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ABSTRACT

Objective: Traditionally, structured or coded data fields from a crash report are the basis for iden-
tifying crashes involving different types of vehicles, such as farm equipment. However, using only
the structured data can lead to misclassification of vehicle or crash type. The objective of the cur-
rent article is to examine the use of machine learning methods for identifying agricultural crashes
based on the crash narrative and to transfer the application of models to different settings (e.g.,
future years of data, other states).

Methods: Different data representations (e.g., bag-of-words [BoW], bag-of-keywords [BoK]) and docu-
ment classification algorithms (e.g., support vector machine [SVM], multinomial naive Bayes classifier
[MNBY]) were explored using Texas and Louisiana crash narratives across different time periods.
Results: The BoK-support vector classifier (SVC), BoK-MNB, and BoW-SVC models trained with
Texas data were better predictive models than the baseline rule-based algorithm on the future
year test data, with F1 scores of 0.88, 0.89, 0.85 vs. 0.84. The BoK-MNB trained with Louisiana data
performed the closest to the baseline rule-based algorithm on the future year test data (F1 scores,
0.91 baseline rule-based algorithm vs. 0.89 BoK-MNB). The BoK-SVC and BoK-MNB models trained
with Texas and Louisiana data were better productive models for Texas future year test data with
F1 scores 0.89 and 0.90 vs. 0.84. The BoK-MNB model trained with both states’ data was a better
predictive model for the Louisiana future year test data, F1 score 0.94 vs. 0.91.

Conclusions: The findings of this study support that machine learning methodologies can poten-
tially reduce the amount of human power required to develop key word lists and manually
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Introduction

The agriculture, forestry, fishing, and hunting sector has grown
14.5% from 2009 to 2019 to 2,303,600 jobs (U.S. Bureau of
Labor Statistics 2020). Along with this growth, fatal occupa-
tional injury rates are higher in the sector compared to the
national average (U.S. Bureau of Labor Statistics 2019a). The
fatal occupational injury rate was 6.7 times higher in the agri-
culture, forestry, fishing, and hunting sector compared to all
other sectors and industries in 2018 (U.S. Bureau of Labor
Statistics 2019a). In 2018, 39.6% of fatal occupational injuries
were transportation incidents across all sectors and industries,
whereas 47.7% of fatal occupational injuries among the agricul-
ture, forestry, fishing, and hunting industry were transportation
incidents (U.S. Bureau of Labor Statistics 2019b). Little research
has examined the frequency, severity, or factors that contribute
to crashes in the sector. The lack of research hinders the identi-
fication of the most effective countermeasures for preventing
crashes involving farm equipment or reducing their severity.
Studies have analyzed state crash data to identify factors
affecting farm equipment crashes (Gerberich et al. 1996;

Hughes and Rodgman 2000; Lacy et al. 2003; Peek-Asa et al.
2007; Gkritza et al. 2010; Harland et al. 2014, 2018; Ramirez
et al. 2016; Ranapurwala et al. 2016). In most of these studies,
farm equipment-related crashes are identified solely based on
structured data fields in the crash data, such as farm equip-
ment vehicle body style. However, there are at least 2 scen-
arios where farm equipment-related crash identification
methods based on the vehicle type field in the structured
records can potentially be misleading. First, equipment such
as grass cutters and construction equipment can be used for
agricultural purposes but can be used for a number of nona-
gricultural purposes (e.g., grass cutting by municipal govern-
ment). Second, identifying farm crashes based on the
structured data could result in missing crashes that involve
another vehicle being utilized for agricultural purposes (e.g.,
farm equipment not classified as a farm vehicle or equipment
in the structured data). Both cases lead to potential misclassi-
fication of farm equipment crashes when only structured
crash data fields are relied upon to classify or iden-
tify crashes.
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There are 2 prior studies that go beyond using structured
data to identify farm equipment crashes through the add-
ition of crash narratives (Gkritza et al. 2010; Trueblood
et al. 2019). Crash narratives are open-text fields completed
by the reporting police officer. Crash narratives provide
crash details that may not be available in the structured
data. Gkritza et al. (2010) used a basic method to identify
crashes for which narratives included either a “tractor” or
“combine” keyword for their analysis. Trueblood et al
(2019) developed a full keyword list of 130 inclusion key-
words and 38 exclusion keywords that was applied to crash
narratives from Louisiana from 2010 to 2015. The authors
presented a semi-automated method to identify agricultural
crashes, as well as a gold standard data set used to evaluate
the developed methodology. The semi-automated method-
ology reduced the search space for narratives by up to 60%
depending on the research question. In addition, using
information from the narratives, the study found that 33.5%
of agricultural crashes identified based on vehicle body style
were not farm equipment.

Though there are limited papers that have used narratives
to explore farm equipment crashes, there are several articles
that have used crash narratives for crash analysis (Nayak
et al. 2010; Gao and Wu 2013; Rakotonirainy et al. 2015;
Pour-Rouholamin et al. 2016; Das et al. 2019; Boggs et al.
2020; Zhang et al. 2020). Most recently, Boggs and col-
leagues (2020) utilized text analysis to extract information
from crash narratives to explore automated vehicle crashes.

The objective of the current article is to investigate which
machine learning methods perform best for analyzing crash
narratives to identify agricultural crashes and to evaluate
how well the models transfer to different settings (e.g.,
future years of data, different states). We compared different
data representations (e.g., bag-of-words [BoW], bag-of-key-
words [BoK]) and document classification algorithms (e.g.,
support vector machine [SVM], multinomial naive Bayes
classifier [MNB]) using Texas and Louisiana crash narratives
across different time periods.

Methods
Data collection

Crash narratives were obtained from the Louisiana Department
of Transportation and Development (LaDOTD) for 2005 to
2017 and the Texas Department of Transportation’s (TxDOT)
Crash Records Information System for 2010 to 2016. Two
manually labeled data sets were created using the crash narra-
tives for agricultural crashes, which were defined as crashes
that involved at least one farm equipment vehicle based on
each state’s vehicle type definition. This research was
approved by the Texas A&M Institutional Review Board
(IRB 2016-0592D).

Data preparation

Crash researchers manually labeled each crash narrative
with one of 3 target class labels: Narrative includes evidence
of “agricultural” (farm equipment related), “nonagricultural”

TRAFFIC INJURY PREVENTION (&) 75

(not related), or “ambiguous” (unable to classify). Crash nar-
ratives labeled as agricultural and nonagricultural were used
as examples for training the machine learning algorithm and
validation because the ambiguous labels meant that there
was not sufficient information in the narrative, even for a
human expert to determine whether farm equipment was
involved in the crash or not. For example, a narrative with
no vehicle details could not be confirmed to be an agricul-
tural crash or not. The data were then split into training
and test data sets for each state. The test data set was the
last year of available data, 2017 for Louisiana and 2016 for
Texas. Table 1 summarizes the training and test data sets
for each state by target class.

Analysis

Different data representations (e.g., BoW, BoK) and document
classification algorithms (e.g, SVM, MNB) were explored
using Texas and Louisiana crash narratives across different
time periods. The Louisiana prediction models were trained
using the Louisiana agricultural training data set from 2005 to
2016 and validated by prediction accuracy on 2017 data.
Similarly, the Texas agricultural training data set from 2010
to 2015 was used to train the Texas prediction models with
validation based on prediction accuracy on 2016 data. Next,
the Louisiana and Texas models were tested to determine
how well they transfer to the other state. The following sec-
tion summarizes the steps taken to preprocess and tune
the models.

Bag-of-keywords development

Previously, a simple rule-based classification method involved
a manually curated 2-step keyword list of inclusion terms and
exclusion terms (Trueblood et al. 2019). The keyword lists
were designed to be generalizable across multiple states and
time periods. The inclusion list includes terms (words or
phrases) that indicate that a crash narrative is likely to be
agricultural, such as “farmer,” “cotton,” “wheat,” “planter,”
“seeder,” and “John Deere.” The exclusion list has terms sug-
gesting the context surrounding a crash, indicating that
although an inclusion keyword (e.g., “tractor”) was used, it is
not an agricultural crash, such as “construction,” “grass
cutter,” “lawn mower,” “parish tractor,” and “work zone.”
Because the keywords in those lists are a subset of the words
appearing in the collection of crash narratives, a crash narra-
tive can be represented as BoK only using those keywords
and their frequencies.

Using the previously developed keyword list, a crash nar-
rative can be represented by a 277-dimensional vector (cal-
culated before reducing to root forms); see Table S1 (see
online supplement). The keyword list treated some forms of
morphologically variant words as separate keywords that
were reduced to their root forms or semantic grouping. For
example, “farm worker” and “farmworker” are different
entries in the keyword lists. There is no difference between
“farm worker” and “farmworker” for document classifica-
tion; thus, semantically related keywords were merged from
the original keyword list into one single keyword feature.
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Table 1. Number of class examples in different datasets.

Number of examples

Data set Agricultural Nonagricultural Ambiguous Total
Louisiana training (2005-2016) 148 199 320 793
Louisiana test (2017) 21 26 40 87
Louisiana total 169 225 361 880
Texas training (2010-2015) 305 153 827 1285
Texas test (2016) 52 42 159 253
Texas total 357 195 986 1,538

After this semantic grouping, 154 keywords remained in the
inclusion and exclusion terms. In addition, a keyword distri-
bution analysis found that “horse” shows up only in one
narrative in the training data (LA agricultural), as “horse
power,” which is a wrong example of the word in the key-
word list meant to reference the animal. Thus, in the rest of
the analysis, “horse” was excluded. Thus, the final BOK fea-
ture vector is composed of 153 keywords.

Text normalization

A word has many morphological variations. In principle, the
meaning is of primary interest and not their forms; therefore,
such variation should be reduced before creating any feature
vector representation of a document using the vocabulary.
First, words were changed to lowercase, and then they were
reduced to their root forms using the Snowball English
stemmer from the NLTK Python library (Rossum and Drake
2011). Finally, stop words or common English words that are
not meaningful (e.g., the, a, etc.) were removed.

Term frequency-inverse document frequency weighting
Bag-of-words representation treats every word as equally
important. For example, “vehicle” and “driver” frequently
appear in crash narratives. Almost all narratives have these
words. These frequent words do not provide many clues for
machine learning algorithms to learn models that distinguish
different classes of crash narratives. However, rarer words
such as “harvester” and “cultivator” can be more inform-
ative. Tf-idf weighting is based on this intuition. Tf-idf
reweights the direct count (term frequency) of a term into
floating point values using the inverse document frequency
(idf). With idf weighting, a frequent word gets less weight.
Scikit-learn implementation of tf-idf weighting (sklearn.
feature_extraction.text. TfidfVectorizer) was utilized.

Hyperparameter selection through cross-validation

To select the best performing hyperparameters for support
vector classifier (SVC) and MNB, 5-fold cross-validation was
performed with exhaustive grid search on predefined hyper-
parameter values.

Training imbalanced classes

One of the main issues in training a classification model is
the imbalance in the classes. For example, in the Texas data
set, 357 crash narratives out of 552 narratives are agricul-
tural. Thus, if an algorithm labeled all to be the agricultural
class, it would be 65% accurate and 15% better than a coin

toss. Often models built using the raw training data with
imbalanced classes do not perform well because the smaller
classes are not properly learned. For an MNB model train-
ing, the smaller class examples were up-sampled to match
the number of the larger class examples.

Performance metrics

Accuracy is the most common performance metric for clas-
sifiers, which is defined as the number of correctly predicted
samples divided by the number of total samples. However,
with an imbalanced data set where examples in one class
outnumber other classes by a large proportion, it can be
misleading, because by simply assigning most of test exam-
ples to the large class, a classifier can achieve high accuracy,
as discussed in the previous section. To address this limita-
tion of accuracy as a measure, F; macro scores are often
used as a better performance metric in classification. F; is a
harmonic average of the precision and recall. For multiple
class classification, the average of metrics is taken to meas-
ure overall performance. Macro averaging was adopted,
which simply computes independently computed metrics for
each class and then averages those metrics, thus treating
each class with equal importance.

Model development process

The scikit-learn implementation of the SVM classifier (sklearn.
svm.SVC class) and MNB classifier (sklearn. naive_bayes.
MultinomialNB) were utilized. For SVM, the kernel was set
to “linear” and a brute force search was conducted over
specified values (using sklearn.model_selection.GridSearchCV)
for the regularization parameter C of SVC. For MNB, the
smoothing parameter (o) was set using scikit-learn GridSearchCV
function. Additional references used in model development
can be found in the Appendix (see online supplement).

Results
Texas model (trained on Texas 2010-2015)

The first 6 years of Texas data (N=458), 2010-2015, were
used to train the model. Predictive model performance was
tested with the last year (2016), the “same state test,” and
how well the model transfers when tested with the Louisiana
data, the “cross-state test.” The training data had twice as
many agricultural examples as nonagricultural examples
(67% agricultural vs. 33% nonagricultural). A comparison of
the different models, a combination of document representa-
tion (BoW vs BoK) and machine learning algorithms (SVC
vs. MNB), is presented in Table S2 (see online supplement).
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As a baseline comparison, the first row presents results from
the simple rule-based classification using the keyword list.
BoK-SVC had the best results for both the 2016 Texas data
and Louisiana data at about 88% performance on F;. BoK-
MNB also had good performance for both tests, at 89% and
87% on F;. In comparison, both best-performing BoW rep-
resentation models on both tests did not perform as well:
85% (BoW-SVC) with the same state test and 70% (BoW-
MNB) with the cross-state test on F;. Compared to the sim-
ple keyword-based classification, building an SVC with the
keywords improved the F; score by 4% (from 84% to 88%)
with the same state test.

Louisiana model (trained on Louisiana 2005-2016)

More years of data were available for Louisiana than for
Texas, so the model was built with the first 12 years of data,
from 2005 to 2016 (N = 347), and then tested on 2017 data as
well as Texas data (see Table S3, online supplement). In the
Louisiana training data, there were fewer agricultural examples
(43% agricultural vs. 57% nonagricultural). As with the Texas
model, BoK representation performed better than BoW for
both SVC and MNB algorithms. But BoK-MNB performed
best overall based on F; (89% with the same state test vs. 85%
for BoK-SVC). However, overall the rule-based keyword per-
formed the best when validated on Texas data (F; = 89%).

Combined model (trained on Texas 2010-2015 and
Louisiana 2005-2016)

Machine learning algorithms tend to perform better with
larger and more balanced training data. Thus, Texas and
Louisiana training data were combined, and predictive model
performance was tested on the last year of combined data (see
Table S4, online supplement). The combined training data
included 56% agricultural and 44% nonagricultural examples,
with a total of 807 examples. Again, BoK clearly outperformed
BoW representation, with the MNB algorithm performing bet-
ter than SVC. The model built using the combined data
improved the performance of Texas test data to F, equal to
92%, but it had no impact on the Louisiana test data.

Discussion

Overall, the BoK models trained with the Texas data or the
combined data had better predictive performance on the
Texas 2016 data and had better or comparable performance
on the Louisiana 2017 test data set compared to the baseline
rule-based algorithm. The result suggests that MNB and
SVC algorithms can learn the decision boundary as well as
the baseline rule-based algorithm. Even the BoW-SVC
model trained with the Texas data performed better than
the baseline algorithm. Unlike the baseline rule-based algo-
rithm, MNB and SVC models do not distinguish keywords
in the “exclusion” lists and those in the other 6 categories,
which could reduce the keyword curation efforts. This sug-
gests that at least with the BoK representation of crash nar-
ratives, keywords do not have to be divided into inclusion
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and exclusion keyword lists and a set of rules does not need
to be manually developed to achieve comparable perform-
ance to the rule-based algorithm. The benefit is a reduction
in manpower often required to review narratives to develop
these keywords and rules. Another benefit of using MNB or
SVC with BoK instead of a set of manual rules is clear in
the example of the “horse” keyword. There was a single
crash narrative in the Louisiana data set that included
“horse” as part of “horse power.” The rule-based algorithm
always classifies any crash narrative having horse in it as
agricultural related even though it could mean something
else, such as horse power. In contrast, MNB and SVC may
learn that horse is not useful when distinguishing between
agricultural and nonagricultural crashes.

The performance of the models with BoW representation
was not far behind when tested on the same state test com-
pared with the models with BoK representation. The differ-
ences in performance between the best-performing BoK
model and the best-performing BoW model tested on the
same state are 3% (Texas) and 4% (Louisiana). The BoW
models performed significantly worse if they were trained
with a single state’s data and tested on the other state’s data.
This might imply that there are differences between words/
phrases used in different states’ data. As reported in Table
S4, when the BoW models were trained with the combined
data, the BoW model performance improved.

When resources are limited for annotating crash narra-
tives with document class labels, BoW-SVC or BoW-MNB
can be used to provide a baseline document classification
system before investing more resources into developing a
keyword list. To adopt this approach, the number of labeled
documents (examples) should be large enough to capture
the variance in terms of use of words in the target corpus,
which will be greater than that with BoK representation due
to the higher dimensionality.

Opverall, crash narratives were found to be relatively short
in terms of the number of words and sentences. On average, a
crash narrative in the Louisiana data set had 279 words and 8
sentences, and the Texas data set had 116.8 words and 2.3
sentences. A crash narrative is not as short as a product
review or a tweet. However, some short narratives do not
have enough information to capture the context of words in
BoW representation. This implies that there would be a limi-
tation in improving classification performance even by adding
more training examples due to this inherent short document
length. This is also true with BoK representation. About 52%
of Louisiana narratives and 50% of Texas crash narratives con-
tained no or only one keyword, including both inclusion and
exclusion keywords. This aspect of crash narratives may
explain why MNB or SVC models could not outperform the
rule-based algorithm because there is not sufficient informa-
tion to form more complex decision boundaries utilizing rela-
tionships between words or keywords. Because each feature is
most likely simply independent in short narratives, the MNB
algorithm performs comparable to or better than SVC algo-
rithm. It should be noted that the naive independence
assumptions of MNB models between keyword features are
unrealistic for the data, which may be a side effect of not
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having many training examples with multiple keywords. Based
on these limitations future research should expand the current
data set to include additional years of narratives and states,
which would result in a more generalizable keyword list.

The BoW model development did not include any com-
plicated dimensionality reduction techniques such as word
embedding. However, it is not far behind the keyword-based
models in terms of performance, especially with the Texas
data set, which we believe still to be a viable alternative to
the manually curated keyword list. More research is needed
on dimensionality reduction with BoW models to improve
BoW model performance.

In summary, the findings of the article indicate that
machine learning methods can be applied to identifying
agricultural crashes and can be transferred to different set-
tings (e.g., future years of data, other states). Overall the
current article demonstrates that the machine learning
methodologies (e.g., BoK-MNB trained with Louisiana
2005-2016 data and the BoK-SVC trained with Texas
2010-2015 data) performed better than the baseline rule-
based algorithm (e.g., semi-automated method; Trueblood
et al. 2019) and can be effective in identifying agricultural
crashes. Ultimately, the use of machine learning methodolo-
gies reduces the amount of human power traditionally
required to develop keyword lists and manually review nar-
ratives. The results from this article can be applied to mul-
tiple settings and built on through the expansion of a more
general keyword list. Furthermore, future work should build
on these results to capture agricultural domain knowledge
into computational forms (e.g., taxonomy) beyond.

Acknowledgment

The authors thank the LaDOTD for assistance with providing the data
and providing clarification as needed.

Funding

This research was supported by CDC/NIOSH under Cooperative
Agreement No. U50 OH07541 to the Southwest Center for Agricultural
Health, Injury Prevention, and Education at the University of Texas
Health Science Center at Tyler. Its contents are solely the responsibility
of the authors and do not necessarily represent the official views of
CDC/NIOSH.

ORCID

Amber Brooke Trueblood (5) http://orcid.org/0000-0002-1404-347X
Hye-Chung Kum ([s) http://orcid.org/0000-0002-6882-8053
Eva M. Shipp (&) http://orcid.org/0000-0002-4034-8031

Data availability statement

The data sets generated during the current study are not publicly avail-
able due to data use agreements. Data can be requested through
TxDOT and LaDOTD.

References

Boggs A, Wali B, Khattak A. 2020. Exploratory analysis of automated
vehicle crashes in California: a text analytics & hierarchical Bayesian

heterogeneity-based approach. Accid Anal Prev. 135:105354. doi:10.
1016/j.aap.2019.105354

Das S, Kong X, Tsapakis I. 2019. Hit and run crash analysis using asso-
ciation rules mining. J Transport Safety Security. 1-20. [CrossRef][
doi:10.1080/19439962.2019.1611682

Gao L, Wu H. 2013. Verb-based text mining of road crash report.
Paper presented at: 92nd Annual Meeting of the Transportation
Research Board; Washington, DC; January, 13-7.

Gerberich S, Robertson L, Gibson R, Renier C. 1996. An epidemio-
logical study of roadway fatalities related to farm vehicles: United
States, 1988 to 1993. J Occup Environ Med. 38(11):1135-1140. doi:
10.1097/00043764-199611000-00013

Gkritza K, Kinzenbaw C, Hallmark S, Hawkins N. 2010. An empirical ana-
lysis of farm vehicle crash injury severities on Iowa’s public road sys-
tem. Accid Anal Prev. 42(4):1392-1397. doi:10.1016/j.aap.2010.03.003

Harland K, Bedford R, Wu H, Ramirez M. 2018. Prevalence of alcohol
impairment and odds of a driver injury or fatality in on-road farm
equipment crashes. Traffic Inj Prev. 19(3):230-234. doi:10.1080/
15389588.2017.1407924

Harland K, Greenan M, Ramirez M. 2014. Not just a rural occurrence:
differences in agricultural equipment crash characteristics by rural-
urban crash site and proximity to town. Accid Anal Prev. 70:8-13.

Hughes R, Rodgman E. 2000. Crashes involving farm tractors and other
farm vehicles/equipment in North Carolina 1995-1999. April 1, 2000.
[accessed 2020 Mar 23]. https://rosap.ntl.bts.gov/view/dot/4790.

Lacy J, Hunter W, Huang H. 2003. Study of farm vehicle crashes in
North Carolina. Transp Res Rec. 1840(1):178-185.

Nayak R, Piyatrapoomi N, Weligamage J. 2010. Application of text
mining in analysing road crashes for road asset management. In
Proceedings of the 4th World Congress on Engineering Asset
Management (WCEAM 2009). September, 28-30. Athens, Greece.

Peek-Asa C, Sprince NL, Whitten PS, Falb SR, Madsen MD, Zwerling
C. 2007. Characteristics of crashes with farm equipment that
increase potential for injury. ] Rural Health. 23(4):339-347. doi:10.
1111/j.1748-0361.2007.00112.x

Pour-Rouholamin M, Zhou H, Zhang B, Turochy R. 2016.
Comprehensive analysis of wrong-way driving crashes on Alabama
interstates. Transp Res Rec. 2601(1):50-58.

Rakotonirainy A, Chen S, Scott-Parker B, Loke SW, Krishnaswamy S.
2015. A novel approach to assessing road-curve crash severity. |
Transport Safety Security. 7(4):358-375.

Ramirez M, Bedford R, Wu H, Harland K, Cavanaugh J, Peek-Asa C.
2016. Lighting and marking policies are associated with reduced
farm equipment-related crash rates: a policy analysis of nine
Midwestern US states . Occup Environ Med. 73(9):621-626. doi:10.
1136/0emed-2016-103672

Ranapurwala S, Mello E, Ramirez M. 2016. A GIS-based matched case-
control study of road characteristics in farm vehicle crashes.
Epidemiology. 27(6):827-834.

Rossum GV, Drake FL. 2011. The Python language reference manual:
for Python version 3.2. Bristol (UK): Network Theory Ltd.

Trueblood A, Pant A, Kim ], Kum H-C, Perez M, Das S, Shipp E.
2019. A semi-automated tool for identifying agricultural roadway
crashes in crash narratives. Traffic Inj Prev. 20(4):413-418. doi:10.
1080/15389588.2019.1599873

U.S. Bureau of Labor Statistics. 2019a. Table 4. Fatal occupational inju-
ries counts and rates by selected industries. Economic News Release.
2017-2018. December 17 [accessed 2020 23 Mar]. https://www.bls.
gov/news.release/cfoi.t04.htm.

U.S. Bureau of Labor Statistics. 2019b. Table A-2. Fatal occupational inju-
ries resulting from transportation incidents and homicides, all United
States, 2018. Injuries, Illnesses, and Fatalities.December 17 [accessed
2020 23 Mar]. https://www.bls.gov/iif/oshwc/cfoi/cftb0323.htm.

U.S. Bureau of Labor Statistics. 2020. Employment by major industry sec-
tor. Employment Projections September 1 [accessed 2020 Sept 16].
https://www.bls.gov/emp/tables/employment-by-major-industry-sec-
tor.htm.

Zhang X, Green E, Chen M, Souleyrette R. 2020. Identifying secondary
crashes using text mining techniques. J Transport Safety Security.
12(10):1338-1321.


https://doi.org/10.1016/j.aap.2019.105354
https://doi.org/10.1016/j.aap.2019.105354
https://doi.org/10.1080/19439962.2019.1611682
https://doi.org/10.1097/00043764-199611000-00013
https://doi.org/10.1016/j.aap.2010.03.003
https://doi.org/10.1080/15389588.2017.1407924
https://doi.org/10.1080/15389588.2017.1407924
https://rosap.ntl.bts.gov/view/dot/4790
https://doi.org/10.1111/j.1748-0361.2007.00112.x
https://doi.org/10.1111/j.1748-0361.2007.00112.x
https://doi.org/10.1136/oemed-2016-103672
https://doi.org/10.1136/oemed-2016-103672
https://doi.org/10.1080/15389588.2019.1599873
https://doi.org/10.1080/15389588.2019.1599873
https://www.bls.gov/news.release/cfoi.t04.htm
https://www.bls.gov/news.release/cfoi.t04.htm
https://www.bls.gov/iif/oshwc/cfoi/cftb0323.htm
https://www.bls.gov/emp/tables/employment-by-major-industry-sector.htm
https://www.bls.gov/emp/tables/employment-by-major-industry-sector.htm

	Abstract
	Introduction
	Methods
	Data collection
	Data preparation
	Analysis
	Bag-of-keywords development
	Text normalization
	Term frequency–inverse document frequency weighting
	Hyperparameter selection through cross-validation
	Training imbalanced classes
	Performance metrics
	Model development process


	Results
	Texas model (trained on Texas 2010–2015)
	Louisiana model (trained on Louisiana 2005–2016)
	Combined model (trained on Texas 2010–2015 and Louisiana 2005–2016)

	Discussion
	Acknowledgment
	Funding
	Orcid
	Data availability statement
	References


