of the underlying fluid.

\bullet v : T2 \rightarrow R2 is an incompressible background flow, i.e., v is constant in time and
satisfies \nabla \cdot v = 0.

\bullet \kappa > 0 is the diffusion coefficient, which models the rate at which local concentrations
of the solute spread out within the solvent in the absence of advection.

We obtain finite observations \scrY \in Y (e.g., RN or CN ) subject to additive noise \eta , i.e.,

(1.2) \scrY = \scrG (v) + \eta , \eta \sim \gamma 0,

for some measure \gamma 0 related to the precision of the observations. Here, \scrG : H \rightarrow Y is the
parameter-to-observable, or forward, map. This \scrG associates the background flow v, sitting
in a suitable function space H, with a finite collection of measurements (observables) of the
resulting \theta = \theta (v). The observations may take a number of forms, such as

\bullet spatial-temporal point observations: \scrG j(v) = \theta (tj ,xj ,v) for tj \in [0, T ] and xj \in [0, 1]2;
\bullet spectral components: \scrG j(v) = \langle \theta (tj , \cdot ,v), e\bfk j

\rangle L2(T2) for some basis \{ e\bfk \} of the scalar
field \theta ;

\bullet local averages: \scrG j(v) = 1
| \scrD j | 

\int 
\scrD j
\theta (t,x,v)dx dt, for subdomains \scrD j \subset [0, T ] \times [0, 1]2,

where | \scrD j | denotes the volume of \scrD j .
\bullet other physical quantities of interest from \theta , such as variance, dissipation rate, or
structure functions.

This work will focus on point observations as the most obvious practical implementation.
However, we note that the methodology outlined in this manuscript is quite general. Moreover,
while we have assumed a divergence-free flow, point observations, and periodic boundary con-
ditions, the framework herein could be adapted to other assumptions via a different definition
of the forward map \scrG .

As we illustrate below, the proposed inverse problem is ill-posed, i.e., there may be many
or no background flows v that match a given dataset \scrY . To address this issue, we adopt a
Bayesian approach, incorporating prior knowledge of background flows and descriptions of the
observation error to develop probabilistic estimates of v. Summaries of the Bayesian approach
to inverse problems can be found in [23] and [33]. Moreover, since the target of the inversion,
the background flow v, is infinite-dimensional, this work will leverage the considerable amount
of recent research in infinite-dimensional Bayesian inference, grounding much of our approach
in the overview of the field provided in [20]. To compute observables, such as the mean,D
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variance, or (normalized) histogram of a given quantity on v or \theta , we use recently developed
Metropolis--Hastings Markov chain Monte Carlo (MCMC) algorithms that are well-defined in
infinite dimensions. We focus on preconditioned Crank--Nicolson (pCN) [18] and Hamiltonian
(or Hybrid) Monte Carlo (HMC) [4] samplers; some results for the independence sampler
and Metropolis-adjusted Langevin (MALA) methods (see descriptions in, e.g., [20] and [3],
respectively) are provided in the supplementary material.

This work makes two important contributions. We lay out a Bayesian framework for
the estimation of divergence-free background flows from observations of scalar behavior, a
common experimental approach to investigating complex fluid flows [34, 35, 58, 51]. In doing
so, we leverage recent advances in the theory of Bayesian inference and adjoint methods in
high dimensions. We then identify two interesting examples for which the resulting posterior
measures have very different structures---one fairly simple and one highly multimodal. We
use these two examples to conduct a systematic, large-scale numerical study to benchmark
the convergence of the MCMC methods mentioned above for ``easy"" and ``hard"" problems.
This is a companion paper to [10], where we investigate the behavior of the posterior measure
as the number of point observations grows large (see also [40]), and to [9], where we identify
a computationally efficient approach to computing the forward map.

The structure of the paper is as follows. Section 2 defines our parametrization of the
space of divergence-free flows, describes why the inverse problem is ill-posed in the traditional
sense, and presents the Bayesian approach to the inverse problem. Section 3 describes the
numerical approach to computing the posterior measure: MCMC methods for sampling from
the posterior, numerical methods for solving the advection-diffusion equation (1.1), and an
adjoint method for computing the gradients required for some MCMC methods. Section 4
provides results of the inference and convergence of MCMC methods as applied to two example
problems. For completeness, appendices in the supplementary material provide additional
numerical results (sections SM1 and SM2) and a description of Bayesian inference in a very
general setting (section SM3).

1.1. Literature review.
Bayesian inference and MCMC. Comprehensive overviews of modern Bayesian techniques,

from the basics of probability theory to computational practicalities, can be found in [23] and
[33]. In the last ten years, much attention has been paid to the development of the theory of
Bayesian inference for infinite-dimensional problems (e.g., where the target of the inversion is
a function). These advances are summarized in [20], building upon the work in [52]; we follow
the former closely in section 2 and provide a somewhat more general derivation of Bayes'
Theorem in section SM3. See also [13, 45] for studies of applications of Bayesian inversion to
PDE-constrained inverse problems.

Similarly, while Metropolis--Hastings MCMC methods date back to the foundational works
[42] and [30], substantial recent work has gone into extending these methods to problems where
the space to be sampled is high- or infinite-dimensional [5, 6, 7]. The goal of these efforts has
been to define sampling kernels that are both well-defined and yield robust convergence even
as the number of dimensions to be sampled grows large. The extension of Metropolis--Hastings
methods to generalized state spaces was described in [55]. The behavior of the traditional
random walk approach as the dimension grows large was investigated in [41] for a broad classD
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BAYESIAN ESTIMATION OF FLOWS FROM A PASSIVE SCALAR 1039

of target measures. The pCN and MALA algorithms suitable for infinite-dimensional problems
were laid out in [18]; the optimal choice of the step size parameter in the MALA algorithm
was shown in [46]. HMC was similarly extended to infinite dimensions in [4], work that was
later generalized in [3] and [24]. Dimension-independent convergence of some of the above
methods has been investigated by showing that the kernels have spectral gaps [22, 29, 56],
leveraging a generalized version of Harris's Theorem [26, 28, 27, 43] for Markov kernels. The
work in section 4 represents one of the first attempts to benchmark these methods for an
infinite-dimensional application; see also [2, 3, 14] for related numerical experiments.

In subsection 4.2 we present a multimodal posterior measure, which MCMC methods have
difficulty resolving. This has been a known problem with MCMC almost since its inception,
and a number of ideas have been proposed for improving sampling for these distributions.
One example is tempering, in which a series of ``less steep"" distributions are used to try to
increase the probability of jumps between modes; see, e.g., the description in [23, section
12.3] and associated references. A related method is equi-energy sampling [36], in which rings
of parameter values associated with different energy levels are constructed and samples are
allowed to jump within rings.

Advection-diffusion. The problem of observing scalar behavior to infer the underlying ve-
locity field is a common experimental approach for investigating the structure of complex fluid
flows. The textbooks [58] and [51] describe many such methods, including examples where
dye, smoke, temperature, hydrogen bubbles, or photosensitive tracers are used. An overview
of dye-based visualization techniques is provided in [34]. An application of dye to investi-
gate two-dimensional turbulence is described in [57]; see the survey article [35] for additional
examples.

To our knowledge, this work is the first to apply Bayesian inference to the problem of
estimating a background fluid flow from measurements of a passive scalar. However, a number
of works, such as [1], have used inversion techniques to determine a source (forcing) term in
advection-diffusion problems. In those previous works, the background flow was assumed to be
known and the initial condition assumed to be zero; their goal was to determine the function
(in particular the location) from which the pollutant was dispersed. The source-identification
work was extended to ensure robustness to uncertainties in the velocity field in [60].

More generally, the advection and diffusion of passive scalars has been studied extensively.
Numerical difficulties in modeling the behavior of passive scalars for advection-dominated
cases are described in [44] and [53]. Passive scalars exhibit similar behavior for turbulent and
random flows, so the latter, simpler case may be used to model the former. One such model
was introduced by Kraichnan [37, 38, 39]; the energy spectrum from this model motivates the
construction of the prior measure in section 4.

2. Mathematical framework and Bayesian inference. In this section, we describe the
mathematical framework of the inverse problem (1.2). We begin by defining the functional
analytic setting for the problem, including how we represent divergence-free background flows.
We then describe reasons why the inverse problem is ill-posed, i.e., why a given set of mea-
surements \scrY cannot identify a unique background flow v that generated them. We close the
section by defining the Bayesian approach to the inverse problem.D

ow
nl

oa
de

d 
08

/1
1/

20
 to

 1
98

.8
2.

23
0.

35
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

1040 JEFF BORGGAARD, NATHAN GLATT-HOLTZ, AND JUSTIN KROMETIS

2.1. Representation of divergence-free background flows. The target of the inference is
a divergence-free background flow v, so we start by describing the space H of such flows that
we will consider. For this purpose we begin by recalling the Sobolev spaces of (scalar-valued)
periodic functions on the domain T2 = [0, 1]2,
(2.1)

Hs(T2) =

\left\{   u : u =
\sum 

\bfk \in Z2\setminus \{ \bfzero \} 

c\bfk e
2\pi i\bfk \cdot \bfx , c\bfk = c - \bfk , \| u\| Hs <\infty 

\right\}   , \| u\| 2Hs :=
\sum 
\bfk \in Z2

\| k\| 2s | c\bfk | 2,

defined for any s \in R; see, e.g., [49, 54]. We will abuse notation and use the same notation
for periodic divergence-free background flows by replacing the coefficients c\bfk in (2.1) with

(2.2) c\bfk = v\bfk 
k\bot 

\| k\| 2
, v\bfk =  - v - \bfk ,

where for k = (k1, k2) we choose k\bot = ( - k2, k1) to ensure k \cdot k\bot = 0. Throughout the
remainder of the paper we fix our parameter space as follows.

Notation 2.1 (parameter space, H). We consider background flows v \in H, where H =
Hm(T2) (see (2.1)) for some m > 1, with coefficients c\bfk given by (2.2).

Here the exponent m is chosen so that vector fields in H, as well as their corresponding
solutions \theta (v), exhibit continuity properties convenient for our analysis below (see Propo-
sition 2.2). We take Lp(T2) with p \in [1,\infty ] for the usual Lebesgue spaces and denote the
space of continuous and pth integrable, X-valued functions by C([0, T ];X) and Lp([0, T ];X),
respectively, for a given Banach space X. All of these spaces are endowed with their standard
topologies unless otherwise specified.

In what follows we frequently consider Borel probability measures on H, denoted some-
times as Pr(H), in reference to the prior and posterior measures produced by Bayes' Theo-
rem below. A natural approach to constructing certain classes of such infinite-dimensional
probability measures is to decompose them into one-dimensional probability measures acting
independently on individual components of a sequence of elements sitting in an underlying
function space; see, e.g., [20, section 2]. Concretely in our setting, probability measures on the
space of divergence-free vector fields can be defined by letting v\bfk be random fields, as long as
v\bfk exhibits suitable decay to zero as \| k\| \rightarrow \infty commensurate with v \in H (see Notation 2.1).
In particular we make use of this construction on the space of divergence-free vector fields to
define prior distributions in the numerical examples in section 4.

2.2. Mathematical setting for the advection-diffusion equation. In this section, we
provide a precise definition of solutions \theta for the advection-diffusion problem (1.1). Crucially,
the setting we choose yields a map from v to \theta and then to observations of \theta that is continuous.

Proposition 2.2 (well-posedness and continuity of the solution map for (1.1)).
(i) Fix any s \geq 0 and m \geq s with m > 0 and suppose that v \in Hm(T2) and \theta 0 \in Hs(T2).

Then there exists a unique \theta = \theta (v, \theta 0) such that

\theta \in L2
loc([0,\infty );Hs+1(T2)) \cap L\infty ([0,\infty );Hs(T2)) with

\partial \theta 

\partial t
\in L2

loc([0,\infty );Hs - 1(T2))
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BAYESIAN ESTIMATION OF FLOWS FROM A PASSIVE SCALAR 1041

so that in particular \theta \in C([0,\infty );Hs(T2)) solves (1.1) at least weakly; namely,

(2.3)

\biggl\langle 
\partial \theta 

\partial t
, \phi 

\biggr\rangle 
H - 1(T2)\times H1(T2)

+ \langle v \cdot \nabla \theta , \phi \rangle L2(T2) + \kappa \langle \nabla \theta ,\nabla \phi \rangle L2(T2) = 0

for all \phi \in H1(T2) and almost all time t \in [0,\infty ).
(ii) For any T > 0 the map that associates v \in Hm(T2) and \theta 0 \in Hs(T2) to the corre-

sponding \theta (v, \theta 0) is continuous relative to the standard topologies on Hm(T2)\times Hs(T2)
and C

\bigl( 
[0, T ]\times Hs(T2)

\bigr) 
.

(iii) For any T > 0,m \geq s > 1 the map which associates v \in Hm(T2) and \theta 0 \in Hs(T2) to
the corresponding \theta (v, \theta 0) is continuous relative to the standard topologies on Hm(T2)\times 
Hs(T2) and C

\bigl( 
[0, T ]\times T2

\bigr) 
.

A sketch of the proof is provided in [10].

Remark 2.3. Since the background flow v enters (1.1) through the v \cdot \nabla \theta term, the in-
verse problem of recovering v from \theta (v) can be ill-posed. One important class of examples
illustrating this difficulty arises when v \cdot \nabla \theta is zero everywhere, in which case the fluid flow
does not have any influence on \theta . Two such examples are as follows:

(i) Ill-posedness: Laminar flow. Let \theta 0(x) be independent of y and v \star = [0, f(x)]. Then
\theta (v \star ) = \theta (v) for any v = [0, g(x)].

(ii) Ill-posedness: Radial symmetry. Set \theta 0(x) \propto sin(\pi x) + sin(\pi y) and v \star = [cos(\pi x),
 - cos(\pi y)]. Then \theta (v \star ) = \theta (v) for any v = cv \star , c \in R.

In these cases, the even noiseless and complete spatial/temporal observations of \theta cannot
discriminate between a range of background flows, making it impossible to uniquely identify
a true background flow v \star .

With this general result in hand we now fix some notation used for the remainder of the
paper.

Definition 2.4 (solution operator \scrS , observation operator \scrO ). Fix \theta 0 \in Hs(T2) and a final
time T > 0 and consider the phase space H defined as in Notation 2.1. The forward map \scrG 
as in (1.2) is interpreted as the composition \scrG (v) = \scrO \circ \scrS (v), where the following hold:

1. The solution operator \scrS : H \rightarrow C([0, T ];Hs(T2)) maps a given v to the corresponding
solution \theta (v, \theta 0) of (1.1) (in the sense of Proposition 2.2).

2. The observation operator \scrO : C([0, T ];Hs(T2)) \rightarrow Y measures some quantities (e.g.,
point measurements, spectral data, tracers) from \theta . Here, in general, Y is a sepa-
rable Hilbert space. However, since we are primarily focused on the setting of finite
observations, we typically have Y = RN .

To make a connection with the range of observations provided in the introduction, we
detail the following possibilities for \scrO .

Example 2.5. We consider finite observations \scrO (\theta ) = (\scrO 1(\theta ), . . . ,\scrO N (\theta )) that could be
1. spectral observations: \scrO j(\theta ) =

\int 
[0,1]2 \theta (tj ,x)ejdx, with \{ ej\} j\geq 0 an orthonormal basis

for Hs and tj \in [0, T ];
2. local averages: \scrO j(\theta ) =

1
| \scrD j | 

\int 
\scrD j
\theta dx dt, for any subdomains \scrD j \subset [0, T ]\times [0, 1]2 , where

| \scrD j | denotes the volume of \scrD j ;D
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3. spatial-temporal point observations: \scrO j(\theta ) = \theta (tj ,xj) for any tj \in [0, T ] and xj \in 
[0, 1]2 (note that point observations are well-defined by Proposition 2.2(iii)).

This paper focuses on the final case of point observations \scrG j(v) = \theta (tj ,xj ,v), j = 1, . . . , N,
as the most obvious practical implementation for the advection-diffusion problem.

2.3. Ill-posedness. We note that the classical inverse problem of recovering v from data
\scrY (see (1.2)) is highly ill-posed in a number of ways:

1. The data is incomplete, i.e., we do not observe \theta everywhere. For this reason we are
interested in forward maps \scrG (v) that are noninvertible and hence that do not uniquely
specify v. One such example is provided in subsection 4.2.

2. Even if solutions \theta of (1.1) are observed everywhere in space and time, there are initial
conditions \theta 0 such that any of a range of background flows v produce the same scalar
field \theta . Two such examples are provided in Remark 2.3 above.

3. Because of the observational noise \eta in (1.2), there may be no v such that \scrG (v) = \scrY 
for given data \scrY . For example, in the case of point observations \scrY j = \theta (tj ,xj ,v

 \star )+\eta j ,
some realizations of \eta j may cause \scrY j to exceed the maximum value (or be less than
the minimum value) of \theta 0. However, because \nabla \cdot v = 0, (1.1) is a parabolic PDE that
is subject to a maximum principle implying \| \theta (t)\| L\infty (T2) \leq \| \theta 0\| L\infty (T2) for all t > 0.
Thus there would be no v such that \scrG (v) = \scrY .

These considerations are typical of ill-posed inverse problems more broadly. See, e.g., [33,
section 2] or [52] for further commentary.

2.4. Bayesian inference. Following the Bayesian approach to inverse problems [20, 33],
instead of seeking a single best match v \star , we take a statistical interpretation of v and \eta as
random quantities that we refer to as the ``prior"" and the ``observation noise."" The solution
of (1.2) is a probability measure, known as the ``posterior,"" associated with the conditional
random variable ``v| \scrY ."" The concentration of the prior measure in the limit of a large number
of observations, i.e., the question of consistency, is investigated in detail in [10]. A quite general
formulation of Bayes' Theorem is provided in section SM3 of the supplementary material; in
this section we follow closely the derivation in [20]. We begin by imposing the following typical
assumption.

Assumption 2.6. The joint distribution of the observation noise and the prior take the form
(v, \eta ) \sim \mu 0 \otimes \gamma 0 for \mu 0 \in Pr(H), \gamma 0 \in Pr(RN ) so that v and \eta are statistically independent.

Under Assumption 2.6, the ``likelihood"" Q\bfv , heuristically \scrY | v, is as follows.
Lemma 2.7 (likelihood Q\bfv ). For any deterministic background flow v \in H and observation

noise \eta \sim \gamma 0, the likelihood Q\bfv satisfies \scrG (v) + \eta \sim Q\bfv so that for any A \in \scrB (RN ),

(2.4) Q\bfv (A) = \gamma 0(\{ y  - \scrG (v) : y \in A\} ).

With the form of the likelihood measure Q\bfv in hand we introduce the following notational
convention used several times below.

Notation 2.8 (true background flow, v \star ). We frequently fix a ``true"" background flow by
v \star \in H. For the given v \star , the observed data \scrY = \scrG (v \star ) + \eta can be viewed as draws from the
distribution Q\bfv  \star (though v \star is not necessarily the only v that could produce such data).D
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As in [20], we make the following assumption.

Assumption 2.9. The likelihood Q\bfv (see Lemma 2.7) is absolutely continuous with respect
to the noise measure \gamma 0 for all v \in H.

We note that this assumption holds when \gamma 0 is any continuously distributed measure, such
as a (nondegenerate) Gaussian, that has the whole space RN as its support. (We also note
in Proposition SM3.5 in the supplementary material that \gamma 0 is not the only suitable choice of
reference measure.) Then we define the following.

Definition 2.10 (potential, \Phi ). When Assumption 2.9 holds, the potential or negative log-
likelihood \Phi : H \times RN \rightarrow R is defined as

(2.5) \Phi (v;\scrY ) =  - log

\biggl( 
dQ\bfv 

d\gamma 0
(\scrY )

\biggr) 
,

where dQ\bfv 
d\gamma 0

is the Radon--Nikodym derivative of Q\bfv with respect to \gamma 0.

Example 2.11 (Gaussian noise). If the observation noise is a centered Gaussian, i.e., \gamma 0 =
N(0, \scrC \eta ), then by (2.4) we have (up to a factor independent of v)

(2.6) \Phi (v;\scrY ) =
1

2

\bigm\| \bigm\| \bigm\| \scrC  - 1/2
\eta (\scrY  - \scrG (v))

\bigm\| \bigm\| \bigm\| 2 .
Finally, we have the following adaptation of Bayes' Theorem to the advection-diffusion

problem.

Theorem 2.12 (Bayes' Theorem [20]). Let Q\bfv and \Phi be defined as in Lemma 2.7 and Defi-
nition 2.10, respectively, and let Q\bfv satisfy Assumption 2.9. Suppose that \Phi is measurable in
v and \scrY and that

(2.7) Z =

\int 
exp ( - \Phi (v;\scrY ))\mu 0(dv) > 0.

Then the measure \mu \scrY associated with the random variable v| \scrY is absolutely continuous with
respect to \mu 0, with Radon--Nikodym derivative

(2.8)
d\mu \scrY 
d\mu 0

(v) =
1

Z
exp ( - \Phi (v;\scrY )) .

3. Computational approach and challenges. In this section, we describe the numerical
methods used to approximate the posterior measure \mu . We begin by introducing Markov
chain Monte Carlo (MCMC) methods used to generate samples from \mu (subsection 3.1).
Subsection 3.2 describes how we discretize and solve the advection-diffusion equation (1.1)
to compute the potential \Phi (see Definition 2.10). Finally, in subsection 3.3 we define an
adjoint method for efficient computation of the Fr\'echet derivative D\Phi , which is required for
implementation of some of the more advanced MCMC algorithms described in subsection 3.1.D
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1044 JEFF BORGGAARD, NATHAN GLATT-HOLTZ, AND JUSTIN KROMETIS

3.1. Sampling from \bfitmu via Markov chain Monte Carlo. To sample from the posterior mea-
sure \mu \scrY (see Theorem 2.12), we use two MCMC methods recently developed for or extended
to infinite-dimensional problems: (1) preconditioned Crank--Nicolson (pCN) [18], a general-
ization of the classical random walk algorithm that requires one forward evaluation (PDE
solve) per iteration and represents the ``inexpensive"" end of the computational spectrum (see
Algorithm 3.1); and (2) Hamiltonian Monte Carlo (HMC) [11, 3, 21], a ``computationally ex-
pensive"" method that requires multiple PDE solves and gradient computations per iteration
(see Algorithm 3.2). In the supplementary material section SM1, we additionally present some
results for the independence sampler and Metropolis-adjusted Langevin algorithm (MALA)
(see, e.g., descriptions in [20] and [3], respectively). See also [40, Chapter 5] for a detailed
description of these four methods and [32] for an algorithm to recursively select parameters
for HMC.

Algorithm 3.1. Preconditioned Crank--Nicolson (pCN).

1: Given free parameter \beta \in (0, 1] and initial sample v(k)

2: Propose \~v =
\sqrt{} 
1 - \beta 2v(k) + \beta \xi (k), \xi (k) \sim N(0, \scrC )

3: Set v(k+1) = \~v with probability min
\bigl\{ 
1, exp

\bigl( 
\Phi 
\bigl( 
v(k)

\bigr) 
 - \Phi (\~v)

\bigr) \bigr\} 
, otherwise v(k+1) = v(k)

Algorithm 3.2. Hamiltonian MCMC (HMC).

1: Given free parameters \tau \geq \epsilon > 0 and initial sample v(k). Set L = \tau 
\epsilon .

2: Set (q0,w0) = (v(k),w), where w \sim \mu 0 = N(0, \scrC )
3: for i = 1 to L do
4: Integrate Hamiltonian dynamics (qi - 1,wi - 1) \mapsto \rightarrow (qi,wi) via (see [3, equation (13)])

w - = wi - 1  - 
\epsilon 

2
\scrC D\Phi (qi - 1),

qi = (cos \epsilon )qi - 1 + (sin \epsilon )w - ,

w+ =  - (sin \epsilon )qi - 1 + (cos \epsilon )w - ,

wi = w+  - \epsilon 

2
\scrC D\Phi (qi)

5: end for
6: Compute \Delta \scrH = \scrH (qL,wL) - \scrH (v(k),w)
7: Set v(k+1) = qL with probability min \{ 1, exp [ - \Delta \scrH ]\} , otherwise v(k+1) = v(k)

3.2. Evaluation of \bfscrG . Computing the potential \Phi (v) (see Definition 2.10) as in Al-
gorithm 3.1 or 3.2 requires evaluating \scrG (v), i.e., computing (e.g., point) observations for
\theta (v). This requires numerically solving (1.1) using a PDE solver. We do so using a spec-
tral method [15, 25], expanding v in a Fourier basis as in (2.1), (2.2), and \theta similarly as
\theta (t,x) =

\sum 
\bfk \theta \bfk (t)e

2\pi i\bfk \cdot \bfx . We apply a Galerkin projection, writing the coefficients \theta \bfk as a
system of ODEs that reduces to

(3.1)
d

dt
\vec{}\theta (t) = A\vec{}\theta (t), where (A)lm =  - iv\bfk \prime 

\Bigl( 
k\prime \bot \cdot km

\Bigr) 
 - \kappa \| kl\| 2 \delta lm, where k\prime = kl - km.D
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This system is then integrated using the implicit midpoint (Crank--Nicolson) method to ap-
proximate \vec{}\theta (t). Point observations are calculated as \theta (tj ,xj) =

\sum 
\bfk \theta \bfk (tj)e

2\pi i\bfk \cdot \bfx j , with eval-
uation at time tj interpolated if tj does not fall on a timestep of the integration method.
When \kappa is small, an accurate representation of \theta requires a large number of components due
to the frequency cascade k\prime in (3.1) (see [53]). This challenge motivates our concurrent work
in [9], in which we introduce a particle method for efficient evaluation of \scrG (v), allowing the
computation of large numbers of samples for low-\kappa problems.

3.3. An adjoint method for evaluating the gradient of \Phi . HMC (Algorithm 3.2) requires
evaluating the Fr\'echet derivative of the potential \Phi (see Definition 2.10) with respect to
changes in v, a direct approach to which would require many PDE solves. Here we introduce
an adjoint approach that requires a single PDE solve per gradient computation. Adjoint
methods are well developed for applications in optimization and uncertainty quantification; we
note in particular [1], in which a similar adjoint equation was derived for a different application
involving advection and diffusion. More generally, we refer the reader to [31] for an abstract
overview of the adjoint approach to computing gradients for PDE-constrained optimization
and to, e.g., [12, 16, 47, 59] for applications of adjoint methods to inverse problems and data
assimilation. For our application, the structure of the PDE turns out to be such that the
adjoint solution can be computed using (a forced version of) the same solver used to solve the
forward equation (1.1), as we now describe.

Theorem 3.1 (adjoint method for evaluating D\Phi ). For a given background flow v \in H, let
\theta (v) \in Hm

\bigl( 
[0, T ];Hs(T2)

\bigr) 
be a weak solution of the advection-diffusion equation (1.1) in the

sense that \theta (0,x) = \theta 0 a.e. and

(3.2)

\biggl\langle 
\rho ,
d

dt
\theta + v \cdot \nabla \theta  - \kappa \Delta \theta 

\biggr\rangle 
H1 - m,2 - s\times Hm - 1,s - 2

= 0

for all \rho \in H1 - m
\bigl( 
[0, T ];H2 - s(T2)

\bigr) 
. Suppose that \Phi (see Definition 2.10) and \scrO : Hm

\bigl( 
[0, T ];

Hs(T2)
\bigr) 
\rightarrow RN (see Definition 2.4) are continuously differentiable in \scrG and \theta , respectively.

Suppose there exists a \rho 0 \in H1 - m
\bigl( 
[0, T ];H2 - s(T2)

\bigr) 
with \rho 0(0,x) = 0 a.e. that solves the

forced adjoint equation

(3.3)

\biggl\langle 
d

dt
\rho 0  - v \cdot \nabla \rho 0  - \kappa \Delta \rho 0, \phi 

\biggr\rangle 
H - m, - s\times Hm,s

=  - \partial \Phi 
\partial \scrG 

(v) \cdot \scrO [ \~\phi ]

for all \phi \in Hm
\bigl( 
[0, T ];Hs(T2)

\bigr) 
with \phi (T,x) = 0 a.e., where \~\phi (t,x) := \phi (T  - t,x). Then the

Fr\'echet derivative of \Phi at v in the direction \^v is given by

(3.4) D\^\bfv \Phi (v) = \langle \~\rho 0, \^v \cdot \nabla \theta \rangle H1 - m,2 - s\times Hm - 1,s - 2 ,

where \~\rho 0(t,x) := \rho 0(T  - t,x).

Proof. Application of the chain rule yields

(3.5) D\^\bfv \Phi (v) =
\partial \Phi 

\partial \scrG 
(v) \cdot D\^\bfv \scrG (v) =

\partial \Phi 

\partial \scrG 
(v) \cdot \scrO [D\^\bfv \theta (v)] .
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Denote D\^\bfv \theta (v) by \psi (v, \^v). Then by applying (3.2) to \theta (v + \epsilon \^v) and \theta (v), subtracting,
taking the \epsilon \rightarrow 0 limit, and using the definition of the Fr\'echet derivative, we see that \psi \in 
Hm

\bigl( 
[0, T ];Hs(T2)

\bigr) 
satisfies

(3.6)

\biggl\langle 
\rho ,
d

dt
\psi + v \cdot \nabla \psi  - \kappa \Delta \psi + \^v \cdot \nabla \theta 

\biggr\rangle 
H1 - m,2 - s\times Hm - 1,s - 2

= 0,

with \psi (0,x) = 0 a.e., for all \rho \in H1 - m
\bigl( 
[0, T ];H2 - s(T2)

\bigr) 
. Also, changing variables from t to

T  - t in (3.3) yields the following relationship for \~\rho 0(t) = \rho 0(T  - t):

(3.7)

\biggl\langle 
d

dt
\~\rho 0 + v \cdot \nabla \~\rho 0 + \kappa \Delta \~\rho 0, \~\phi 

\biggr\rangle 
H - m, - s\times Hm,s

=
\partial \Phi 

\partial \scrG 
(v) \cdot \scrO [\phi ],

with \~\rho 0(T,x) = \~\phi (0,x) = 0 a.e. Then applying (3.5), (3.7), and (3.6) in succession yields

D\^\bfv \Phi (v) =
\partial \Phi 

\partial \scrG 
(v) \cdot \scrO [\psi ] =

\biggl\langle 
d

dt
\~\rho 0 + v \cdot \nabla \~\rho 0 + \kappa \Delta \~\rho 0, \psi 

\biggr\rangle 
H - m, - s\times Hm,s

=

\biggl\langle 
\~\rho 0, - 

d

dt
\psi  - v \cdot \nabla \psi + \kappa \Delta \psi 

\biggr\rangle 
H1 - m,2 - s\times Hm - 1,s - 2

= \langle \~\rho 0, \^v \cdot \nabla \theta \rangle H1 - m,2 - s\times Hm - 1,s - 2 ,

which is the desired result.

Remark 3.2. Note that
\bigl[ 
\partial \Phi 
\partial \scrG (v) \cdot \scrO 

\bigr] 
\in H - m

\bigl( 
[0, T ];H - s(T2)

\bigr) 
, so solving (3.3) amounts to

finding the weak solution in H - m
\bigl( 
[0, T ];H - s(T2)

\bigr) 
of

(3.8)
d

dt
\rho 0  - v \cdot \nabla \rho 0  - \kappa \Delta \rho 0 =

\partial \Phi 

\partial \scrG 
(v) \cdot \~\scrO , \rho 0(0,x) = 0 a.e.,

where \~\scrO [\phi (t,x)] := \scrO [\phi (T  - t,x)].

To compute the full gradient D\Phi (the derivative with respect to an array of bases \{ e\bfk \} ), we
compute the integration (3.4) for \^v = e\bfk for each k. The resulting algorithm is summarized
in Algorithm 3.3. Note that solving (3.6) and substituting into (3.5) would also yield the
derivative of \Phi . However, this approach would require a PDE solve for each direction \^v in
which we want to take the derivative. In particular, if we want the full gradient, we have
to do many PDE solves. By contrast, Algorithm 3.3 requires only one additional PDE solve
per gradient calculation. Moreover, note that (3.8) is equivalent to (1.1) with zero initial
condition, a reversed vector field, and a forcing term. Thus, the same PDE solver can be
used for both the forward and adjoint solves with minimal modification. For the numerical
experiments in section 4, the adjoint equation (3.3) was solved using the same spectral method
described in subsection 3.2, where the forcing term was similarly expanded in the Fourier basis
e2\pi i\bfk \cdot \bfx via Galerkin projection. The integration (3.4) was computed directly from the spectral
representation of \theta and \rho 0, yielding

(3.9) D\bfe \bfk \Phi (v) =
\sum 
j

2\pi i
\Bigl( 
k\bot \cdot kj

\Bigr) \int T

0
\~\rho 0l(t)\theta j(t), where l \ni kl =  - k - kj ,

where the time integration was computed via trapezoidal rule.D
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Algorithm 3.3. Adjoint method for computing D\Phi .

1: Given v and basis e\bfk 
2: Solve (1.1) for \theta (t,x,v)
3: Solve (3.3) for \rho 0(t,x,v)
4: for each k do
5: Compute D\bfk \Phi (v) via (3.4) with \^v = e\bfk 
6: end for

Example 3.3 (point observations, Gaussian noise). Let the observation operator be point
observations \scrO j [\theta ] = \theta (tj ,xj). These observations are well-defined for \theta \in Hm

\bigl( 
[0, T ];Hs(T2)

\bigr) 
with m > 1

2 , s > 1 (see Proposition 2.2(iii)). Let \eta j \sim N(0, \sigma 2\eta ) for j = 1, . . . , N so that \Phi is
given by (2.6). Then solving (3.3) amounts to finding the weak solution of

\partial 

\partial t
\rho 0  - v \cdot \nabla \rho 0  - \kappa \Delta \rho 0 =

\sum 
j

1

\sigma 2\eta 
(\scrY j  - \theta (tj ,xj ,v)) \delta (T  - tj  - t,x - xj),

where \rho 0(0,x) = 0 a.e. and \delta (t - t0,x - x0) is a Dirac distribution centered at (t0,x0).

Example 3.4 (integral observations). Let observations be given by\scrO j [\theta ] = \langle fj , \theta \rangle L2([0,T ]\times T2)

for some fj \in H1([0, T ];H2(T2)). Let \theta \in L2([0, T ];L2(T2)) (i.e., m = s = 0 in Theorem 3.1).
Let \eta j \sim N(0, \sigma 2\eta ) for j = 1, . . . , N so that \Phi is given by (2.6). Then solving (3.3) amounts to
finding \rho 0 \in H1([0, T ], H2(T2)) with \rho 0(0,x) = 0 such that

\partial 

\partial t
\rho 0  - v \cdot \nabla \rho 0  - \kappa \Delta \rho 0 =

\sum 
j

1

\sigma 2\eta 
(\scrY j  - \scrO j [\theta (v)]) fj(T  - t,x).

4. Numerical experiments: Posterior complexity and MCMC convergence. In this sec-
tion, we describe applications of the above methods to two sample problems. We begin with
an example (subsection 4.1) that yields a posterior measure with a relatively simple struc-
ture. This provides a baseline for measuring convergence of the pCN and HMC samplers (see
subsection 3.1), which for our purposes represent the ``inexpensive"" and ``expensive"" ends of
the computational spectrum, respectively. Subsection 4.2 then presents a second example for
which the posterior measure exhibits a complicated, multimodal structure. This example is
more challenging for MCMC methods to sample from, and thus a good test of the advan-
tages offered by more ``expensive"" methods like HMC. The supplementary material presents
analogous results for the independence and MALA samplers (section SM1) and additional
observables of interest to the passive scalar community (section SM2).

In each example, we generate data \scrY by running a high-resolution simulation of the system
for a given true vector field v \star and applying the observation operator \scrO . The PDE solver,
adjoint solver, and MCMC methods were implemented in the Julia numerical computing
language [8]. Thousands, or in some cases millions, of samples were generated using the
computational resources at Virginia Tech.1

1http://www.arc.vt.eduD
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4.1. Example 1: Single-welled posterior. In this subsection, we construct an example
that yields a posterior distribution with a simple, single-welled structure. The problem pa-
rameters for this example are enumerated in Table 1.2 The true flow v \star is shown in Figure 1.

Table 1
Problem parameters for Example 1.

Parameter Value Parameter Value

Observation
operator, \scrO 

Point observations at 1,024 uni-
formly random (t, x, y)

Data, \scrY \scrG (\bfv  \star )

Prior, \mu 0 Kraichnan (4.2) Noise, \gamma 0 N(0, \sigma 2
\eta I), \sigma \eta = 2 - 6

True flow, \bfv  \star 

(Figure 1)
Randomly drawn from Kraichnan
prior, \| \bfk \| 2 \leq 32

Sampling
space, HN

\| \bfk \| 2 \leq 8 (197 components)

Diffusion, \kappa 0.282, for water in air [19] \theta 0
1
2
 - 1

4
cos(2\pi x) - 1

4
cos(2\pi y)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

−256

−192

−128

−64

0

64

128

192

256

320

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

0.00

0.48

0.96

1.44

1.92

2.40

2.88

3.36

3.84

4.32

Figure 1. \bfv  \star for Example 1. Left: Vorticity \nabla \times \bfv  \star . Right: \| \bfv  \star \| .

For the prior measure, we leverage the Kraichnan model [37, 38] of turbulent advection
via a Gaussian random velocity field with energy spectrum (see [17, equation (28)])

(4.1) E(k) = E0

N\sum 
i=0

\biggl( 
k

ki

\biggr) 4

exp

\Biggl[ 
 - 3

2

\biggl( 
k

ki

\biggr) 2
\Biggr] 
k - \xi 
i ,

where ki =
\surd 
2
i
is the characteristic wave number of the ith subfield, N is the number of

subfields, and E0 controls the overall energy. The resulting spectrum exhibits E(k) \propto k - \xi for
1 < k < kN = 2N/2 and exponential decay for k > kN . We then choose prior

(4.2) \mu 0 = N(0, \~E), \~Elm =
1

2\pi \| kl\| 2
E(\| kl\| 2)\delta lm,

2Note that \bfv  \star and observation locations/times were chosen randomly only to generate the scenario and
data. This random selection ensures a sufficiently general problem. The data and observation operator then
of course remain fixed during MCMC sampling.D
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where E is as defined in (4.1), with \xi = 3
2 motivated by [17, 39]. Then for v =

\sum 
\bfk vk \sim \mu 0, the

expected energy associated with wave numbers of norm k (integrating across the shell Sk =
\{ k : \| k\| 2 = k\} ) is E(k). Laminar (k = 0) components represent something of a degenerate
case; we simply assume that these two components are known to be zero.

Note: The Kraichnan model of mixing typically involves a velocity field with energy
spectrum (4.1) but that is white (\delta -correlated) in time [50]. Here v is a background flow,
i.e., constant in time; we simply use the Kraichnan model as motivation for the energy decay
modeled in the prior.

4.1.1. Posterior structure. As described above, the output of a Bayesian inference is the
posterior \mu \scrY , a probability measure on the space of divergence-free vector fields H or, in
practice, on a finite-dimensional approximation HN given by the truncated expansion of the
basis described in subsection 2.1. To approximate the exact posterior, we assembled a list
of 10 million samples by running a series of 40 pCN chains of 250,000 samples each, with
every chain beginning with an initial sample randomly chosen from the prior.3 Figure 2 shows
the structure of the computed posterior. The left-hand plot shows mean, variance, skew,
and excess kurtosis (kurtosis minus 3) of the posterior by Fourier component of v, where
v, incorporating the discretization (2.1) and reality condition (2.2), is constructed from the
components as (laminar components v0, v1 are assumed to be zero, as noted above)

(4.3)

v(x) = v2 (0, cos(2\pi y)) + v3 (0, - sin(2\pi y)) + v4 (cos(2\pi x), 0) + v5 ( - sin(2\pi x), 0)

+ v6 (0, cos(4\pi y)) + v7 (0, - sin(4\pi y)) + v8 (cos(2\pi x), cos(2\pi y))

+ v9 ( - sin(2\pi x), - sin(2\pi y)) + \cdot \cdot \cdot .

Because of the influence of the prior measure, the mean and covariance of the posterior
for higher-order components tend to zero. Skew and excess kurtosis are near zero (up to
computational resolution) for all components, indicating that the marginal distribution for
each component is approximately Gaussian. The right-hand plot in Figure 2 presents one-
and two-dimensional histograms of the first eight components of v. Note that the histograms
(and other plots omitted for brevity) all show a contiguous mass of probability, indicating
that one ``class"" of vector field matches both the prior and the data.

4.1.2. MCMC sampling. To test the behavior of ``inexpensive"" and ``expensive"" MCMC
methods, both pCN and HMC (see subsection 3.1) were applied to Example 1. The pCN
parameter \beta = 0.15 was chosen to match the optimal acceptance rate of 23\% from [48]. For
HMC, \epsilon = 0.125 and \tau = 1 were chosen because these values showed a good balance between
the desire for high acceptance rate, large jumps between samples, and low computational cost
in numerical experiments. The resulting acceptance rates were 23.9\% for pCN and 81.0\% for
HMC. Figure 3 shows the trace and autocorrelation of the potential \Phi (see Definition 2.10).
When pCN is applied to this example, we see ``random walk"" behavior---the samples move
about the posterior, but are correlated with each other. For HMC, the random walk effect is
reduced and samples exhibit independence from each other after orders of magnitude fewer

3pCN was chosen here because it provided a computationally inexpensive approximation to what proved to
be a posterior with simple structure.D
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Figure 2. Structure of posterior. Left: Mean, covariance, skew, and excess kurtosis of posterior measure,
by component of \bfv . Right: Posterior (\mu \scrY ) one-dimensional (diagonal) and two-dimensional (off-diagonal)
marginal distributions for the first eight components of \bfv (out of 197).
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Figure 3. Trace (left) and autocorrelation (right) of the potential \Phi .

iterations than for pCN. The HMC chain explores the posterior more quickly as a result. This
is explored in the next section.

4.1.3. Convergence of measures. The difference between the ``true"" (Figure 2) and com-
puted marginal distributions can be evaluated via the total variation distance.4 Convergence
of the MCMC chains to the true marginal distributions are shown in Figure 4. The figure

4Note that the real desire would be to measure convergence in the full 197-dimensional sample space. In
this paper, we will use the total variation norm to measure convergence between one- and two-dimensional
distributions, a necessary and easy to picture---but not sufficient---requirement for convergence in the full-
dimensional space.D
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Figure 4. Total variation norm between computed and ``true"" marginal probability density function for
v2, . . . , v9 for 10,000 samples. Left: pCN. Right: HMC.

shows that HMC achieves a close approximation to the posterior marginal distributions within
a few hundred iterations, while similar convergence takes about an order of magnitude longer
for pCN.

4.1.4. Equal runtime comparison. Recall from subsection 4.1.2 that the parameters used
for HMC were \epsilon = 0.125 and \tau = 1.0, meaning that \tau 

\epsilon = 8 PDE and adjoint solves (see
Algorithm 3.2) were required per HMC sample. Because of these solves and the additional
costs required for the gradient computation (see Algorithm 3.3) and time integration, each
HMC sample took the time of approximately 39 pCN samples to compute. Thus, we can
reweight pCN samples by 39 to get a comparison of the sampling accuracy per computational
unit. Figure 5 shows the convergence of total variation norm for chains of runtime equal to
10,000 samples of HMC; the results can be compared with Figure 4. We see that chains of
equal runtime are largely equivalent between the two methods when applied to Example 1;
the faster convergence of HMC is essentially balanced by the larger amount of computation
required to generate the samples.
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Figure 5. Total variation norm between computed and ``true"" marginal probability density function for
v2, . . . , v9 for runtime equivalent to 10,000 HMC samples. Left: pCN. Right: HMC.
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4.2. Example 2: Multimodal posterior. In this section we present an example where the
prior and data interact to produce a posterior with multiple regions of mass; posteriors of this
kind are difficult for MCMC methods to resolve because chains have trouble jumping between
the wells. We take the initial condition \theta 0(x) =

1
2  - 

1
4 cos 2\pi x - 

1
4 cos 2\pi y and true background

flow v \star = [8 cos 2\pi y, 8 cos 2\pi x]. Symmetry guarantees that for x1 = [0, 0] and x2 = [12 ,
1
2 ] we

have \theta (v \star , t,xi) = \theta ( - v \star , t,xi), i = 1, 2. (In fact, there are more points for which this is true;
however, two points suffice for the purposes of this example.) We therefore let the data \scrY be
point measurements \theta (t,x) from t = 0.001 to 0.050 in intervals of 0.001 at each of x1 and x2.
Then we have \Phi (v \star ) = \Phi ( - v \star ), i.e., both v \star and  - v \star match the data equally well. Finally,
we use the mean-zero Kraichnan prior (4.2), which assigns the same probability to both v \star 

and  - v \star . The problem parameters for this example are listed in Table 2.
Since both v \star and  - v \star are given the same probability by both the prior and the data,

they will be equally likely according to the posterior. We show in the next section that the
symmetry in the problem setup results in multiple distinct probability masses in the posterior.

Table 2
Problem parameters for Example 2.

Parameter Value Parameter Value

Observation
operator, \scrO 

Point observations at \bfx 1 = [0, 0]
and \bfx 2 = [ 1

2
, 1
2
]

Data, \scrY \scrG (\bfv  \star )

Prior, \mu 0 Kraichnan (4.2) Noise, \gamma 0 N(0, \sigma 2
\eta I), \sigma \eta = 2 - 3

True flow, \bfv  \star [8 cos 2\pi y, 8 cos 2\pi x] Sampling
space, HN

\| \bfk \| 2 \leq 8 (197 components)

Diffusion, \kappa 3\times 10 - 5 [17, Table I] \theta 0
1
2
 - 1

4
cos(2\pi x) - 1

4
cos(2\pi y)

4.2.1. Posterior structure. As in Example 1, we approximate the exact posterior via
a large number of samples; in this case we use 500,000 samples generated from 100 HMC
chains of 5,000 samples apiece, each beginning with an initial sample randomly chosen from
the prior measure. We chose HMC chains because they provided better convergence to the
posterior than the other methods, as we describe below. Figure 6 shows the resulting posterior
structure. The left plot shows the computed mean, variance, skew, and excess kurtosis of the
posterior, by Fourier component of v. We note that, due to the influence of the prior measure,
the mean and covariance of the posterior tend to zero for higher-order components. Also, the
deviations of excess kurtosis from zero indicate the presence of highly non-Gaussian marginal
distributions for some components. The plot on the right presents one- and two-dimensional
histograms for the first few components of v (see the expansion in (4.3) for interpretation of
the components). Note that the symmetry of the problem results in multiple large modes both
v2 and v4, as well as in several smaller bumps in the distributions of the other components.

Moreover, in contrast to Example 1, the two-dimensional histograms---the approximate
posterior joint probability density of pairs of vector field components---show that the vector
field components are highly correlated with each other (see, e.g., the ``X"" shape between v3
and v8). It is worth noting that the posterior contains these correlation structures even though
the prior assumes independence of the components.D
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Figure 6. Structure of posterior. Left: Mean, covariance, skew, and excess kurtosis of posterior measure,
by component of \bfv . Right: Posterior (\mu \scrY ) one-dimensional (diagonal) and two-dimensional (off-diagonal)
marginal distributions for the first eight components of \bfv (out of 197).

Finally, it is worth noting that not all observables of the posterior exhibit complicated
structures. Figure 7 shows the computed posterior one- and two-dimensional histograms of
background flow vorticity at nine observation locations. The one-dimensional histograms
are simple---i.e., nearly Gaussian---at each point. However, the two-dimensional histograms
(except at the center point, x5) exhibit multiple modes of different shapes.

4.2.2. MCMC sampling. The multimodal structure of the posterior is typical of distribu-
tions that are difficult for MCMC methods to resolve efficiently, as the chains have difficulty
moving across the regions of low probability between the regions of mass. We now use this
structure to test the viability of pCN and HMC (see subsection 3.1) in resolving complicated
posteriors. The tests use parameter values of \beta = 0.2 for pCN (again corresponding to the op-
timal acceptance rate of 23\% from [48]) and \epsilon = 0.125 and \tau = 4 for HMC, which in numerical
experiments showed good convergence behavior.

Figure 8 shows the trace and autocorrelation of the potential \Phi (see Definition 2.10) for
MCMC sampling of Example 2. As in Example 1, we see ``random walk"" behavior for pCN,
whereas for HMC many fewer iterations are required to achieve statistical independence be-
tween samples. Unlike Example 1, however, the HMC chains for Example 2 exhibit negative
autocorrelation between consecutive samples. The authors plan to investigate this phenome-
non, which may be related to the multimodal structure of the problem, in later work.

We can also see the contrast between pCN and HMC in the traces of vector field compo-
nents shown in Figure 9. The pCN samples move within a relatively limited range (a single
probability mass), while the HMC samples occasionally jump between the different probabil-
ity regions. In parameter testing, we observed that the frequency of these jumps increasedD
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Figure 7. Posterior one- and two-dimensional histograms of vorticity (left) at nine observation points
(shown against \bfv  \star , right).
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Figure 8. Trace (left) and autocorrelation (right) of the potential \Phi .

roughly linearly with \tau (\tau = 4 produced twice as many jumps as \tau = 2, for example) because
longer integration times allowed the Hamiltonian system to evolve further, overcoming the
areas of low probability that separate the regions of mass.

4.2.3. Convergence of measures. We now consider how the computed probability den-
sity functions (normalized histograms) compare for each of the MCMC methods. Figure 10
shows the computed one- and two-dimensional distributions for the first few vector field com-
ponents after 150,000 samples. This figure can be compared with the ``true"" distributions
shown in Figure 6. The histograms for pCN show only some of the many distinct probability
regions in the posterior, as the chain failed to jump across the regions of low probability.
The distributions for v2 and v4 in particular show only one or two of the three modes shownD
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Figure 9. Trace of v2, . . . , v5 by sample number, pCN (left) and HMC (right).

Figure 10. Computed one- and two-dimensional marginal distributions for each of the first eight vector
field components (out of 197) for 150,000 samples, pCN (left) and HMC (right).

in Figure 6. The histograms for HMC, by contrast, resolve all major features in the poste-
rior, though some of the features still exhibited imbalance when the chain terminated. The
asymmetry in v4 and v9 indicates that the chain has perhaps not fully converged yet.

As in Example 1, we can get a feel for convergence of the methods by computing the
total variation distance between the ``true"" \mu and N -sample \mu (N) marginal distributions. The
results are shown in Figure 11. We note the ``sawtooth"" behavior for HMC, as the number of
samples in each mode of, for example, v4 slowly balances.

4.2.4. Equal runtime comparison. It is worth noting that, due to the selected values of
the parameters \epsilon and \tau , the HMC method used above required 32 PDE and 32 adjoint solves
per sample, making it quite expensive relative to a sample of pCN. In our implementation, weD
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Figure 11. Total variation norm between computed ( 150,000 samples) and ``true"" marginal probability
density function for v2, . . . , v9, pCN (left) and HMC (right).
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Figure 12. Trace of v2, . . . , v5 by sample number for runtime equivalent to 150,000 HMC samples, pCN
(left) and HMC (right).

were able to compute 125 pCN samples for each HMC sample. As a result, almost 19 million
pCN samples could be computed in the time required to generate 150,000 HMC samples.
For comparison in terms of equal computational cost, we now present the results of a single
19 million--sample pCN chain with the 150,000-sample HMC run shown earlier. Figure 12
compares the trace of the first few vector field components by sample number. We see that
pCN does eventually achieve the jumps between states that HMC shows; however, the jumps
are much less frequent for pCN, even when weighted by runtime, than for HMC (approximately
5 jumps vs. 20 jumps, respectively).

Figure 13 shows the computed one- and two-dimensional histograms for the 19 million--
sample pCN chain, which can be compared with the HMC figure in Figure 10. Figure 14
compares the evolution of the total variation norm between the computed and ``true"" two-
dimensional distributions for pCN (blue) and HMC (orange) chains of equal runtime. (Conver-
gence of the (v2, v9) correlation structure, for example, is shown in the bottom right subplot.)
These two plots are more equivocal between the two methods. pCN produces better conver-
gence for histograms with one probability mode (e.g., the pair (v6, v7)); for these components,D
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Figure 13. Computed one- and two-dimensional
marginal distributions for each of the first eight vector
field components (out of 197) for 19 million samples
of pCN (same runtime as 150,000 samples of HMC).
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Figure 14. Total variation norm between com-
puted and ``true"" two-dimensional probability density
for pairs of vector field components for pCN (blue) and
HMC (orange) of equal computational time.

the extra computations involved in HMC (which was tuned for larger jumps) do not appear to
provide any benefit. However, the two methods exhibited very similar convergence for multi-
modal distributions (e.g., those associated with v2 or v4). HMC also reached all of the modes
in the distribution, while pCN generated no samples in the mode near v4 \approx 1.5. Overall, it
appears that pCN did a better job (on an equal-runtime basis) of sampling within modes,
while HMC did a better job of finding modes.

4.3. Summary of numerical experiments. To summarize the results of Examples 1 and
2, we see trade-offs between the MCMC methods:

\bullet pCN provides an inexpensive method to generate samples and explore local regions of
a probability measure, with a free parameter \beta that can be tuned to the problem.

\bullet HMC samples are more computationally expensive to generate; for the HMC test cases
reported here, each HMC sample took 39--125 times as much time as one pCN sample,
though in general this ratio will be dictated by the cost of the gradient computation
and the choice of number of integration steps \tau 

\epsilon .
\bullet In our numerical experiments, for posterior distributions with simple structure (e.g.,
Example 1 or some parts of Example 2), pCN exhibits similar (as measured by equal
number of samples) or better (as measured by equal runtime) convergence to HMC.

\bullet In our numerical experiments, for posterior distributions with more complicated struc-
ture (some components in Example 2), pCN still appeared to do a better job (for equal
runtime) of sampling within probability modes, while HMC appeared to do a better
job of jumping between states to find new modes. The overall impact on performanceD
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is difficult to discern and will likely depend heavily on the desired observables.
\bullet Finally, we note that implementation of HMC is much more involved than pCN. With
a working PDE solver, pCN can be implemented in a matter of minutes or hours.
Developing a gradient solver and implementing the HMC leapfrog integration (and
debugging both)---if even possible---can require on the order of days or months of
development time, depending on the complexity of the PDE solver.
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