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ARTICLE INFO ABSTRACT

Keywords: Per- and polyfluoroalkyl substances (PFAS) are a class of compounds that have become environmental con-
PFOA taminants of emerging concern. They are highly persistent, toxic, bioaccumulative, and ubiquitous which makes
PFOS

them important to detect to ensure environmental and human health. Multiple instrument-based methods exist
for sensitive and selective detection of PFAS in a variety of matrices, but these methods suffer from expensive
costs and the need for a laboratory and highly trained personnel. There is a big need for fast, inexpensive, robust,
and portable methods to detect PFAS in the field. This would allow environmental laboratories and other
agencies to perform more frequent testing to comply with regulations. In addition, the general public would
benefit from a fast method to evaluate the drinking water in their homes for PFAS contamination. A PFAS sensor
would provide almost real-time data on PFAS concentrations that can also provide actionable information for
water quality managers and consumers around the planet. In this review, we discuss the sensors that have been
developed up to this point for PFAS detection by their molecular detection mechanism as well as the goals that
should be considered during sensor development. Future research needs and commercialization challenges are
also highlighted.
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Water quality

sources. Human exposure to these chemicals is of high concern because
they also build up in the human body and have been linked to a variety

1. Introduction of human health issues, including prostate and kidney cancer, thyroid
disease, and diabetes [11,22-25]. Studies have suggested that the
Per- and polyfluoroalkyl substances (PFAS) are a class of compounds  toxicity comes from PFAS acting as an agonist for peroxisome
that have recently become an area of significant concern. Originating proliferator-activated receptor alpha (PPAR«). The activation of PPARa
from a variety of materials like stain repellents, nonstick coatings, interferes with the proper transcription of many target genes, leading to
cleaning products, and aqueous film forming foams (AFFFs), PFAS are cancer development and other diseases [26-28].
ubiquitous in environments all over the world, even in the Arctic [1-3]. The United States Environmental Protection Agency (EPA) [29] has
They can be found in drinking water, surface water, soils, wildlife, set a health advisory level of 70 ppt (70 ng L) for lifetime exposure of
plants, the atmosphere, and human food sources as well [4-18]. The perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid
high strength of the C-F bond makes PFAS thermodynamically stable (PFOA). Despite this guideline (which is currently not legally regulated),
and also resistant to typical degradation pathways like biodegradation drinking water levels of up to 3000 times the lifetime advisory level have
[19] and photolysis [20]. This inability to break down in the environ- been reported in Colorado, North Carolina, and other hotspots across the
ment gave PFAS the moniker of “forever” chemicals. The highest PFAS US [30-32]. It is estimated that 54-83% of the US population (179-272
concentrations have been recorded near wastewater treatment plants, million people) is exposed to PFOS and PFOA contamination in their
firefighter training areas, landfill sites, and industrial sites [21]. These drinking water [33].

sources drain into environmental waters and then our drinking water
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Nomenclature

2,4-D 2,4-dichlorophenoxyacetic acid
6:2 FTS 6:2 fluorotelomer sulfonate
8:2F FTOH 8:2 fluorotelomer alcohol

AFFF aqueous film forming foam

AIBN azobisisobutyronitrile

AlEgen aggregation-induced emission luminogens
APTES  3-aminopropyltriethoxysilane
AuNP gold nanoparticle

BH berberine chloride hydrate

CD carbon dot

COF covalent organic framework

CTAB cetyl trimethyl ammonium bromide
EGDMA ethylene glycol dimethylacrylate
EPA Environmental Protection Agency
EV ethyl violet

FcCOOH ferrocenecarboxylic acid

FITC fluorescein isothiocyanate
GC5A guanidinocalix[5]arene
GenX 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid

GPS global position system
HFB heptafluoro-1-butanol
HFPO-DA hexafluoropropylene oxide-dimer acid

HPLC high performance liquid chromatography

HPTS trisodium-8-hydroypyrene-1,3,6-trisulfonate

hSA human serum albumin

IC ion chromatography

ISE ion-selective electrode

IUPAC International Union of Pure and Applied Chemistry

JGB Janus Green B

LC-MS/MS liquid chromatography tandem mass spectrometry
LOD limit of detection

MB methylene blue

MBAS  methylene blue active substances
MEHP  mono(2-ethylhexyl) phthalate
MIP molecularly imprinted polymer
MOF metal organic framework

MP methyl parathion

MPA 3-mercaptopropionic acid

NAD+  nicotinamide adenine dinucleotide
NMR nuclear magnetic resonance

NP nanoparticle

OF optical fiber

o-PD o-phenylenediamine

PCP pentachlorophenol

PEI polyethyleneimine

PFAS per- and polyfluoroalkyl substances

PFBA perfluorobutanoic acid

PFBS perfluorobutanesulfonic acid

PFBSK  nonafluorobutanesulfonic acid potassium
PFCA perfluorocarboxylic acid

PFDA 1H,1H,2H,2H-perfluorodecyl acrylate
PFDeA  perfluorodecanoic acid

PFHeA  perfluorohexanoic acid

PFHpA perfluoroheptanoic acid

PFHxA  perfluorohexanoic acid

PFHxS  perfluorohexanesulfonic acid

PFNA perfluorononanoic acid

PFO perfluorooctane

PFOA perfluorooctanoic acid

PFOS perfluorooctanesulfonic acid

PFOSA  perfluorooctanesulfonamide

PFPeA  perfluoropentanoic acid

PFPrA  perfluoropropionic acid

PFSA perfluorosulfonic acid

PIGE particle-induced gamma ray emission

POF plastic optical fiber

PPARa  peroxisome proliferator-activated receptor alpha

PPRE PPARa-responsive elements

Py polypyrrole

Py-2-COOH pyrrole-2-carboxylic acid

QD quantum dot

RLS resonance light scattering

SDBS sodium dodecylbenzenesulfonate

SDS sodium dodecyl sulfate

SDVB poly(styrene-divinylbenzene)

SPE solid-phase extraction

TEA triethanolamine

TEOS tetraethoxysilane

TWO-RRS triple-wavelength overlapping resonance Rayleigh
scattering

UCNP  upconversion nanoparticles

UV-Vis ultraviolet — visible spectroscopy

VBT (vinylbenzyl)trimethylammonium chloride

Due to their widespread application and use, PFAS are continually
released during production, product use, and disposal via point and
nonpoint sources into the environment [34]. Over 95% of PFAS are

R FRFR FR F
F 7

S
/\
FEFFFEFFY OH

perfluorooctanesulfonic
acid (PFOS, C8)

FFFFFF
perfluoroheptanoic

acid (PFHpA, C7)

FFRFRF O FFRFRF O

F

FFFFFFFF
perfluorooctanic acid
(PFOA, C8)

OH F OH
FFFFFF

perfluoroheptanoic
acid (PFHpA, C7)

perfluorohexanesulfonic

perfluorobutanesulfonic

released into the aquatic environment. A small portion (<5%) do vola-
tilize and enter the atmosphere. There are over 5000 CAS numbers that
are classified under PFAS, and the identity of most of them is unknown

F RFEFQ RFRFR FRF

FFRFRF O - \\s//o .
FWOH “OH OH

F FF FF FF F
8:2 fluorotelomer alcohol

FF FFFF

acid (PFHxS, C8) (8:2 FTOH)
R FR F F Vi o 0
FrdFEd O F

F
hexafluoropropylene oxide

acid (PFBS, C4)  dimer acid (HFPO-DA, GenX)

Fig. 1. Example of common per and poly-fluoroalkyl substances (PFAS).
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[35]. These unknown precursors can degrade into known PFAS [36].
PFOS and PFOA (Fig. 1) have been studied the most since they have been
manufactured the longest [37,38]. The U.S. EPA lifetime health advisory
level was determined based on exposure studies of these two PFAS [39].
However, with so many other compounds that also contribute to the
overall PFAS occurrence, the analysis of such a large class of compounds
is challenging. PFAS range from short-chain fluorinated alkyl acids to
long-chain compounds with a variety of functional groups. They can be
cationic, anionic, or zwitterionic as well as linear, branched, or cyclic.
PFAS can also be divided into groups by their head groups: per-
fluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs)
[18,40]. Manufacturers are starting to phase out long-chain PFAS (>C8
PFCAs and >C6 PFSAs) in favor of short-chain PFAS (<C7 PFCAs, <C5
PFSAs) that were thought to be less bio-accumulative and less toxic, like
GenX (hexafluoropropylene oxide dimer acid, HFPO-DA). However,
ongoing studies are showing that GenX, 6:2 FTOH, and other short-chain
PFAS may be just as toxic as their long-chain alternatives [11,41,42].
Some of the most common PFAS are shown in Fig. 1. As we begin to
understand more about the global distribution of PFAS and replacement
PFAS chemicals such as GenX and how toxic they can be, it is important
to have a fast and cost-effective way to detect PFAS. In the past year, a
few other reviews about PFAS sensors have been published that provide
a broad overview of some alternative ways to detect PFAS [36,43-45].
In contrast to these excellent papers, we present the recent progress in
engineering sensors for PFAS from a molecular chemical perspective.
Specifically, we present a brief overview of the current methods avail-
able for PFAS detection and their pitfalls, the challenges associated with
the sensor development and the goals that should be kept in mind, and
finally the sensors that have been developed up to this point. We discuss
the detection mechanism of each sensor in detail to inform the reader
how the sensor detects PFAS at a molecular level and also to establish
what has already been tried and evaluated. As PFAS sensors are a very
timely and relevant topic, we aim for this review to serve as a guide to
establish the state of the field and to inspire further technological
developments.

2. Current methods

Many laboratory-based techniques have been developed to detect
PFAS using traditional analytical instruments [21,36,46-50]. The EPA
currently has three approved methods for PFAS analysis: Methods 533,
537, and 537.1 [51-53]. These methods call for a polystyrene-
divinylbenzene (SDVB) solid-phase extraction (SPE) step to concen-
trate the sample, followed by analysis with an LC-MS/MS fitted with a
C18 column. Method 537.1 reports limits of detection (LOD) ranging
0.71-2.8 ppt for the 18 analytes while Method 533 reports lowest con-
centration minimum reporting limits of 1.4-16 ppt for 25 analytes
[52,53]. All three methods are sensitive and can analyze a combined
total of 29 PFAS compounds but they are limited to drinking water
samples and have a minimum 35 min LC-MS/MS run time. As of time of
submission, the EPA is working on validation to include other matrices
like surface water, groundwater, wastewater, soil, sediment, and sludge
[54].

Other methods exist for the analysis of multiple PFAS in a variety of
matrices, as recently reviewed by Al Amin et al., although these methods
have not been validated by the U.S. EPA [36]. For example, variations of
liquid chromatography coupled with mass spectrometry offer targeted
analysis with sensitive quantitative determination in aqueous matrices,
including drinking water [51,55], groundwater [56-58], surface water
[59,60], river water [61], seawater [16], and wastewater [57,62]. Ion
chromatography [63-65] and fluorometric detection [66] can also
provide LODs comparable to MS, but these methods require extensive
pretreatment and/or derivatization with a fluorophore prior to analysis.
Gas chromatography can only detect volatile, semi-volatile, and neutral
PFAS which makes it less popular than LC [35,36,46] and the limits of
detection are dependent on the detector. Capillary electrophoresis is
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portable but has poor detection limits (2-33 ppm) [67,68].

Untargeted analysis can help quantify the total concentration of
PFAS. It is difficult to quantify each of the 5000+ potentially relevant
PFAS because standards don’t exist for all the compounds, so these
methods aim to quantify PFAS as a compound class. The total oxidizable
precursor assay (TOP) transforms PFAS precursors to dead-end per-
fluoroalkyl acids by a hydroxyl radical-based oxidation reaction to help
determine the total concentration of PFAS present. The oxidized samples
are still analyzed by HPLC-MS [69,70]. Total organic fluorine (TOF) and
total fluorine (TF, organic and inorganic) can be measured by particle-
induced gamma ray emission (PIGE) [71,72], combustion ion chroma-
tography [48,64], and fluorine-19 nuclear magnetic resonance (°F
NMR) [73].

While the instrumental methods are effective at the right time and
place, they are limited by high instrument cost and the requirement of a
laboratory with trained personnel to run them. Costs of $300-$600 per
sample are prohibitive in routine monitoring and do not allow for
widespread sampling and testing of common PFAS [74]. To properly
evaluate human risk of PFAS exposure, a simpler, faster, less expensive,
and ideally field-based method is needed. Sensors, or devices that
respond to an analyte and transform the chemical information into an
analytically useful signal, have the potential to meet this demand for
PFAS monitoring [75]. While PFAS exist in many matrices and detection
therein is important, the detection of PFAS in aqueous matrices is a good
first step to evaluate the risk of human exposure and the distribution of
PFAS. Routine monitoring of these sources would allow more frequent
testing of water samples to comply with regulations, providing action-
able data to water quality managers. A fast detection method can help
identify critical areas of PFAS contamination where remediation efforts
should be focused [43]. Without the need for a central laboratory, the
general public could potentially test their own drinking water using a
fast and inexpensive test. A sensor for PFAS would not replace the
traditional analytical techniques like LC-MS and GC-MS but instead
complement their analysis by being able to provide fast and actionable
data [43].

3. Challenges in sensor development

Sensor-based approaches for PFAS detection and analysis offer the
potential for fast, on-site detection to evaluate water sources for PFAS
exposure, but this comes with many challenges: (i) sensitivity, (ii)
selectivity, (iii) sample preparation and preconcentration, and (iv)
portability. Before elaborating on these challenges, a brief discussion of
the physical and chemical properties of PFAS is necessary. The C-F bond
is very strong (485 kJ mol 1), which contributes to the thermodynamic
stability of PFAS. The low polarizability of F also leads to weak inter-
molecular interactions like Van de Waals interactions and hydrogen
bonding [76]. The C-F tail is hydrophobic while the sulfonic or car-
boxylic acid headgroups are hydrophilic. At high concentrations
(greater than 1000 ppm), PFAS can form micelles and hemimicelles
although in groundwater, these aggregations can occur at much lower
concentrations due to interactions with particles and/or co-
contaminants [77,78]. Usually, PFAS are found as negatively charged
anions, but depending on pH and other functional groups, cations and
zwitterions also exist which can affect transportation and sorption [17].
These varied physicochemical properties make PFAS difficult to detect
as a class.

First, sensors for PFAS detection need to have low limits of detection
to be in accordance with the current guidelines. The U.S. EPA lifetime
health advisory limit is currently set at 70 ppt for PFOS and PFOA, but
many states and countries are moving to lower that limit as toxicology
studies indicate that even lower concentrations have negative health
impacts [39,79]. A 2012 study on immunotoxicity in children recom-
mended a drinking water level of 1 ppt for PFOS and PFOA [80,81].
Achieving such low limits of detection is challenging due to the complex
nature of PFAS. There is often little to no interaction of the analyte with
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the electrode/probe/target at the molecular level and diffusion times are
slow, contributing to high LODs [82,83]. Additionally, due to the wide
variety of PFAS compounds, sensitivity and selectivity suffer from the
lack of specific receptors [84]. Solid-phase or liquid-liquid extraction
methods can aid in preconcentrating a sample, but this adds additional
steps to the analysis, limiting fast, field-based detection of PFAS
[51,85-87].

It is challenging to develop one sensor that is selective towards all the
many different PFAS structures since they span a variety of chain lengths
and head groups. A sensor can be designed to detect either PFCAs or
PFSAs by focusing on the carboxylic or sulfonic acid head groups, for
example, but there can be interferences from other PFAS and non-
fluorinated surfactants, like sodium dodecyl sulfate (SDS) and sodium
dodecylbenzenesulfonate (SDBS), depending on the detection mecha-
nism. While a fully comprehensive sensor that can identify and quantify
all PFAS would be ideal, a sensor that can detect and differentiate be-
tween PFOS and PFOA is a good start. Even so, there are still in-
terferences from the hundreds to thousands of other PFAS present in
environmental samples that need to be accounted for during sensor
development. As short-chain PFAS like GenX become more prevalent,
sensors for the new compounds in addition to the common existing PFAS
will become necessary.

PFAS are prevalent in aqueous matrices including drinking water,
groundwater, surface water (rivers and lakes), seawater, and waste-
water, among many others [22]. Drinking water is a relatively clean
matrix, having already been processed and treated, but environmental
samples are not. Common components of environmental samples that
can interfere with PFAS analysis include organic and inorganic ions,
humic and fulvic acids, organic matter, and other surfactants [88-94].
For example, the structures of SDS and SDBS are similar to PFAS and can
produce a similar response (PFOS, SDS, and SDBS all contain sulfonic
acid functional groups). Solid-phase extraction (SPE) is common to both
concentrate a sample and remove interfering ions and surfactants
[56,58,60,86]. However, this requires samples to be transported back to
the lab, increasing total analysis time and cost, as well as increasing the
risk of contamination to the sample [95]. Sample pretreatment and
preconcentration consume 50-90% of the analysis time and labor costs
[96]. Eliminating these steps or integrating them into a single step with
the analysis is critical for a successful rapid screening procedure. The
ability to use the sensor in a variety of matrices will help with identifying
the sources of PFAS contamination as well as tracking downstream
transport.

For a rapid screening procedure, a test that is portable and provides
fast results is ideal. Both portable instruments and test kits offer this
capability. Some of the previously mentioned instrument-based methods
can use portable instruments that are small and light enough to be
carried to and used at on-site testing areas [97-99]. There are still
concerns regarding sensitivity, the need for trained personnel to use
those instruments, and the cost of the instrument. Test Kkits offer a
promising alternative that can be used by anyone. These test kits
manipulate capillary action to transport sample through a membrane,
like paper or Nafion, into a detection region without external instru-
mentation. Pretreatment steps can be integrated into the device or Kkit,
and detection is colorimetric or electrochemical. While they are inex-
pensive to manufacture and have low sample reagent requirements, they
are single-use and only provide semi-quantitative results which can vary
from person to person [100,101]. For accurate readings, smartphones
are becoming more common, using the high-resolution camera and a
custom application to analyze images of the test and compare them
against a built-in calibration curve [100,102]. Other features like GPS,
internet connection to upload results, as well as online help for on-site
assistance, make smartphones a promising option for fast, portable
sensors [103].

These challenges are all aspects to consider when developing a
sensor or assay for fast detection of PFAS as part of a rapid screening
procedure. Here we present the current state of sensors and assays for
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PFAS detection grouped by detection mechanism. We follow the IUPAC
definition of sensor: “a device that transforms chemical information,
ranging from the concentration of a specific sample component to total
composition analysis, into an analytically useful signal” [75]. The sen-
sors are summarized in the tables that follow each subsection.

4. Sensor-based methods
4.1. Small molecule complexation and assays

One of the simplest methods of detecting the presence of an analyte is
with an organic dye that complexes with the analyte of interest and
produces a visible color change. These dyes bind through different
mechanisms such as NH-based hydrogen bonding, Lewis acid-base
pairing, metal-ion-template, and transition metal complexing
[103-106]. The EPA has developed a method to detect surfactants, or
methylene blue active substances (MBAS), in drinking water, surface
water, and domestic and industrial wastewaters [107]. Methylene blue
(MB), a cationic dye, is added to the sample and forms an ion-pair with
the anionic surfactant which is then extracted into chloroform. The in-
tensity of the blue color in the extract is proportional to the surfactant
concentration and can be measured by UV-VIS over a range of
0.025-100 ppm [107,108]. A variation of this method exists where an
imidazolium derivative is immobilized on an inorganic solid support
[109]. The anionic surfactant sample self-assembles into a monolayer
with the hydrophobic alkyl chains pointing towards the bulk solution.
When MB is added, it is trapped in the monolayer, turning the solution
from colorless to blue proportional to the surfactant concentration with
a limit of detection of 1 ppm. This method would be best for longer chain
surfactants (>C10), as C6 and C8 linear alkyl chains did not respond
well. While both methods are for general anionic surfactants, they could
be used to detect PFAS as long as a pretreatment step is incorporated to
eliminate the interference of SDS and SDBS, two common non-
fluorinated anionic surfactants found in environmental water samples
[110,111].

Fang et al. [112] have developed a portable test kit for the colori-
metric complexation of anionic surfactants with a cationic dye. The
astkCARE kit uses ethyl violet (EV) instead of methylene blue and ethyl
acetate instead of chloroform [113]. Similar to the MBAS assay, the
cationic ethyl violet forms an immiscible ion pair with PFAS, and the
color can be measured after extraction into ethyl acetate. Since visual
assessment of color is subjective, a smartphone app is available to read
the color of the extracted EV-surfactant solution. A calibration step is
also incorporated to determine the concentration of the unknown sam-
ple (Fig. 2A) [114]. An LOD of 10 ppb was reported without pre-
concentration. To eliminate interferences like inorganic ions and
concentrate the sample, SPE or dual liquid-liquid extraction was per-
formed, lowering the limit of detection to 0.5 ppb for PFOA and PFOS in
spiked tap and groundwater [112]. Currently, the test is not specific for
PFAS or even PFOS/PFOA as ethyl violet will form an ion-pair with any
anionic surfactant. The same group has also developed a fluoro-SPE
method that uses a fluoro-gel to separate PFAS from non-fluorinated
anionic surfactants [115]. Pretreating a sample with SDVB-SPE and
then fluoro-SPE makes it possible to more selectively detect PFAS with
the test kit without interference from other surfactants but an LOD was
not reported. The astkCARE kit is currently in early stages of commer-
cialization and is being used across Royal Australian Air Force defense
bases; however, the LOD (0.5 ppb) is still relatively high to evaluate
drinking water [114].

Fluorescence detection is more sensitive than colorimetry and has
been used for the detection of a variety of analytes [116-119]. In 2015,
Liang et al. [120] developed a sensing method that utilizes the ‘switch-
on’ fluorescence of an eosin Y-polyethyleneimine-PFOS system. When
polyethyleneimine (PEI) complexes with eosin Y, the fluorescence of the
xanthene-based eosin Y dye is quenched. Once PFOS is added to the
system, the PEI dissociates from the complex and the resulting turned-on
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Fig. 2. A. Demonstration of astkCARE kit to analyze PFOS by reading the blue color with a smartphone. Reprinted with permission from Fang et al., 2018. B. A
smartphone is used to detect the change in fluorescence due to the complexation of PFOS and PFOA with guanidinocalix[5]arene. Reprinted with permission from

Zheng et al., 2019.

fluorescence of the eosin Y-PFOS complex can be detected using a
spectrofluorometer. The method has a limit of detection for PFOS of 7.5
ppb. One important thing to note is this assay is selective for PFOS: the

lower hydrophobicity of PFOA prevents it from reacting with the eosin
Y-PEI complex, resulting in very low fluorescence intensity. Other PFAS
were not evaluated. A similar method by Cheng et al. [121] utilized
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Fig. 3. A. A schematic of a chitosan-mediated fluorescence “turn-on” method for PFOS detection. Reprinted with permission from He et al., 2020. B. A schematic of a
three-signal assay for PFOS detection in aqueous solution based on fluorescence, absorption and resonance light scattering (RLS). Reprinted with permission from
Chen et al., 2018.
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‘switch-on’ fluorescence with erythrosin B and cetyl trimethyl ammo-
nium bromide (CTAB). The CTAB quenches the fluorescence emission of
erythrosin B, but when PFOS or PFOA is added, mixed micelles are
formed between CTAB and PFOS/PFOA, and the fluorescence intensity
increases. This method is highly selective towards PFOS and PFOA:
PFPrA, PFBA, PFPeA, PFHeA, PFHpA, PFDeA, PFBS, PFO, HFB, SDS, and
SDBS were tested without significant interference. The sensor has limits
of detection of 6.4 and 4.9 ppb for PFOS and PFOA, respectively, as well
as a wide linear range (20.7-5001.3 ppb for PFOS, 20.7-4140.7 ppb for
PFOA). Analogs of PFOS and PFOA, as well as other potentially co-
existing substances like inorganic ions, were tested for interference
with little change in fluorescence intensity, demonstrating selectivity for
PFOS and PFOA. A lower LOD (0.5 ppb) was recently achieved by He
et al. [122], where the fluorescence of a green fluorescent dye (triso-
dium-8-hydroypyrene-1,3,6-trisulfonate, HPTS) is quenched by pro-
tonated chitosan. PFOS binds to chitosan via electrostatic and
hydrophobic interactions, restoring the fluorescence of HPTS (Fig. 3A).
No other PFAS were evaluated. There was some interference from SDS
and SDBS, but this can be removed by the addition of Ba%* followed by
filtration.

Another fluorescence-based method uses an indicator displacement
assay with guanidinocalix[5]arene (GC5A) to detect PFOS and PFOA
[123]. Fluorescein is reversibly bound to the GC5A receptor and is dis-
placed by PFOS/PFOA, causing a linear increase in fluorescence. Mag-
netic iron oxide nanoparticles were also bound to GC5A which enables
the removal and concentration of the PFOS/PFOA complex with a
magnet (LOD = ~10 ppb). This provides a large advantage over the
other fluorescence detection methods; however, even with high removal
efficiency (PFOS: 99.57% =+ 0.07, PFOA: 98.47% =+ 0.04), the LOD is still
not low enough to detect PFOS below the EPA drinking water standards.
The fluorescence of the GC5A:PFOS/PFOA complex can also be
measured with a smartphone and compared to a calibration curve to
determine the concentration of an unknown (Fig. 2B), but an LOD for
this method was not reported. Although other PFAS analogs were not
tested, this method is likely specific for PFOS and PFOA due to the size of
the cavity in GC5A.

A study was conducted by Fang et al. [124] which used aggregation-
induced emission luminogens (AIEgen) to detect PFOA with a limit of
detection of 41 ppb. A small droplet (1-2 uL) of AIEgen complexed with
PFOA in an acetone-water solution is dropped into a hole in a glass slide.
As the solution dries and the acetone evaporates, a micelle of PFOA
forms and the AlEgen aggregates, inducing fluorescence which is pro-
portional to the PFOA concentration. The method is not selective for
PFOA, as PFOS and 6:2FTS showed similar results. The glass chip has the
potential to be reused by washing thoroughly but the study did not
examine this idea. If the chip is reusable, the cost efficiency of this
detection method could be greatly improved.

Resonance light scattering (RLS) is related to fluorescence and spe-
cifically measures the intensity of the scattered excitation light. The
electronic polarizability of the scattering particles will change the light
intensity which allows RLS to be used as a detection method [125].
When PFAS complex with a dye or aggregate, the polarizability of the
complex changes, allowing analyte detection. RLS has been used to
detect PFOA and PFOS when they complex with cationic dyes by elec-
trostatic attraction [90,126,127]. Qiao [126] and Zhang [90] reported
the complexation of PFOS and PFOA, respectively, with crystal violet.
The crystal violet-PFAS complex self-aggregates into nanoparticles,
enhancing the resonance scattering intensities. The method developed
by Qiao et al. improved the limit of detection (3 ppb) slightly by using
triple-wavelength overlapping resonance Rayleigh scattering (TWO-
RRS) where the intensity of three peaks at different wavelengths
increased with the complexation of crystal violet and PFOS [126]. The
method is stable across a wide pH range (5.0-11.0) but the change in
RRS intensity gradually decreases as the ionic strength of the solution
increases. More than 20 coexisting substances like vitamins, sugars,
amino acids, and some metal ions were tested with little interference in
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PFOS detection. A benefit of this method is that measurement is very fast
(<1 min), but this does not consider any sample preparation steps like
potentially SPE and/or preconcentration. PFAS analogs will complex
with a cationic dye like crystal violet, allowing this method to be used
for quantification of total PFAS concentration. As non-fluorinated
anionic surfactants are also likely to complex with cationic dyes, such
interferences would need to be removed in a pretreatment step.

An even lower LOD was reported by Cheng et al. [127], using Janus
Green B (JGB) to complex with PFOS (2.8 ppb). Other PFAS (PFOA,
PFPrA, PFBA, PFPeA, PFHeA, PFHpA, PFNA, and PFBS) were evaluated
as interferences, but they showed little RLS response with JGB. The
authors did not discuss a mechanism for how JGB is specific to PFOS
over the other PFAS. SDS and SDBS did have considerable interference
which can be eliminated by the addition of Ba?*. Other potentially co-
existing cations can be removed by cation exchange resin
[90,120,127]. While the limits of detection reported by these RLS
methods are still high compared to EPA guidelines, SPE and/or the
addition of Ba®" could be used as a pretreatment step to eliminate in-
terferences and also preconcentrate the sample.

Chen et al. [128] combined three techniques for the sensitive
detection of PFOS. This assay uses Nile blue A as a probe with fluores-
cence, RLS, and UV-Vis absorption detection (Fig. 3B). The sulfonic
group of PFOS electrostatically interacts with the positively charged
nitrogen atoms of Nile blue A, resulting in fluorescence quenching and
decreased absorption intensity. The electrostatic interaction also causes
ion association complexes to form hydrophobic interfaces with water
molecules, resulting in enhanced RLS intensity. The lowest limit of
detection found amongst the three optical sensors was 1.6 ppb from
fluorescence. The assay was demonstrated with spiked tap and river
water with a relative standard deviation of <2.14%. This study showed
the three-signal assay performs better than a single signal because of the
ability to enhance the accuracy for the target analyte. This is especially
relevant when developing a sensor to detect PFAS under EPA guidelines.
In addition, the method is selective for PFOS, as there was not a sig-
nificant difference in fluorescence intensity with or without other PFAS
(PFOA, PFNA, PFHpA, PFHeA, PFBA, PFPeA, PFPrA, PFDeA).

While these small molecule complexation-based methods offer sim-
ple analyte detection, they often suffer from specificity and sensitivity
concerns. The complexation molecules can often bind with multiple
PFAS or even non-fluorinated surfactants. In addition, the limits of
detection of these sensors are in the ppb range which is still too high for
direct use in the field (Table 1). However, with benefits of few user steps
and detection by smartphone, these sensors could be promising for on-
site PFAS detection if a pretreatment step to lower the detection limits
is built in.

4.2. Nanoparticles

Nanoparticle-based sensors have received much attention over the
past few years due to benefits of sensitivity and selectivity at the
nanoscale as well as ease of modification for a variety of applications,
including environmental monitoring [103,130-133]. Gold nano-
particles (AuNP) in particular have been used for many years due to
their unique optical, chemical, electrical, and catalytic properties [134].
Colorimetric detection of AuNP is driven by their aggregation and
dispersion, and functionalizing the AuNP makes them selective towards
the intended analyte [84]. Many reviews have been written about AuNP,
different fabrication methods, applications, and detection methods
[134-141]. Fang et al. [103] specifically reviewed AuNP-based optical
sensors for anionic contaminants, including PFOS and PFOA. In these
sensors, AuNP were functionalized with thiol-terminated polystyrene or
monolayers of alkanethiolates terminated with poly(ethylene glycol)
(PEG-thiol) and perfluorinated thiols (F-thiol) [84,89]. In the former
sensor, PFOA displaces the polystyrene by binding to the AuNP, causing
the AuNP to aggregate via F-F interactions and change the color from red
to blue-purple (Fig. 4A). The color change can be detected by the naked
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Table 1
Small molecule-based detection of PFAS.
Complexing agent Analyte LOD (ppb) Concentration Range Real Sample Detector Detection Ref.
(ppb)
Imidazolium group Anionic 1000 NRP Urban Spectrometer Absorption [109]
+ MB? surfactants wastewater
MB or ethyl violet PFOA 50 NR Groundwater Confocal Raman microscope Raman [129]
AlEgen PFOA 41 41 - 41,000 None tested Fluorescence spectrophotometer Fluorescence [124]
Guanidinocal-ix[5] PFOS, PFOA PFOS: 10.7 PFOS: 0 - 3001, Tap and lake Fluorescence spectrophotometer, Fluorescence [123]
arene PFOA: 10.9 PFOA: 0 — 2484 water smartphone
Ethyl violet PFOS, PFOA 10, 0.5 with 10 - 1000 Tap and Smartphone Colorimetric [112]
SPE¢ groundwater
Eosin Y PFOS 7.5 0 - 1000 Tap and river Spectrofluorometer Fluorescence [120]
water
Erythrosin B PFOS, PFOA PFOS: 6.4 PFOS: 25 - 5001, Tap and river Spectrofluorometer Fluorescence [121]
PFOA: 4.9 PFOA: 21 - 4141 water
Crystal violet PFOA 4.6 41-10,352 Tap and river Fluorescence spectrophotometer RLS? [90]
water
Crystal violet PFOS 3.0 300 - 5000 Tap and river Fluorescence spectrophotometer TWO-RRS® [126]
water
Janus Green B PFOS 2.8 25 -4501 Tap and river Fluorescence spectrophotometer RLS [127]
water
Nile Blue A PFOS RLS: 59.8 RLS: 100 - 6002, Tap and river Fluorescence spectrophotometer RLS, Absorption, [128]
Abs:f 7.4 ABS: 200~ 2001, water Fluorescence
Fluor:® 1.6 Fluor: 25- 2001
HPTS? PFOS 0.5 2.5-1001 River and lake Fluorescence spectrophotometer Fluorescence [122]
water

a. MB: methylene blue, b. NR: not reported, c. SPE: solid-phase extraction, d. RLS: resonance light scattering, e. TWO-RSS: triple-wavelength overlapping resonance
Rayleigh scattering, f. Abs: absorption, g. Fluor: fluorescence, h. HPTS: trisodium-8-hydroxypyrene-1, 3, 28 6-trisulfonate

eye but not below 103 ppm, which is relatively high. The authors suggest
that PFCAs as a group could also cause color-changing aggregation. In
the latter sensor, the F-thiol allows for the binding of PFAS by F-F in-
teractions, causing precipitation of the AuNP out of solution. As PFAS
concentration increases, the red color of the solution decreases. The
color change can be observed and measured by both naked eye and
UV-Vis. Because of the general absorption of PFAS by the F-F interac-
tion, multiple PFAS can be detected, but short-chain PFAS (<C7) have
decreased sensitivity due to decreased hydrophobicity. Levels as low as
10 ppb could be detected for long-chain PFAS (>C7).

Colorimetric detection of PFOS has also been demonstrated with
Fe304 nanoparticles covalently bonded to MoS,, an analog of graphene
[142]. Fe304 NPs have peroxidase-like activity and can oxidize 3,3,5,5-
tetramethylbenzidine (TMB) in the presence of HyO2, producing a blue
color. When PFOS is present, the sulfonate head groups bind to the
protonated hydroxyl groups on the surface of the Fe304 NPs via elec-
trostatic interactions and hydrogen bonding, inhibiting the peroxidase-
like activity (Fig. 4B). The blue color change was detected with a
microplate reader with an LOD of 4.3 ppb. PFOA also interacts with the
Fe304 NPs but less than PFOS, likely due to the difference between the
carboxyl and sulfate headgroups. This method could potentially be used
to detect total PFAS concentration, although mixtures of multiple PFAS
would need to be tested as well. SDS and SDBS, which contain sulfate
groups, were shown to have considerable interference. Although not
tested, it would be expected that sulfate anions would also interfere, but
these interferences can likely be eliminated by SPE. The magnetic
properties of the Fe304 NPs could also be used to concentrate the sam-
ple, reducing the limit of detection.

Quantum dots (QD) are light-emitting semiconductor nanomaterials
with emission spectra that can be tuned with the size of the QD and high
fluorescent yield [143,144]. Compared to organic dyes like the ones that
were mentioned previously, QDs are brighter and have higher stability
against photo and chemical degradation [143]. Cadmium sulfide
quantum dots (CdS QDs) have been used to detect PFOA [145]. MPA (3-
mercaptopropionic acid) stabilizes the CdS QDs and makes them hy-
drophilic, enabling aqueous samples to be analyzed. When PFOA is
added to a solution of CdS QDs, the QDs aggregate via fluorine-fluorine
affinity, inducing a change in fluorescence intensity (Fig. 4C). The limit
of detection for this method is 124.2 ppb for PFOA and has a wide

detection range of 207.03 ppb-16.56 ppm which could be useful in areas
with high levels of contamination even though the LOD is not low
enough to detect PFOA at the EPA guideline level. It was found that
other PFCAs (C3-C7) could also quench the fluorescence of the QD but
less than the effect from PFOA. Other carboxylic acids were also tested,
with no significant quenching effect. Because the detection of PFOA with
the CdS QDs is based on fluorine-fluorine interactions, PFOS and other
PFSAs could induce fluorescence quenching of the QDs as well but this
was not evaluated.

Quantum dots synthesized out of carbon, called carbon dots (CDs)
have advantages of lower cytotoxicity, simple synthesis, and low cost
[146,147]. Cheng et al. [148] synthesized blue fluorescent CDs whose
fluorescence is quenched by complexation with berberine chloride hy-
drate (BH). When PFOS is added, the fluorescence is restored, likely due
to the electrostatic interaction of positively charged BH and PFOS, and
the resulting change can be measured. The carbon dot-BH complex was
tested in spiked water samples and proved successful for PFOS detection
with a limit of detection of 10.8 ppb. A prominent feature of this method
is that it can differentiate between PFOS and PFOA. PFOS is more hy-
drophobic and has greater electrostatic interaction with BH than PFOA,
resulting in lower fluorescence intensity. Another CD for PFOS uses the
measurement of three signals to detect PFOS [149]. The CDs are fabri-
cated by hydrothermal synthesis with phosphoric acid and o-phenyle-
nediamine (0-PD), resulting in pH-sensitive fluorescence emission (620
nm) at low pH values. When PFOS binds to the CDs, fluorescence is
quenched, absorption is decreased, and resonance light scattering is
enhanced. The fluorescence method of the assay is the most selective
towards PFOS with a limit of detection of 9.1 ppb. Both of these methods
tested other common PFAS (PFOA, PFDeA, PFPrA, PFBA, PFPeA,
PFHeA, PFHpA, PFNA, PFBS) with little response, demonstrating
selectivity for PFOS.

The emission of CDs can also be manipulated by doping the nano-
particles with other elements including nitrogen, boron, sulfur, or
phosphorous [150]. Walekar [151] developed CDs doped with nitrogen
and selenium in which the fluorescence of the CD is quenched by PFOA.
The addition of PFOA appears to form an excited state complex and the
fluorescence is quenched due to the internal transfer of electrons in the
complex. The limit of detection for this method is 745.3 ppb but the
surface of the carbon quantum dots could be further modified to
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Fig. 4. A. PFOA detection using polystyrene-modified gold nanoparticles. Reprinted with permission from Takayose et al., 2012. B. A schematic of colorimetric PFOS
detection by peroxidase-mimicking 3D magnetic MoS,/Fe304 nanocomposites. Reprinted with permission from Liu et al., 2019. C. Fluorescent detection of PFOA by
the aggregation of MPA-CdS quantum dots. Reprinted with permission from Liu et al., 2015.

optimize this method for lower limits of detection and other PFAS. Other
PFCAs could potentially quench the fluorescence based on similar
interaction with the CD, but PFNA had a smaller response compared to
PFOA. PFOS had little effect on fluorescent quenching. Chen et al. [91]
synthesized blue-green emissive nitrogen-doped carbon dots for ratio-
metric detection of PFOS. Ethidium bromide, which has an orange-red
emission at the same excitation wavelength as the CDs, is added to the
mixture of PFOS and CD and remains unchanged while PFOS quenches
the CD fluorescence. The concentration of PFOS is determined by
comparing the decrease in blue-green fluorescence to the unchanged

orange-red peak. Using a fluorescence spectrophotometer, an LOD of
13.9 ppb was achieved. This method could also be optimized for visual
analysis as the solution color changes from green to orange, which is
more sensitive to the naked eye than a single color change. Unfortu-
nately, both methods found that SDS and SDBS have high interferences
so pretreatment must be implemented for samples [91,149]. Other PFAS
(PFOA, PENA, PFHpA, PFHeA, PFBA, PFPeA, PFPrA, PFDeA) did not
show significant interference.

Nanoparticle-based detection of other analytes has been incorpo-
rated into sensors like the home pregnancy test in a lateral flow assay
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Table 2
Nanoparticle-based PFAS detection.
Mechanism NP? Modification Analyte  LOD (ppb) Concentration Range Real Detector Detection Ref.
(ppb) Samples
AuNP Polystyrene PFOA 103517* NRY None tested Photodiode array Colorimetric [84]
spectrophotometer
Carbon dot Se and N doped PFOA 745.2 4141 - 28,985 Tap and Fluorescence Fluorescence [151]
(CD) lake water spectrophotometer
Quantum dot MPA®-CdS QD PFOA 124.2 207 - 16,563 Textile Spectrofluorometer Fluorescence [145]
(QD)
Carbon dot NA PFOS Fluor:4 9.13, Fluor: 100 - 6002, Tap and Fluorescence Fluorescence, [149]
Abs:© 37.9, Abs: 250 - 4001, river water spectrophotometer Absorption, RLS
RLS:f 60.2 RLS: 250 — 6002
Carbon dot N-doped with Victoria PFOS 13.9 0-1000 Tap and Fluorescence Fluorescence [91]
blue b river water spectrophotometer
Carbon dot NA PFOS 10.8 110 - 25,006 Tap and Fluorescence Fluorescence [148]
river water spectrophotometer
AuNP PEGS-thiol and CF,>7 10 0.1 - 1000 Tap and Spectrometer Absorption [89]
perfluorinated thiol river water
terminated
Fe304 NP Fe304 NPs on MoS; PFOS 4.3 50 - 6251 None tested Microplate Reader Absorption [142]

* Not a true LOD, analyte concentrations as low as the given value could be clearly detected. a. NP: nanoparticle, b. NR, not reported, c. MPA: mercaptopropionic acid,
d. Fluor: fluorescence, e. Abs: absorption, f. RLS: resonance light scattering, g. PEG: poly(ethylene glycol)

format, demonstrating potential for these nanoparticle assays for PFAS
to be made into a commercial product in a field-compatible format
[152]. The intended use should be considered as some of these sensors
would be beneficial for general PFAS detection while others would be
useful for specific PFAS like PFOS or PFOA. Sensitivity requirements still
need to be considered as these nanoparticle-based sensors have limits of
detection in the ppb range (Table 2). However, there is room for
improvement in optimizing the surface modifications to both lower
limits of detection and also make the sensing motive more selective.

4.3. Molecularly imprinted polymers (MIP)

Molecularly imprinted polymers (MIP) have been very promising
with respect to detecting PFAS. They have benefits of good sensitivity
and selectivity in addition to being stable across a range of pH, tem-
perature, and pressure values [130,153,154]. They can be reused
without loss of activity. They are also relatively straightforward and
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inexpensive to synthesize with tunable surface properties and
morphology [155]. Briefly, a MIP is prepared for a certain analyte by
mixing the template molecule with functional monomers, cross-linking
monomers, and a radical initiator in a proper solvent. After polymeri-
zation and extraction of the template molecule, the cross-linked polymer
forms a 3-dimensional cavity that can selectively rebind the original
substrate molecule based on the electronic environment as well as the
physical and chemical interactions between the cavity and the target
molecule (Fig. 5A) [130]. They can also be functionalized using different
moieties for a variety of detection techniques. For example, an electro-
active functional monomer can be used to electrochemically detect the
nonelectroactive PFAS with a MIP. Polypyrrole (Py) can serve as both
the polymer matrix and the electron—ion transducer. Fang et al. [156]
developed a MIP where Py is electrodeposited onto an inexpensive
electrode surface, pencil lead, for potentiometric detection of PFOA.
With potentiometric detection, an LOD of 441 ppb for PFOA was ach-
ieved. Chen et al. [157] also used the electrodeposition of Py as the
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Fig. 5. A. A schematic demonstrating the fabrication of a molecularly imprinted polymer (MIP) to detect PFOS. The MIP was fabricated by the electropolymerization
of o-phenylenediamine on a gold electrode. Reprinted with permission from Karimian et al., 2018. B. Preparation of a MIP on a quantum dot with 3-aminopropyl-
triethoxysilane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross-linker in the presence of aqueous ammonia. Reprinted with permission
from Zheng et al., 2019.
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polymer matrix for a MIP on ultrathin C3N4 nanosheets as the electrode
surface. Electrochemiluminescence was used as the detection method
due to benefits of low cost, simple instrumentation, low background
noise, and good stability against photobleaching. During the photolysis
of coreactant S;0%, powerful oxidants of sulfate radicals (SO4) are
generated which cause the oxidation of PFOA and a reduction in ECL
signal. The authors report a detection limit of 10 ppt, which is one of the
lowest presented in this review and comparable to traditional LC/MS
methods [51,52].

An electrochemical probe like ferrocenecarboxylic acid (FcCOOH)
can also be added as a separate component for MIP-based detection of
PFOS. A MIP was fabricated by the electropolymerization of o-phenyl-
enediamine (0-PD) on a “classic” flat gold electrode [158], a glassy
carbon macroelectrode [159], or a gold screen-printed electrode [160]
respectively. O-PD is commonly used for MIP preparation because it can
easily be electrodeposited to various substrates to form hydrophilic,
hydrophobic, ionic, and acid-base recognition sites [158,161]. FcCOOH
acts as a reversible redox probe that produces an electrochemical signal
at the electrode surface. When it competes for binding with PFOS, the
voltammetric signal decreases. The glass carbon macroelectrode has an
LOD of 25 ppt [159] while the classic gold electrode has an LOD of 20
ppt [158]. While screen printed electrodes are promising detection
platforms due to their low cost, disposability, and portability, the au-
thors reported poor performance by differential pulse voltammetry and
difficulties in reproducibility [160].

Without the addition of a chemical probe, photoelectrochemistry can
also be used to detect PFAS, as demonstrated by Tran [162] and Gong
[163]. In this detection method, light induces the electron transfer
process at the electrode surface. Tran et al. developed a MIP using
acrylamide, ethylene glycol dimethylacrylate (EGDMA), and azobisiso-
butyronitrile (AIBN) as the functional monomer, crosslinker, and initi-
ator agent, respectively, on a TiOy nanotube array, which is a great
photochemical semiconductor material [164,165]. The photocurrent
increases in the presence of increasing PFOS concentrations. The authors
reported an LOD for PFOS of 86 ppb [162]. Another MIP based on the
same polymerization reagents anchors the MIP on an Agl nanoparticle-
BiOI nanoflake array [163]. This array has the advantage of facile syn-
thesis as well as enhanced performance for photochemical applications.
MIPs on nanoparticles have a high surface area:volume ratio, which
increases accessibility to the imprinted cavities as well as increasing
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binding kinetics [130,166], which was previously mentioned as a
challenge in achieving low limits of detection. The mechanism of the
nanoflake array is slightly different compared to the MIP@TiOs: in this
case, photocurrent decreases as PFOA concentration increases [163].
The presence of PFOA in the MIP sterically blocks the diffusion of the
electron donor triethanolamine (TEA) to the sensing surface and the
oxidation of TEA does not occur, decreasing the photocurrent signal.
This sensor has an LOD of 0.01 ppb, which is comparable to or even
lower than traditional instrument-based methods [36].

Fluorescence and photoluminescence can also be used as detection
mechanisms with MIPs as demonstrated by Feng et al. [167] and Zheng
et al. [168]. In both cases, a MIP was synthesized of 3-aminopropyltrie-
thoxysilane (APTES, functional monomer) and tetraethoxysilane (TEOS,
cross-linker). The fluorescence MIP was anchored on the surface of SiO,
nanoparticles (NP) onto which a hybrid monolayer was formed of a
fluorescein dye (FITC) and organic amine ligands [167]. When PFOS
binds to the amine ligands in the MIP cavities, the electron transfer from
the fluorescence dye to the PFOS results in quenched fluorescence. With
detection by a fluorescence spectrophotometer, an LOD of 5.57 ppb for
PFOS was reported. The photoluminescence MIP was anchored on a
CdTe@CdS core-shell quantum dot (Fig. 5B) [168]. In the presence of
PFOA, photoluminescence is quenched. The interference of PFOS, SDS,
and SDBS was evaluated and found to be less effective in quenching the
photoluminescence of the quantum dots because they cannot fit in the
cavity as effectively. The authors report an LOD of 10.35 ppb and good
reproducibility in spiked river samples.

In another variation of a MIP — nanoparticle combination, a chitosan-
based MIP was doped with fluorescent carbon dots [169]. In the pres-
ence of PFOS, the fluorescence emission of the CD increases. The authors
calculated the LOD to be 0.0004 ppt without preconcentration, which is
the lowest LOD of all methods evaluated in this review, but no con-
centrations below 0.02 ppt were evaluated. Such low concentrations
should be ideally be verified by LC/MS but the validated LC/MS
methods have higher LODs at 1.4-16 ppt [51,52]. The MIP-nanoparticle
method was demonstrated in biological samples (serum and urine) as
well. With proper optimization in environmental samples and more
testing at lower PFOS concentrations, this method could be very
promising for low concentration PFOS detection.

A benefit of MIPs is that they are selective for the analyte used as the
template molecule to make the MIP film. The detection of the analyte

Table 3
Molecularly imprinted polymer (MIP) - based PFAS detection methods.
Substrate MIP Template Analytes LOD Concentration Real Samples Detection Probe Ref.
(ppb) Range (ppb)

Gold screen-printed 0-PD? PFOS NRY NR None tested Electrochemistry: DPV® FcCOOH  [160]
electrode

TiO, nanotube array Acrylamide, EGDMA, PFOS 86 250 - 5001 Tap, river, and Photoelectrochemistry NA [162]

AIBN¢ mountain water
Pencil lead Polypyrrole PFOA 41 4141 - 4,140,700 None tested Electrochemistry: NA [156]
Potentiometry

CdTe@CdS quantum APTES, TEOS® PFOA 10.4 104 - 6211 Tap and river water Photoluminescence NA [168]
dot

AgI nanoparticle-BiOI Acrylamide, EGDMA, PFOA 0.01 0.02 — 1000 Tap and river water ~ Photoelectrochemistry TEAf [163]
nanoflake array AIBN

SiO, NP Fluorescence dye and PFOS 5.57 5.57 — 48.54 Surface river water Fluorescence NA [167]

organic amine

“Classic” flat gold o-PD PFOS 0.02 0.05 - 2.45, Distilled, tap, Electrochemistry: DPV FcCOOH  [158]

electrode 4.75 - 750 bottled mineral
water

Ultrathin g-C3N4 Polypyrrole PFOA 0.01 0.02 - 40, Tap, river, and lake  Electrochemiluminescence SOy [157]
nanosheet 50 - 400 water

Gold microelectrode o-PD GenX 0.086 0.35 - 1735 ppt River water Electrochemistry: DPV FcMeOH [172]

(HFPO-DA)  ppt
Carbon dot Chitosan PFOS 0.0004 0.02 - 0.2 ppt Serum and urine Fluorescence NA [169]
ppt

a. 0-PD: o-phenylenediamine, b. NR: not reported, c. DPV: differential pulse voltammetry, d. acrylamide (functional monomer), EGDMA: ethylene glycol dimethy-
lacrylate (crosslinker), AIBN: azobisisobutyronitrile (initiator agent), e. APTES: 3-aminopropyltriethoxysilane (functional monomer), TEOS: tetraethoxysilane (cross-

linker), f. TEA: triethanolamine, g. HFPO-DA: hexafluoropropylene oxide-dimer acid

10
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of quantification between river water and ammonium buffer. This point 5 = ::.
should also be kept in mind when evaluating the other MIPs in envi- § " g E =
ronmental samples. g g —é e =
Sensors based on MIPs perform best for detecting specific PFAS. g £ & 2 :‘5
Some have also been able to achieve low enough LODs to make them g ‘g £ 3 £ 8 £ B g 3 £ |=%
promising for detecting PFAS below guideline levels (Table 3). After = |8 & % E 2 % s % s E < g =
preparation of the MIP matrix, leakage can occur where the template has g § ; E" £ §° £ i:" £ §° £ ; = E
not been completely removed from the matrix, interfering with the ac- A § @ faofaofosfadg = %’)
curacy of analyte detection [171]. % 'g
4.4. Optical fibers :‘%’o 23
g T2
Optical fibers offer the ability to be used in a variety of fields with 5 R
many advantages. They can be directly connected to an online platform % § o o o 2 f[;‘j
or even a smartphone and be used for continuous and remote monitoring g 2 8 &8 = = = + & E é
of pollutants [173-175]. Additionally, the fibers are flexible with large S8l & & & o o o S <
fiber diameters, can easily be optimized, handled and installed, and J ;5
involve low-cost, simple manufacturing [176-178]. The most common ° % %
detection method with optical fibers is surface plasmon resonance, a2 § R~ N B S g g
where an analyte is detected based on a change in resonance wavelength 2&l7 S s s SV T3
when the analyte interacts with ligands on a metallic surface layer on the .“U:) g
optical fiber (Table 4) [179,180]. Typically the fibers are silica-based, E, g‘
but Cennamo et al. from the Zeni group have developed a low-cost op- . I3 =
tical fiber made of plastic (POF) that is easier and less expensive to E E '%
manufacture [176,181]. The fiber is D-shaped and coated in a buffer @ ;‘; < < < < 5 %’ < o ‘Lon' g
layer (Microposit S1813) before sputtering a gold film and depositing a 2 E g g g g 3 E g £ Z 3
MIP layer which detects the PFAS (Fig. 6A) [174,182-184]. The MIP for 3 = %0
PFOA was prepared using PFOA as the template, (vinylbenzyl)trime- § E Q
thylammonium chloride (VBT) and 1H,1H,2H,2H-perfluorodecyl acry- -‘-; § E 2
late (PFDA) as the functional monomers, EGDMA as the cross-linker, and 2 5 2 § a0 2 & & .2 %
AIBN as the radical initiator [184]. After 10 min incubation with an <« ch E s ES 5§ s S S
aqueous sample, the change in resonance wavelength was detected by a % = g ‘:LS é LSI = Lon' Ls' ‘él* Lon' g E
spectrometer with an LOD of 130 ppt for PFOA. A mixture of 11 PFAS 5N <2
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Fig. 6. A. Steps to produce a surface plasmon resonance (SPR) sensor on a D-
shaped plastic optical fiber with a MIP receptor. Reprinted with permission
from Cennamo et al., 2018. B. Schematic of a polyvinylidene fluoride-coated
optical fiber for detection of PFOA. Reprinted with permission from Faiz
et al., 2020.

incubator

(C4-C11) was detected with an LOD of 150 ppt [182]; however, this goes
against what other MIP-based methods found where PFAS that were not
the template molecule were not able to be detected.

A halogen light and spectrometer setup is not the most accessible for
detection so a low-cost detection setup has been developed as well using
LED lights, two photodetectors, and a digital low-cost oscilloscope
connected to a laptop to detect the intensity change through the same
MIP-POF platform. With an LOD of 500 ppt for PFOA, this offers a lower
cost and slightly more portable alternative to a spectrometer but at the
disadvantage of a higher limit of detection [183]. The same group has
also presented another alternative by replacing the oscilloscope and
laptop with an Arduino system connected to a Raspberry Pi for auto-
matic data acquisition and processing, leading to continuous water
monitoring [174].

Cennamo et al. [177] have also used the surface plasmon resonance
optical fiber as a biosensor, using an antibody to bind PFOA. The same
POF with a Microposit buffer layer and gold film was used, but instead of
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a MIP as the receptor layer, a monospecific anti-PFOA antibody was
covalently immobilized to the gold chip by an amide crosslinker. After
10 min room temperature incubation with the sample, the resonance
wavelength was recorded with a limit of detection of 240 ppt for PFOA
in buffer. A sample with high ionic strength to mimic seawater was also
tested, resulting in an LOD of 880 ppt. PFOS was also evaluated with a
similar response to PFOA, but a mixed solution was not tested nor were
other PFAS.

The previous POF sensors have the sensor component in the middle
of the fiber. Another optical fiber for PFOA was recently developed by
Faiz et al. [185]. In this work, they formed a polyvinylidene fluoride
(PVDF) coating on the end of a cleaved optical fiber using an immersion
precipitation-based phase inversion process. When PFOA adsorbs to the
surface of the PVDF membrane at the end of the fiber due to electrostatic
and hydrophobic interactions, the apparent thickness of the coating
changes, resulting in a change in the optical path difference (Fig. 6B).
This fiber had a limit of detection of 5 ppm. While they did test the fiber
successfully with samples of diluted AFFF containing potentially mul-
tiple PFAS, the limit of detection is still relatively high, and no in-
terferences were tested. With appropriate optimization and evaluation
of selectivity for certain PFAS or PFAS mixtures, optical fibers offer a
promising approach for remote and continuous sensing/monitoring of
PFAS.

4.5. Immunosensors

Immunoassays offer an interesting approach to PFAS detection.
These sensors take inspiration from how PFAS act in the human body.
For example, PFOS and PFOA bind strongly to both bovine and human
serum albumin (hSA) [186-189]. Moro et al. [190] developed an elec-
trochemical sensor based on hSA covalently immobilized to pyrrole-2-
carboxylic acid (Py-2-COOH) on a graphite screen-printed electrode.
In this immunoassay, the hSA was delipidated to increase the binding
sites for PFOA [186]. The impedance of the sensor increases when PFOA
binds to the hSA. PFOS does increase the impedance signal but PFOS was
not evaluated at multiple concentrations. This immunosensor is prom-
ising in that it is label-free, robust, fast, and disposable due to the use of
the screen-printed electrode, but it still needs to be developed past proof
of concept and fully evaluated as a standalone sensor for interferences,
selectivity, and sensitivity, as well as use in real samples [190] (Table 5).

PFAS have been recognized as an agonist for peroxisome
proliferator-activated receptor alpha (PPARa), which is a transcription
factor that activates many target genes [26,27]. The activation of PPARa
by PFOS has been associated with cancer development and other dis-
eases [28]. The activated complex can be captured by monoclonal anti-
PPARa antibodies on a microplate [191,192]. In one immunosensor,
AuNPs modified with PPARa-responsive elements (PPRE) are added to
the microplate and bind only to the activated complex (Fig. 7A). Silver
was also added to enhance the signal of the AuNP. The optical density
positively corresponds to the PFOS concentration, with a limit of
detection of 5 ppt. As other molecules that can activate PPARa, PFOA
and mono(2-ethylhexyl) phthalate (MEHP) were also quantified [191].
In another sensor, quantum dots modified with streptavidin serve as a
fluorescent marker that bind to the PFOS-activated PPARa complex
(Fig. 7B) [192]. The fluorescence intensity of the quantum dots is pro-
portional to the PFOS concentration, with an LOD of 2.5 ppt. While
neither of these PPARa sensors are field-compatible as they require
many reagent addition, washing, and incubation steps which can take
hours, a microplate enables the analysis of 96 samples at once. Still, the
concept is promising and could be adapted to a lateral flow assay format
for on-site detection of total PFAS concentration.

Enzymatic biosensors for PFOS have also been developed. Multi-
walled carbon nanohorn-modified glassy carbon electrodes act as the
bioanode and biocathode substrates [193]. Glutamic dehydrogenase
and bilirubin oxidase are the biocatalysts that convert chemical energy
into electrical energy when L-glutamate is oxidized in the presence of
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Table 5
Immunosensors.
Substrate Mechanism Analytes  LOD Concentration Real Samples Detector Measurement Ref.
(ppb) Range (ppb)
Graphite screen-printed PFOA binds to human serum  PFOA 207 207 - 828 None tested Potentiostat/ Electrochemistry: [190]
electrode albumin galvanostat impedance
Multi-walled carbon PFOS inhibits catalysis of PFOS 0.80 2.50 - 250 Reservoir and Potentiostat Electrochemistry: [193]
nanohorn- modified glutamic dehydrogenase and river water cyclic voltammetry
glassy carbon bilirubin oxidase
electrode
Gold nanoparticle PPRE®-modified AuNP bind PFOS 0.005 0.05 - 500 River water Microplate Optical density [191]
to PFOS-activated PPARx reader
complex
Quantum dot (QD) Streptavidin QDs bind to PFOS 0.0025 0.0025 - 0.075 River, lake, Microplate Fluorescence [192]
PFOS-activated PPARx bottled purified  reader
complex water

a. PPRE: PPAR (peroxisome proliferator-activated receptor) response element.

B (1) (2)
gree | B | Be
(4) (3) '." .
<Biotin Y
&‘D;"S‘t'l?e . h% Pr’*’«R’M&‘I’JEDU‘v
— 5 ¥
L A
Ligand PPARa-RXRa anti-PPARa PPRE-GNP M M

Fig. 7. A. A schematic of PFOS detection by the silver-enhanced interaction between PPRE-modified gold nanoparticle probes and activated PPARx. PPRE-GNP:
PPARo-responsive element-modified gold nanoparticle probes. Reprinted with permission from Xia et al., 2011. B. Schematic of a bioassay using streptavidin-biotin-
modified quantum dots to detect PFOS. Reprinted with permission from Zhang et al., 2011.

NAD™. PFOS inhibits the activity of the biocatalysts and decreases the
voltage of the system. This change in open-circuit voltage was measured
by cyclic voltammetry, and the limit of detection was found to be 800
ppt. The biosensor is selective for PFOS as PFOA, PFBS salt, PFOSA, and
PFNA did not have any interference.

4.6. Other

A type of material that is more commonly being used in sensors is
organic frameworks: metal and covalent. Both are porous materials that
can be tuned to be selective to allow certain molecules into their pores.
Metal organic frameworks (MOFs) are made of rigid inorganic groups
and flexible organic linker ligands. Extremely high surface area and pore
volume allow multiple binding sites that help address low detection
limit concerns [194]. Specifically with electrochemical detection, MOFs
can be used directly on electrodes as electrode extensions as demon-
strated by the Chatterjee group [195]. The MOF, with a Cr metal center,
traps PFOS by strong electronic affinity. An interdigitated microelec-
trode array was used as an electrochemical transducer to make imped-
ance measurements. The use of the array increased the signal-to-noise
ratio compared to a conventional macro electrode. An LOD of 0.5 ppt
was obtained, which is one of the lowest of the methods discussed in this
review. Although no other PFAS were tested with the MOF, the sensor
was able to detect spiked PFOS in untreated groundwater which is
promising for its use in realistic matrices.

Covalent organic frameworks (COFs) are similar to MOFs but are
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composed of light elements like hydrogen, carbon, boron, nitrogen, and
oxygen which form covalent bonds in a cyclic manner [196]. Li et al.
[197] functionalized lanthanide upconversion nanoparticles (UCNPs)
with COFs to detect PFOS. In the presence of PFOS, the fluorescence of
the UCNPs@COFs allows for highly sensitive detection using a fluores-
cence spectrometer. PFHxS, PFDA, PFNA, PFOA, PFHpA, and PFHxA
also quench the fluorescence of the NP but not as much as PFOS.
Interfering effects from SDS and SDBS could be eliminated by the
addition of Ba?*. The limit of detection (0.075 ppt) achieved by this
sensor is extremely low in comparison to other fluorescence detection
methods and well below the current EPA guideline of allowable PFOS in
drinking water.

Ion-selective electrodes (ISE) have also been developed for in situ
PFOS/PFOA detection by manipulating F-F interactions and transducing
the chemical signal into an electrical signal. A fluorophilic methyl-
triarylphosphonium cation membrane has been shown to be highly se-
lective for PFO™ and PFOS” with limits of detection in the low ppb range
[198,199].

5. Commercialization

While significant progress has been made towards PFAS sensors,
commercialization has lagged. Of all the sensors presented in this re-
view, we are aware of only one in early stages of commercialization
[112,114] and two others with submitted patent applications
[158,195,200,201]. In order to progress the field beyond the research
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setting and impact how PFAS are measured in the field, one must
consider the technology transfer process and commercialization early in
the development cycle. Commercialization is an important activity as a
mechanism to provide sensors to end users that are interested in the
information that is provided by the sensors more than how they work.
Sensors for both environmental and toxicological applications are
envisioned based on the need to understand where there is PFAS
pollution and how widely it impacts humans. For environmental ap-
plications, sensors can support tracing and detection to protect human
and ecological health. Sensors will also be critical once guidelines are in
place as a way to reduce analysis cost and time. Sensors are not meant to
replace the traditional instrumental methods that are currently being
used, but instead complement their analysis and make the detection of
PFAS more accessible. Commercializing PFAS sensors has proven chal-
lenging for several reasons. First, the performance requirements
(detection limits, matrices, etc.) are challenging for any sensor neces-
sitating longer development cycles. As a result, it can be expensive to
develop the sensors in large quantities while maintaining the necessary
performance level. Second, until recently the demand (market pull) has
been limited, placing further challenges on the economics of production.

Despite these challenges, there is hope for future commercialized
PFAS sensors. First, the U.S. EPA proposed regulatory determinations for
PFOS and PFOA under the Safe Drinking Water Act in February 2020
[54]. Previously PFOS and PFOA have been monitored but not regu-
lated. This proposal follows similar regulatory efforts passed in the EU in
2019 [202]. Given the high cost of traditional PFAS analysis methods,
sensors that can provide relevant, cost-effective information will be
valuable to water management systems. Second, the performance of
traditional sensors using, like ion-selective electrodes, has improved to
the point that they can provide useful information while also being a
form factor that makes production viable based on existing platforms
once suitable modifications have been made for PFAS detection. Even
with this progress, however, there is a clear need to continue progress
towards commercializing sensors that can provide useful, actionable
information for water quality managers.

6. Summary and outlook

This review summarizes the latest developments in sensor-based
detection of PFAS by discussing the various detection mechanisms.
There is still a lot of research and optimization to be done as these
sensors have pitfalls including high limits of detection, long analysis
time, and/or still need a pretreatment step to reduce the impact of in-
terferences. The key for detection is to find something that will capture
PFAS and transduce the binding event into a measurable analytical
signal. In addition to the detection methods described above, we can
draw inspiration from the work done to clean up water sources. For
example, activated carbon, anion exchange membranes, and nano-
filtration have been used to remove PFAS from wastewater [203]. Other
removal and adsorption techniques that have been developed but not
evaluated as a sensor for detection include fluorinated gel [204], cy-
clodextrins [155,205-208], MIPs [95,206,209-212], and MOFs [213].
These methods could be used to capture the PFAS from an environ-
mental sample and then be combined with a signal transduction step for
detection.

A big point that was made evident was the difference between a
sensor that is specific for one PFAS compound (like PFOS or PFOA) or a
sensor that can detect PFCAs, PFSAs, or total PFAS. While both types are
useful, the purpose of the sensor should be kept in mind. To evaluate
water sources for their compliance with EPA guidelines, a sensor that is
specific to PFOS and/or PFOA is important as the current guidelines are
for total PFOA and PFOS content (70 ppt). This type of sensor could be
used by both water quality managers and the general public. Of the
sensors described above, those with MIPs had the best response to a
specific PFAS without interference from other PFAS. For general PFAS
detection, sensors based on complexation with organic dyes and
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nanoparticles as well as PPARa immunosensors performed best. These
optical sensors, especially those based on small molecule complexation,
also tend to suffer from interferences like other surfactants like SDS and
SDBS which will need to be removed prior to PFAS detection. As more
studies are done and other PFAS are regulated, it will become important
to detect the other common PFAS like the ones included in the EPA
standard methods [51-53]. So far, only one sensor has been developed
for GenX, part of the next generation of short-chain PFAS [172]. As the
chemistry of these compounds is different from PFOS, PFOA, and other
long-chain PFAS, new detection mechanisms may need to be developed.

Many of the sensors that we described test real samples in the form of
tap, river, and/or lake water. However, in most cases, the PFAS con-
centration was too low to be detected so the samples were spiked with
PFAS to demonstrate feasibility. Further optimization and testing need
to be done to demonstrate the use of the sensors in real matrices out in
the field. A big part of this is to continue lowering the limits of detection
of the sensor to the low ppt range and below. This can be done by
optimizing pretreatment and preconcentration steps although adding
extra steps is not ideal for field-based measurements. The development
of fluoro-SPE is promising as a further step to make a sensor more spe-
cific for PFAS [115]. In the meantime, sensors with detection limits in
the high ppt to low ppb range can still perform well as a prescreening
tool to identify hotspots of PFAS contamination in aqueous environ-
mental samples.

Currently, the sensors with the lowest LODs (<25 ppt) are either a
MIP electrode [157-159,163,172] or an immunoassay [191,192]. All of
these have instrumentation needs like a potentiostat or a microplate
reader, neither of which are field-compatible in their traditional form.
Again, the end user should be kept in mind. A water quality lab with the
ability to accommodate some infrastructure like a potentiostat or a
microplate reader would benefit from the MIP and immunosensors, but
this set up would not provide the general public with an inexpensive and
easy-to-use sensor. Two sensors mentioned previously use a smartphone
to read the results of a colorimetric reaction of PFAS with ethyl violet or
guanidinocalix[5]arene [112,123]. While the LODs of these sensors are
still relatively high (~10 ppb), the use of a smartphone is a promising
step towards a field-compatible quantitative sensor. Smartphones also
have the ability to integrate into a network of smart sensing technology,
increasing our ability to map and monitor PFAS contamination [44].

As research and development of these sensors continue, the process
towards commercialization should also be kept in mind, including
making the sensor in a form factor that is conducive to its intended
purpose. While the publication of the method is often the end of the line
within academia, many industries including government agencies,
water quality managers, and contract labs as well as the general public
will benefit from taking the extra steps to bring a sensor to the com-
mercial market. The widespread use of a PFAS sensor can make a big
difference in how we study and treat PFAS in addition to ensuring
human and environmental health.
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