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A B S T R A C T   

The voussoir beam analog is a well-established analytical method that has been successfully applied to the design 
of flat-roof excavations in discontinuous rockmasses. However, application of voussoir beam theory is limited to 
very specific conditions. Previous authors have attempted to account for more realistic loading and geometric 
conditions, but have not presented systematic or verified methods to account for variations in inelastic material 
behavior or supported roof geometry. This study presents multiple original numerical models that methodically 
assess the effects of increasing material and geometric complexity on voussoir beam mechanical behavior and 
develops adjustments to the Diederichs & Kaiser (1999) analytical solution to account for variations in post-peak 
material behavior and the interactions between multiple passively bolted layers. A step-by-step guide is pre
sented for implementing these adjustments.   

1. Introduction 

Discontinuities are inherent features of bedded, jointed, and lami
nated rockmasses and can be significant controls on the mechanical 
response of excavations.1 Depending on depositional environment, tec
tonic history, and current mining-induced stresses, the network of 
bedding planes, laminations, and fracture sets may violate many of the 
continuous, homogeneous, isotropic, and linearly elastic (CHILE) ma
terial assumptions that many practically applicable research and design 
methods rely on. Proliferation of computational power and discontinue 
numerical modeling methods allow geological engineers to simulta
neously consider multiple, increasingly complex effects on excavation 
deformation that occur in-situ. However, the heterogeneous nature of 
many rockmasses can result in significant changes in ground conditions 
as a given excavation is advanced. These changes require additional 
models to understand the effects of multiple rockmass conditions on 
excavation response. Therefore, a practically applicable analytical 
method that can account for the mechanically relevant complexities 
remains desirable, regardless of advances in numerical methods. 

Flat-roof excavations are commonly implemented in mining and 
civil-infrastructure projects in sub-horizontally to horizontally bedded 
sedimentary geologic formations. This excavation shape reduces excess 

material handling and prevents formation of fully unconfined rock 
blocks (i.e. blocks that are only bounded by the surrounding rockmass 
on two sides rather than three) while promoting formation of competent 
roof beams and enhancing roof self-supporting capacity. Flat-roof 
deformation mechanics have previously been studied predominantly 
via elastic and voussoir beam analogs.2 Application of both elastic and 
voussoir beam theories to flat-roof excavations has specific limitations 
depending on the geologic and mining characteristics of a given design 
scenario. As this research is focused on laminated and discontinuous (i.e. 
cross-jointed) systems, the voussoir beam analog is more representative 
of the conditions considered herein. This research analyzes the voussoir 
beam mechanical response to more realistic intact rock behavior and the 
presence of passive support using the discrete element method (DEM) as 
implemented in Itasca’s Universal Distinct Element Code (UDEC). The 
various voussoir beam model responses are then accounted for by 
identifying and adjusting relevant inputs to the existing Diederichs & 
Kaiser3 analytical solution. 

Even though DEM has been previously implemented in researching 
voussoir beam mechanics, studies often focus specifically on the influ
ence of joint properties,4 development of simplified analytical methods,5 

intact material properties and verification of analytical methods,5,6 or 
individual case studies that range in rockmass complexity.7–12 More 
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recent studies have analyzed the impact of locked-in horizontal 
stress,13,14 presence of active roof support,15 and the transition from 
elastic beam behavior (i.e. massive, intact) to the development of tensile 
fractures and formation of a voussoir beam.16 Notably, increasingly 
realistic material properties and roof geometries have not been thor
oughly considered prior to application of the voussoir beam analog to 
more complex case studies.3,11,12 

In order to expand the applicability of the voussoir beam analog to 
more realistic in-situ conditions, increasingly complex voussoir beam 
numerical models featuring inelastic intact material with various post- 
peak behaviors were analyzed, as were passively bolted multi-layer 
geometries. Existing modifications to the baseline Diederichs & Kai
ser3 voussoir beam analytical solution were considered, and adjustments 
identified and developed in the course of this study were found to be 
more accurate than the baseline Diederichs & Kaiser3 analytical solution 
(Fig. 1). Ultimately, a guide on the limitations and implementation of 
the proposed modifications is presented to aid in future practical 
analyses. 

1.1. Voussoir beam mechanical behavior 

CHILE assumptions do not account for many observed in-situ rock
mass characteristics and material properties such as: (1) fracture influ
ence, (2) variation in rock strength and stiffness, (3) anisotropy, and (4) 
temporal effects of cyclical loading.17 Removing the ‘continuous’ 
assumption and introducing vertical joints at the beam midspan and 
abutments brings the roof beam analog one step closer to capturing the 
in-situ mechanical behavior of excavation roof deformation in a 
discontinuous rockmass. This segmented beam geometry is known as a 
voussoir beam, first theorized by Evans18 based on previous observa
tions and experimentation by Fayol,19 Jones & Llewellyn-Davies,20 and 
Bucky & Taborelli.21 

Generally, voussoir beam stability is governed by the span-to- 
thickness ratio (S/T) of the beam, and the strengths and stiffnesses of 
intact material and joints. Unlike simply supported elastic beams, 
voussoir beams carry zero or negligible tensile forces. The symmetric 
deflection of the bilateral beam spans through elastic shortening of the 
beam generates support via a horizontal thrust reaction force at dis
continuities. The thrust transfers load to the abutments and supports the 
weight of the voussoir beam.6 

The voussoir beam analog is traditionally applied in low- 
confinement scenarios where the immediate roof beam can be isolated 
from the complex loading conditions that sometimes occur in the field. 

Four main failure modes can occur in a voussoir beam geometry: (1) 
snap-through/buckling or elastic instability where the maximum 
possible resisting moment is surpassed by the overturning moment 
induced by the self-weight of the beam and any surcharge loads (no 
intact rock damage occurs); (2) crushing failure induced where 
maximum compressive stresses overcome the intact strength of rock at 
beam midspan and abutments; (3) vertical abutment slip prior to 
development of a sufficiently strong compressive arch or increasing 
surcharge load; and (4) diagonal tensile cracking normal to compressive 
forces.3 

1.2. Analytical solutions 

Despite the long history of voussoir beam research, analytical solu
tions for voussoir beam deflection, and maximum stresses are not as 
well-developed or constrained as simple elastic beams. This is reflected 
in the literature as variations in initial assumptions, boundary condi
tions, solution methods, and results. Methods such as iterative loop 
calculations, laboratory experiments, and numerical modeling have 
been employed in constraining expected and observed deformations and 
stresses in voussoir beams. Previous analytical solutions are available in 
Sterling,22 Beer & Meek,23 Sofianos,24 and Diederichs & Kaiser.3 

Diederichs & Kaiser3 built upon Beer & Meek’s23 iterative solution 
loop and found that a stable voussoir beam in equilibrium will have a 
compression arch thickness of approximately 0.75 times the beam 
thickness (T) for small deflections and 0.3T at incipient collapse. Alejano 
et al.11 indicated that the method in Diederichs & Kaiser3 was more 
accurate at capturing in-situ conditions modeled than the analytical 
solution of Sofianos.24 Mitra & Sofianos25 have updated the original 
Sofianos24 analytical solution to account for multi-jointed beams with 
stiff joints; however, this study is concerned with a wide range of joint 
stiffnesses when considering elastic intact material properties (as in 
Section 3). Therefore, the analytical solution from Diederichs & Kaiser3 

was used a baseline for comparison to the numerical models developed 
herein. 

The spacing and normal stiffness of vertical joints were incorporated 
into a rockmass modulus (Erm) by Diederichs & Kaiser3: 

1
Erm

=
1
E
+

1
(jkn)sj

(1)  

where jkn = joint normal stiffness, and sj = joint spacing. This adjust
ment is based on the equivalent stiffness of springs connected in series 
and assumes that the system is being loaded axially (i.e. perpendicular to 

Fig. 1. Graphical depiction of exiting analytical inputs explicitly considered in the baseline Diederichs & Kaiser3 analytical solution and the explicit considerations 
developed and validated through the course of this research. 
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the joint orientation). The rockmass modulus for a single-layer beam 
calculated using Eqn. (1) based on only vertical joint spacing and stiff
ness is referred to as Ermx for the remainder of this paper. 

Equations relating uniformly distributed surcharge and support 
pressures to the change in effective specific weight (γ) of the voussoir 
beam were also presented3: 

γ* = γ ±
q
T

(2)  

where q = uniformly distributed pressure, and T = beam thickness. They 
suggested that using a triangular distribution can account for passive 
rock bolt elements providing suspension support and were able to 
consider the effect of cablebolts in a case study by using a negative 
pressure and decreasing the effective specific weight of the beam. 

Following determination of the inputs depicted in Fig. 1, factors of 
safety (FoS) against buckling, crushing, and abutment slip (i.e. sliding) 
can be calculated with an iterative solution loop. Readers are referred to 
Diederichs & Kaiser3 for a robust discussion of the iterative solution loop 
and effective specific weight. 

Diederichs & Kaiser3 also proposed a method of estimating rockmass 
modulus in-situ by using the Q tunneling index and the level of 
confinement of a given excavation. Furthermore, they suggested that in 
thinly laminated ground, grouted rebar should have a length equivalent 
to the desired beam thickness and that such beams should be designed to 
a FoS of 1.5–2.0. However, neither of these methods were fully vali
dated, and accounting for support effect by adjusting the effective spe
cific weight does not account for the doweling effect (i.e. shear 
resistance) of passive rockbolts, only the effect of suspension (i.e. axial 
resistance). Diederichs & Kaiser3 evaluated their assessment of buckling 
failure using two case studies. 

1.3. Consideration of complex geologic and mining conditions 

Oliveira & Pells14 evaluated orthogonally jointed and bolted 3-layer 
composite beam models that were 3.0 m thick; these models were 
analyzed considering various bedding plane properties, bolt orienta
tions, and locked-in horizontal stresses. They noted that passive rock
bolts installed on 1.75 m spacing, orthogonal to bedding did not 
promote composite beam behavior as much as passive bolts installed at a 
70◦ angle to bedding. However, their results still showed an approxi
mately 20% decrease in bolted beam displacement with bolts orthogonal 
to bedding. Beyond this study by Oliveira & Pells,14 the explicit me
chanical impact of passive bolts installed normal to the excavation roof 
has not been thoroughly explored in the context of the voussoir beam 
analog. In particular, the combined impacts of varying beam geometry 
and material properties. 

Oliveira & Paramaguru15 compared the impacts of complex loading 
and geometric conditions on voussoir beam numerical models to the 
analytical predictions of voussoir beam mechanics from Diederichs & 
Kaiser.3 Oliveira & Paramaguru15 presented an equation that provided a 
reasonable adjustment to the rockmass modulus used in the Diederichs 
& Kaiser3 analytical solution based on the spacing of bedding partings. 
However, they only presented displacement results for a single bolted 
beam case that was supported with pre-tensioned bolts, leaving it 
inapplicable to passively bolted systems and its broader applicability 
uncertain given that only a single model case was considered. 

It is evident that the body of research regarding roof stability in 
discontinuous sedimentary rock has confirmed that the voussoir beam 
analog can reasonably approximate roof deformation mechanics in flat- 
roof underground excavations. However, a connection between the 
simplified analogs presented above and the more complex loading 
conditions of laminated, discontinuous, and supported roofs has not yet 
been fully developed and verified in the literature. 

2. Inelastic voussoir beams 

Although elastic material assumptions may approximate in-situ 
conditions in competent, massive rockmasses, discontinuous and 
layered systems frequently include weak lithologies that deform 
inelastically. Sections 2.1-2.5 investigate the accuracy of assuming that 
voussoir beam collapse occurs coincidently with the onset of material 
yield through consideration of cases with various post-peak material 
behaviors. Three main causes contributing to differences between model 
results and the analytical solution were identified: midspan-abutment 
stress differential, analytical-model stress difference, and post-peak 
material behavior. 

Note that only inelastic crushing failure was investigated in this 
section, while diagonal tensile cracking was not. This was due partly to 
the inability for the UDEC DEM implementation to explicitly model the 
rupture of intact material without the use of adaptations such as the 
bonded block method (BBM), and also because the inelastic beams 
modeled were not likely to incur diagonal tensile cracking failure due to 
their dimensions (i.e. S/T > 5) as indicated by physical models from 
Stimpson & Ahmed.26 However, some model results indicated that a 
combination of crushing and diagonal tensile cracking failure might 
have occurred in some cases had explicit fracturing been allowed. 

2.1. Methodology & model inputs 

Multi-jointed inelastic voussoir beam models were created in UDEC 
based on those presented in Diederichs & Kaiser3 with one exception: 
once voussoir arching was allowed to develop with effectively elastic 
joints (i.e. high cohesive strength, non-zero tensile strength), the joint 
constitutive model was changed to continuously yielding in order to 
capture the effect of realistic inelastic joint behavior on voussoir beam 
mechanics. The continuously yielding joint model has previously been 
shown to more accurately represent joint displacement under large 
deformation.27 In addition to assuming zero tensile strength, it contin
uously relates the shear strength of the joint to the decay of friction from 
an initial (i.e. peak) to an intrinsic (i.e. residual) value, as well as a 
decrease in effective dilatancy as a function of plastic shear strain and 
normal stress acting on the discontinuity. 

Voussoir beam abutments were modeled as elastic deformable blocks 
set to be functionally rigid (i.e. K = 5.6(10)35 Pa). Diederichs & Kaiser3 

noted the use of rigid blocks in UDEC concentrated abutment stress and 
led to inaccuracies. This is due to the fact that rigid blocks are not dis
cretized and only require an assigned density, therefore impacting stress 
calculations. Furthermore, the more recent versions of UDEC do not 
permit the use of fixed-velocity boundary conditions with rigid blocks, 
only deformable ones. The use of deformable abutment blocks with a 
high stiffness in the current UDEC models allowed for the impact of 
abutment block properties to be minimized and approach the assump
tions and boundary conditions used in both the baseline Diederichs & 
Kaiser3 analytical solution and the UDEC models featured therein. 

The model solution method in Diederichs & Kaiser3 was replicated by 
running models in multiple stages. The first stage featured strong 
intra-span and abutment joints with cohesion and tensile strength that 
allowed stable deflection to occur and horizontal stresses to develop in 
the voussoir beam. The second stage altered the intra-span joints to 
high-friction, zero cohesion, and zero tensile strength. The third stage 
altered the intra-span joints from Mohr-Coulomb to continuously 
yielding in order to model the impact of more realistic discontinuities 
once voussoir arching had developed. The fourth stage changed the 
intra-span joint parameters to realistic values, but left abutment joints 
with high frictional strength to maintain the assumption of zero abut
ment slip while allowing joint opening in accordance with the Die
derichs & Kaiser3 analytical solution and numerical models. Every time 
joint parameters were altered, the model was run to equilibrium. This 
method is discussed in detail and compared to the results of Diederichs & 
Kasier3 in Abousleiman.28 
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All models in this section incorporated a block rounding of 0.015 m 
and a zone size of 0.2 m. The model setup, staging, block rounding, and 
zone size used were validated against the analytical solution and model 
results presented in Diederichs & Kasier.3 For further information on 
baseline model validation, as well as zone size and block rounding 
sensitivity analysis, refer to Abousleiman et al.29 and Chapter 2 of 
Abousleiman.28 

Two rock-analogs representing reasonable end-member conditions 
were selected (referred to as weak and strong rock analogs, 

respectively), and the appropriate material properties were assigned 
based on Tulu et al..30 Each rock analog was modeled with three 
post-peak behaviors: brittle, strain weakening, and perfectly plastic 
(Table 1). Both brittle and strain-weakening material were modeled 
with a residual strength equal to 10% of the peak strength, deviating 
from the common voussoir assumption that post-peak material strength 
is zero and that yield, failure, and beam collapse are coincident. 

Although few weak (i.e. 5.7 MPa) geomaterials are likely to deform 
in an extremely brittle manner (e.g. coal), the unconfined nature of 
where material yield initiates (i.e. top of beam midspan and bottom of 
beam abutments) coupled with the need for direct comparison of end- 
member conditions led to the consideration of this case. 

Both rock analogs listed in T were stable under self-loading in the 
voussoir geometry tested, so models were run with an increasing sur
charge pressure (Fig. 2). Applied surcharge pressure increased the 
effective unit weight of the voussoir beam, increasing the maximum 
horizontal compressive stress generated, and decreasing the FoScrushing. 

Models were run by increasing the surcharge pressure in increments 
of 2.0 kPa, Eqn. (2) was used to recalculate a new effective specific 
weight, and the analytically predicted maximum stress was recalculated 
to identify the FoScrushing for each surcharge increment. After each in
crease in surcharge pressure, the model was solved to a standard equi
librium solution ratio of 1.0(10)− 5 and stepped an additional 100,000 
steps to ensure that the model had indeed stopped displacing. 

Model histories of maximum horizontal stress at midspan and 
abutment, midspan deflection, and type of material yield were collected 
and compared to FoScrushing based on analytical predictions of 
displacement and horizontal stress. 

FoScrushing was calculated in accordance with the method from Die
derichs & Kaiser3: 

FoScrushing =
UCS*
σmax

(3)  

where σmax = maximum compressive stress determined by the voussoir 
analytical solution. The analytical solution assumes that when 
FoScrushing < 1.0 (i.e. peak strength exceeded) the voussoir beam should 
immediately yield at the midspan and abutments, and collapse. 

Table 1 
Geometric, discontinuity, Mohr-Coulomb parameters for intact material used in 
analyzing inelastic voussoir beam mechanical behavior. UCS* = in-situ intact 
compressive strength, E = Young’s Modulus, v = Poisson’s Ratio, Φi = initial 
friction angle, Φr = residual friction angle, ci = initial cohesion, cr = residual 
cohesion, ti = peak tensile strength, tr = residual tensile strength, ψ = dilation 
angle, εcr = critical plastic shear strain.  

Geometry & Discontinuities 

Beam Span (m) 10 — 
Beam Thickness (m) 1 – 
Joint Spacing (m) 0.5 – 
Joint Stiffness (jkn/jks) (GPa) 100 – 
Initial Joint Friction (◦) 35 – 
Intrinsic Joint Friction (◦) 30 – 

Intact Material Properties (Field-Scale)  

Strong Weak 
UCS* (MPa) 47 5.7 
Density (kg/m3) 2500 2500 
E (GPa) 25 8 
v 0.25 0.25 
Φi 40◦ 20◦

Φr 40◦ 20◦

ci (MPa) 11 2 
cr (MPa) 0.1ci 0.1ci 

ti (MPa) 4 0.6 
tr (MPa) 0.1ti 0.1ti 
ψ 10◦ 5◦

Strain Weakening εcr (strain) 5.0(10)− 3 5.0(10)− 3 

Brittle εcr (strain) 1.0(10)− 6 1.0(10)− 6 

Perfectly Plastic Residual=Peak Residual=Peak  

Fig. 2. Inelastic voussoir beam model geometry, surcharge load, and boundary conditions.  

Table 2 
Comparison of strain-weakening (SW), brittle, and perfectly plastic (PP) model results and analytically determined values of displacement and maximum stress at the 
surcharge where yield initiated. UCS* - in-situ compressive strength, kPa = kilopascal, cm = centimeter, MPa = megapascal, mid = midspan, abut = abutment, δyy =

vertical displacement, σxx = horizontal stress.   

Strong Rock Analog 
47 MPa UCS* 

310 kPa Surcharge 

Weak Rock Analog 
5.7 MPa UCS* 

22 kPa Surcharge 

δyy (cm) σxx,mid (MPa) σxx,abut (MPa) δyy (cm) σxx,mid (MPa) σxx,abut (MPa) 

Analytical Solution (Diederichs & Kaiser3) 2.4 24 24 0.80 3.1 3.1 

PP & SW 
Model Result 2.5 28 45 0.67 3.3 6.1 
Analytical Error (%) − 4.0 − 14 − 47 20 − 6.1 − 49 

Brittle 
Model Result 2.8 30 48 0.76 3.6 5.7 
Analytical Error (%) − 14 − 20 − 50 5.3 − 14 − 46  
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Diederichs & Kaiser3 suggested multiplying the lab-scale UCS by 0.3–0.5 
to account for scale effects and obtain a value for UCS*. However, as the 
properties listed in Table 1 are already field-scale values (i.e. UCS* 
rather than UCS), Eqn. (3) was compared to model results with no 
additional adjustment. 

2.2. Initial yield results 

Regardless of post-peak strength, material yield initiated at the beam 

abutments as the analytically determined FoScrushing approached 1.8 (i.e. 
22 kPa surcharge pressure) and 2.0 (i.e. 310 kPa surcharge pressure) for 
the weak and strong rock analogs, respectively. Note that the voussoir 
beam analytical solution, which was used to calculate the FoScrushing, 
tends to underpredict stresses at the beam abutments.3 Therefore, the 
fact that yield initiated at approximately FoScrushing = 2.0 has no direct 
relationship with the FoScrushing adjustment factors proposed (0.3–0.5 
UCS) by previous authors3,11 as those are based on material properties 
and scale, not differential stress concentrations (Table 2). The beam 

Fig. 3. Maximum stable surcharge pressure for simple inelastic voussoir beam model results showing yielded zone elements (right) and zones with plastic strains 
above the critical strain limit (left) at equilibrium for strong and weak beam models with brittle, strain-weakening, and perfectly plastic behavior. Surcharge pressure 
(q) and analytically determined FoScrushing shown. SW = strain-weakening, PP = perfectly plastic. 

R. Abousleiman et al.                                                                                                                                                                                                                          



International Journal of Rock Mechanics and Mining Sciences 148 (2021) 104919

6

geometry, block material density and Young’s Modulus, joint stiffness, 
and joint spacing listed in Table 1 were implemented in the iterative 
solution loop in Diederichs & Kaiser3 to calculate the maximum midspan 
displacement and beam horizontal stress. 

At the onset of zone element yield, the voussoir analytical solution 
underpredicted maximum stresses for all model cases, particularly those 
stresses recorded at the beam abutments. This was due to a combination 
of the baseline analytical error (i.e. abutment-midspan discrepancy and 
surcharge error) and some yield-induced stress concentration. This 
discrepancy was generally consistent through all cases tested, but more 
pronounced in more brittle cases, as stresses were concentrated into 
fewer zones after yield. Results of perfectly plastic and strain-weakening 
models at yield initiation were effectively identical because the material 
had just entered the post-peak and the deviation in load bearing capacity 
was insignificant. 

Error was also greater in stronger cases due to the increased sur
charge pressure required to yield the stronger voussoir beam and the 
associated deviation from the analytical solution. This phenomenon is a 
product of the way that surcharge pressure is accounted for in the 
analytical solution by simply increasing the specific weight of the beam, 
rather than accounting for how the surcharge pressure is impacting 
shear displacement along vertical discontinuities and the resulting 
horizontal stress distribution across the beam. 

In summary, the difference between model and analytical results at 
yield initiation was due to the midspan-abutment stress differential 
(assumed to be zero in the analytical solution), and the error associated 
with the simplifications made by the analytical solution regarding 
applied surcharge loading. It should be noted that the stress discrepancy 
between midspan and abutment was within the range reported in Die
derichs & Kasier.3 

Regardless of the discrepancy between midspan and abutment 
stresses, these results show that a beam capable of incurring inelastic 
deformation in beam block material does not immediately collapse 
following yield due to gradual post-yield deformation and the non-zero 
residual strength of the material modeled. 

2.3. Incipient beam collapse results – post-peak material behavior 

Following analysis of the models immediately after initial material 
yield, surcharge pressures were increased incrementally until the beams 
failed. As this research deviates from the conservative simplifying 
assumption that yield and beam collapse are coincident, surcharge 
pressures were augmented, and the associated beam responses are 
documented herein. Model results were expected to increasingly deviate 
from the Diederichs & Kaiser3 analytical solution with increasing sur
charge pressure and post-peak ductility, both of which contribute to 

increased inelastic strain within the beam block material following yield 
but prior to beam collapse. 

The four brittle and strain-weakening voussoir beams tested failed at 
values of FoScrushing as predicted by the Diederichs & Kaiser3 analytical 
solution that were greater than one, while the perfectly plastic beams 
failed at FoScrushing values less than 1.0. The maximum stable surcharge 
pressures tested and their associated impact on the distribution of plastic 
shear strain and zone yield in the brittle, strain-weakening, and perfectly 
plastic cases are shown in Fig. 3. Although the Diederichs & Kaiser3 

analytical solution assumes that crushing failure of the beam occurs as 
soon as yield initiates, in reality, some stable beam deflection may occur 
between the onset of yield and the point of beam collapse. Accordingly, 
the analytically predicted FoScrushing at failure will necessarily be less 
than or equal to the analytically predicted FoScrushing at which yield 
initiates (observed to be FoScrushing = 1.8–2.0 in Section 2.2). The degree 
to which FoScrushing at failure deviates from FoScrushing at yield depends 
on the post-peak behavior (i.e. combination of residual strength and 
critical plastic strain) of the intact rock material. 

Analyzing the inelastic voussoir beam abutments under the 
maximum stable surcharge pressure allowed a clear description 
regarding the state of the beam immediately before collapse to be 
developed. The in-situ compressive strength of the intact rock has been 
exceeded, zone elements have yielded in shear and tension, and zone 
plastic strains have exceeded the critical plastic strain (i.e. zones are at 
residual strengths). 

In the strain-weakening beam models, midspan zones incurred sig
nificant shear and tensile yield, but the beams remained stable because 
the plastic strain at the midspan had not exceeded the critical strain and 
zone material properties had not reached residual values. Similarly, 
brittle beam models remained stable with insignificant or no yield at the 
midspan, while zones at the abutment had already reached residual 
strength values. Once the surcharge increment was increased to the next 
step above what is shown in Fig. 3 (i.e. 2.0 kPa higher), the brittle and 
strain-weakening beam midspans exceeded the critical strain, reached 
residual strength values, and the beams failed. This confirmed that the 
midspan crushing was the critical control on crushing failure in brittle 
and strain-weakening models. This finding was further highlighted by 
beam models remaining stable when maximum model abutment stresses 
approached nearly twice the UCS* of the beam material (Table 3). These 
high stresses are due to the fact that as the post-peak behavior was 
altered from brittle to perfectly plastic, the adjacent yielded zones could 
provide more confinement to the zones carrying the maximum abutment 
stress (up to σ3 = 11 MPa in the perfectly plastic strong rock case). 

Irrespective of the analytical solution’s conservativism (i.e. assumed 
coincidence of yield and collapse), or the variation in the analytically 
determined stress and displacement in comparison to inelastic beam 

Table 3 
Comparison of strain-weakening (SW), brittle, and perfectly plastic (PP) model results and analytically determined values of displacement and maximum stress for the 
maximum stable surcharge for each material case tested. kPa = kilopascal, cm = centimeter, MPa = megapascal, mid = midspan, abut = abutment, δyy = vertical 
displacement, σxx = horizontal stress.   

Strong Rock Analog 
47 MPa UCS* 

Weak Rock Analog 
5.7 MPa UCS* 

δyy (cm) σxx,mid (MPa) σxx,abut (MPa) δyy (cm) σxx,mid (MPa) σxx,abut (MPa 

PP 

Surcharge (kPa) 740 79 
Model Result 8.4 63 96 2.9 6.3 13 
Analytical Solution3 5.3 57 57 1.8 7.2 7.2 
Analytical Error (%) − 37 − 9.5 − 41 − 38 14 − 45 

SW 

Surcharge (kPa) 530 53 
Model Result 5.1 48 90 1.4 5.8 10 
Analytical Solution3 3.9 40 40 1.3 5.3 5.3 
Analytical Error (%) − 24 − 17 − 56 − 7.1 − 8.6 − 47 

Brittle 

Surcharge (kPa) 380 34 
Model Result 3.4 36 59 0.99 4.7 7.5 
Analytical Solution3 2.8 28 28 0.99 4.0 4.0 
Analytical Error (%) − 18 − 22 − 53 0.0 − 15 − 47  
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model results (i.e. optimistic), the analytically determined FoScrushing 
had no method to account for post-peak material behavior and therefore 
was both inaccurate and inconsistently conservative relative to the DEM 
model results considering post-peak behavior. However, the impact of 
midspan-abutment stress differentials, as well as the stress discrepancies 
between the analytical solution and model results countered that 

inconsistency with consistently optimistic stability predictions. Opti
mistic predictions (i.e. FoScrushing > 1.0) occurred at both model yield 
initiation and collapse, particularly in the specific material cases (i.e. 
most brittle) that approach the analytical assumptions (i.e. beam 
collapse occurs at onset of material yield). Despite this consistency in 
determining displacement and stress, and consistent optimism when 

Fig. 4. Progressive collapse of strong rock brittle beam at ultimate surcharge pressure, initial midspan shear initiation (top left) and stress concentration away from 
the top of the beam (top right), progressive beam collapse and tensile damage showing yielded elements (bottom left) and compression arch deterioration (bot
tom right). 

Fig. 5. Progressive collapse of strong rock perfectly plastic beam at ultimate surcharge pressure, initial yield status (top left) and horizontal arch (top right), 
progressive beam collapse and tensile damage showing yielded elements (bottom left) and maintained compression arch integrity (bottom right). 
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predicting crushing failure based on midspan-abutment and analytical- 
model stress differentials, FoScrushing is still clearly dependent on post- 
peak material behavior as beams modeled with field-scale strength 
properties failed at three different values of analytically calculated 
FoScrushing. 

Although the strain-weakening and brittle beams collapsed at 
analytically determined FoScrushing > 1.0 (i.e. optimistic analytical so
lution prediction of stability), consideration of realistic post-peak ma
terial properties can only increase the stability of a given beam as the 
analytical solution assumes that yield and collapse occur simulta
neously. Therefore, the overly optimistic analytical solution in brittle 
and strain-weakening beams is based partially on the underprediction of 
maximum midspan stress at the maximum stable surcharge load 
(9–22%). If the analytical solution matched the modeled beam midspan 
stresses at ultimate load, the strain-weakening beams would fail at 
exactly FoScrushing = 1.0, but the strong and weak brittle beams would 
fail at 1.3 and 1.2, respectively. To account for this remaining discrep
ancy, the collapse mechanics of the modeled beams must be considered, 
namely the influence of tensile yield. 

2.4. Final beam collapse results – tensile influence 

Following analysis of the models immediately prior to beam collapse, 
surcharge pressures were increased an additional step (i.e. 2.0 kPa) and 
the beams failed. Each post-peak behavior case described above fol
lowed a distinct pattern of yield and collapse. In brittle beams, addi
tional tensile yield occurred adjacent to zones that previously yielded in 
tension near the midspan and abutment. Shortly thereafter, the midspan 
yielded in shear and the voussoir compression arch immediately began 
to break down. Compression arch deterioration occurred in tandem with 
tensile yield propagation between the midspan and abutment, until total 
collapse of the beam occurred (Fig. 4). 

The initial tensile yield at the midspan shown in Fig. 3 occurred in 
the zones at the periphery of the compression arch. The resultant failure 
shown in Fig. 4 appears to be tensile-yield-induced stress concentration 
causing midspan crushing, followed by a concurrent diagonal tensile 
cracking due to the brittleness of the material, independent of its peak 
strength, as the weak rock brittle beam failed in a similar manner. 
However, abutment and midspan crushing clearly preceded the tensile 
yield propagation between the two, whereas diagonal tensile cracking 
failure has been noted to occur without associated crushing of the 
midspan or abutments.26 

When considering the strain-weakening beam collapse, a similar 
amount of shear yield and the pattern of compression arch deterioration 
occurred, but the beam failed without tensile yield propagating fully 
from midspan to abutment and the shear failure of the midspan was not 
preceded by stress concentration due to tensile yield surrounding the 
midspan. 

Conversely, perfectly plastic beams failed at analytically determined 
FoScrushing < 1.0 (i.e. conservative analytical solution prediction of 
stability). The failure of the perfectly plastic beams occurs because both 
elastic and plastic strains contribute to the deflection and eventual 
overcoming of a relatively constant maximum horizontal stress (i.e. 
moment arm), rather than a sudden loss of strength and compression 
arch deterioration. This is clearly captured by the continuous and sus
tained horizontal compression arch as the moment arm decayed until 
ultimate collapse without associated tensile yield bridging between the 
abutment and midspan (Fig. 5). 

2.5. Inelastic beam discussion 

While the analysis above did not cover every possible rock type, 
perfectly plastic material behavior corresponded to an upper-bound 
estimate of post-peak strength, and brittle material behavior repre
sented the lower-bound. These results indicate that application of 
FoScrushing to rocks and rockmasses with various post-peak material 

behaviors could significantly overestimate (i.e. failure occurs at 
FoScrushing > 1.0) or underestimate (i.e. failure occurs at FoScrushing <

1.0) the safety of a given roof span. This was due to a combination of 
differences in analytically determined maximum stress and model stress 
results, post-peak behavior of the material modeled, and model tensile 
yield. 

The baseline Diederichs & Kaiser3 analytical method, which already 
applies a correction factor of 0.3–0.5 to get from lab to field scale UCS, 
requires an additional adjustment based on the post-peak behavior of 
the rock. The current results suggest that an additional adjustment on 
the order of 0.6- or 1.25-times be made to Eqn. (3) for brittle and 
perfectly plastic rock types, respectively, once the UCS has been adjusted 
to field scale values and the post-peak material behavior is consistent 
and well-known. This adjustment should be applied with caution, 
however, until additional research verifies these findings. 

3. Orthogonally jointed & bolted beams 

Following analysis of the impact of inelastic block post-peak material 
behavior, the impacts of horizontally jointed and supported roof con
ditions were considered through the use of elastic block models in this 
section. Although the joint networks, bedding planes, and supported 
roof conditions analyzed in this section correspond to more complex 
multi-beam geometries than have been previously considered, they 
represent the simplest possible case with fully persistent and evenly 
spaced horizontal and vertical discontinuities. 

3.1. Methodology & model inputs 

First, the effect of passive bolts was considered on a limited suite of 
models transitioning from a single-layer, 1 m thick beam, to a two-layer, 
1 m thick beam (i.e. two 0.5 m layers), and finally to a single-layer 0.5 m 
thick beam. The results of this preliminary effort identified a trend in the 
overall beam behavior that warranted an expanded investigation. 
Furthermore, the degree by which the bolt element and interface were 
loaded by the deflecting layers were identified. 

In order to approach in-situ roof geometry of a discontinuous and 
layered rockmass, a suite of voussoir beam models with multiple vous
soir layers tied together using passive rockbolt elements encompassing 
the properties in Table 4 were developed. All combinations of properties 
were tested resulting in 810 original numerical models. Models were run 
using the previously described method transitioning from elastic joints 
to continuously yielding, as well as a block rounding value of 0.015 m 
and zone size of 0.125 m previously validated by comparison to the 
baseline Diederichs & Kaiser3 analytical solution in Abousleiman et al.29 

and in Chapter 2 of Abousleiman.28 

The modeled rockbolt structural elements provide axial and shear 

Table 4 
Proposed material and geometric properties for parametric analysis 
to verify adjustment to rockmass modulus in the existing voussoir 
beam analytical solution. Note that highlighted rows were varied 
concurrently and that remaining relevant bolt properties are from 
Bahrani & Hadjigeorgiou.31 

Beam Span (m) 10 20 --- 
Beam Thickness (m) 1 2 4 
Horizontal Joint Spacing (m) 0.5 1 --- 
Vertical Joint Spacing (m) 0.5 1 2.0 
Bolt Spacing (m) 1.2 1.8 2.4 
Bolt Element Node Spacing 24/m --- --- 
Bolt Normal Stiffness (N/m2) 5.0(10)10 --- --- 
Bolt Shear Stiffness (N/m2) 2.5(10)7 --- --- 
Bolt Normal Cohesion (N/m) 4.0(10)6 --- --- 
Bolt Shear Cohesion (N/m) 6.0(10)5 --- --- 
Joint Stiffness (jkn/jks) (GPa/m) 5.0 50.0 100.0 
Intact Young’s Modulus (GPa) 10.0 50.0 100.0 
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resistance based on the parameters developed by Bahrani & Hadji
georgiou31 through calibration of UDEC models to laboratory testing of 
pure axial and shear loading of fully-grouted rebar rockbolts. The 
rockbolt element constitutive model in UDEC treats the rock-grout-bolt 
system as a linearly elastic material up to an ultimate tensile failure 
(rupture) strain, and uses spring-slider elements to model interaction 
between the bolt and the surrounding material. The strength of the 
interface between the bolt and the surrounding material depends on the 
slider element cohesion and friction, while the stiffness values control 
the elastic response of the spring.32 

Model results were considered in relationship to the baseline Die
derichs & Kaiser3 analytical solution with varying degrees of accuracy, 
generally decreasing with increased maximum model displacement. A 
method of accounting for the effect of multi-layered bolting of a 
discontinuous rockmass into a single Young’s Modulus for use in the 
baseline Diederichs & Kaiser3 analytical solution could not be identified 
in the literature. Generalized application of anisotropic rockmass 
deformation moduli require knowing the unique states of stress (i.e. 
vertical, horizontal, and shear) and relating them to strains using a 
deformation modulus matrix,33–36 rather than calculating an unknown 
maximum state of stress from elastic strains and a uniform stiffness. 

A statistical analysis of the stable model results was performed in an 
effort to identify potential modifications to the analytical solution. A 
method of resolving the anisotropic stiffness of a multi-layered bolted 
beam into a single effective Young’s Modulus based on the number of 
bolted layers was developed. This was done by using the fminsearch 
function in MATLAB to determine the rockmass modulus that minimized 
the difference between model displacement results and analytical pre
dictions of maximum displacement for each case. As previously stated, 
the rockmass modulus calculated by consideration of only vertical joints 
in Eqn. (1) is referred to as Ermx. The rockmass modulus back calculated 
by using the fminsearch function is referred to as the effective or the 
minimized Erm. The rockmass modulus determined as a result of the 
statistical analysis of model inputs and the effective Erm, is referred to as 
the layer-adjusted Erm (Ermn). 

Multiple linear regressions were fit to the data set based on the 
minimized Erm (i.e. dependent variable), and its relationship with Ermx, 
and the number of horizontal layers (i.e. independent variables). A trend 
was identified and Ermx was adjusted to predict the displacement of 
multi-layered voussoir beams. This method was then verified by deter
mining how well the analytical solution incorporating the layer-adjusted 
Erm and bolted interval thickness, could predict binary stability (i.e. 

Fig. 6. Comparison of horizontal stress (left) and vertical displacement (right) results of multiple beam geometries ranging from a single, unbolted, 1 m thick beam 
(top) to a single, unbolted, 0.5 m thick beam (bottom), and variations in between featuring different bolt spacings and properties. All beams have an Ermx = 3.3 GPa. 
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Fig. 7. Rockbolt (a,c) element and (b,d) interface axial, shear, and normal force plots for two preliminary bolted models with (a,b) 0.5 m and (c,d) 1.4 m bolt spacing.  
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stable or unstable) and maximum displacement of multi-layered bolted 
voussoir beam models in comparison to the baseline Diederichs & Kai
ser3 method. 

However, the layer-adjusted Erm method remained inaccurate for 
predicting horizontal stresses due to its significant reduction in rockmass 
modulus and increase in beam thickness. A similar statistical analysis 
was therefore utilized to back calculate an optimized effective thickness 
between the individual layer and bolted interval thickness for the pur
poses of estimating beam stresses. 

3.2. Influence of passive bolts 

Comparison of beam displacement and horizontal stress distribution 
for the preliminary suite of beam geometries indicated that the bolted 
beam response (i.e. displacement and stress) was bounded by the re
sponses of the two single-layer beams and was impacted by the degree of 
passive bolting (Fig. 6). 

Comparison of bolt shear and axial load response in the two bolted 
models indicated that support was being activated in the passive bolts 
even under relatively stable conditions (Fig. 7). The bolts closer to the 
midspan were taking on higher axial loads, while the bolts closer to the 
abutments were taking on higher shear loads. Overall, the shear loads 
were an order of magnitude higher than the axial loads, indicating that 
although some suspension of the lower layer had occurred, the primary 
support mechanism was the generation of shear resistance along the 

horizontal discontinuity between layers. In particular, the dowelling 
effect of rockbolts raised the apparent cohesion of the discontinuity, 
while preventing the separation of the two beams increased the dis
continuity’s frictional strength.2 Because the relative shearing between 
the two beams was prevented, the system effectively behaved similarly 
to a single beam. 

The observed joint behavior in the models was consistent with the 
degree of axial and shear loading of the bolt elements and interfaces. 
Models with fewer bolts incurred higher shear displacements along 
bedding planes closer to the abutments, increasing the bolt element 
shear force and interface normal force. Conversely, shear displacements 
along vertical joints remained consistent throughout all the models 
presented in this section. Models with fewer bolts also incurred higher 
bedding plane separation at the beam midspan, increasing the bolt 
element axial force and interface shear force. 

Vertical joint separation at the top of the abutments and bottom of 
the midspan was proportional to the beam displacement (i.e. effective 
overall stiffness of the beam). Recall that as a beam deflects the top 
contracts, and the bottom expands. This incurs shearing along the hor
izontal joint, which is limited by the bolts in the supported models. 
Increasing the number of bolts reduces the shear, increasing the effective 
thickness and stiffness of the orthogonally jointed and supported beam. 
Per classical beam theory, deflection is inversely proportion to flexural 
rigidity, and rigidity is proportional to thickness cubed and the elastic 
modulus of the beam. 

Fig. 8. Comparison of the predicted displacement by 
the Diederichs & Kaiser3 analytical solution and 
model displacement results when considering the 
thickness input to be a single layer (left), or the entire 
bolted beam interval (right). Note that results that 
plot on the y-axis (i.e. x = 1.0(10)− 5, circled in red) 
indicate that the analytical solution predicted an un
stable result, but model results indicated stability had 
been maintained. A 1:1 trend line is shown in black 
and the percent root mean square error for results 
where both the model and the analytical solution 
predicted stability is shown; note the log-log axes. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   

Fig. 9. Statistical analysis fitting the effective Erm to Ermx (a) and the resulting impact on the relationship between the coefficient of Ermx (Cx) and number of 
horizontal layers (b). Note that R2-adjusted values for 2, 4, and 8-layer regressions are 0.98, 0.97, and 0.95 respectively. 
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3.3. Beam stiffness-displacement analysis results 

The Diederichs & Kaiser3 analytical solution was tested against sta
ble model displacement results considering both the entire beam 
thickness (as suggested by Diederichs & Kaiser3), as well as the indi
vidual layer thickness, with varying degrees of accuracy (Fig. 8). 

In stable model results, the accuracy of the baseline solution was not 
significantly impacted by increasing beam displacement when using the 
individual layer thickness. However, misclassification of 69 stable cases 
as unstable and a general increase in overprediction of displacement 
with increasing model displacement is shown in Fig. 8. If the mis
classified models were not considered, this method maintained reason
able accuracy for predicting displacement with an RMSE of 39%. This 
result indicates that for highly self-stable beams, the displacements are 
smaller, passive bolt support is not activated to the same degree, and the 
independent voussoir beams corresponding to each layer deflect more or 
less uniformly. When using the bolted interval thickness (as suggested in 
Diederichs & Kaiser3), displacement is consistently and significantly 
underpredicted by the Diederichs & Kaiser3 analytical solution. How
ever, distinct trends based on the number of passively bolted horizontal 
layers emerged from the dataset. In a practical scenario, if these trends 
could be described in terms of geomechanical parameters known prior 
to construction, the decrease in effective stiffness noted in the transi
tional beam models of this study and by others (Pells & Best12; Oliveira 
& Pells14) could be predicted; this would allow for the behavior of such 
beams to be studied using the existing analytical solution without the 
need for numerical modeling. 

Using the fminsearch function in MATLAB, an effective Erm was back 
calculated by minimizing the difference between model and analytical 
displacement for T = bolted interval. The effective Erm was then 
compared to the Ermx and number of bolted layers to develop the Ermn 
equation for practical application (Fig. 9). 

Based on the statistical analysis above, the following equation was 
developed: 

Ermn =(Cx)Ermx (4) 

Note that in a single layer case, Cx is equal to 1.1 and Eqn. (4) is 
nearly equal to Eqn. (1). 

The Ermn was then substituted for Ermx in the Diederichs & Kaiser3 

analytical solution and compared to model results of maximum 
displacement (Fig. 10). 

Using Ermn in the Diederichs & Kaiser3 analytical method allowed for 
consideration of the bolted interval thickness, reduced RMSE to 36% 
when compared to the baseline method, and accurately classified the 
stability of 67 formerly misclassified stable models, leaving only two 
misclassified model results in total. These results verified that the Ermn 
method more accurately captured orthogonally jointed and bolted beam 
displacement than the baseline Diederichs & Kaiser3 analytical solution. 
However, some variance in the layer-adjusted method remains unac
counted for by this simplified approach (see Fig. 9a). To that end, 
multiple linear regressions considering various combinations of other 
model inputs (e.g. bolt spacing, explicit vertical joint spacing, etc.) were 
undertaken. 

Although some of the individual and combined additional model 
inputs had statistically significant (i.e. p-value < 0.05) coefficients, they 
had no meaningful impact on the R2-adjusted value of the original 
two-dimensional regression presented in Fig. 9a. This indicates that the 
regression presented sufficiently accounts for the statistically relevant 
complexities of the model cases tested in this study. 

3.4. Beam thickness-stress analysis results 

As in the case of the approach developed in the previous section, 
developing an approach to predict stresses in passively bolted beams 
through the identification of an appropriate effective stiffness for use in 
a well-vetted analytical solution has the potential to expand the practical 
applicability of the solution to more realistic geologic and mining con
ditions. The baseline Diederichs & Kaiser3 analytical solution was tested 
against stable model midspan and abutment stress results considering 
both the entire beam thickness (as suggested by Diederichs & Kaiser3), 
as well as the individual layer thickness, with varying degrees of accu
racy (Fig. 11). 

Note that the same 69 stable models were classified as unstable by 
the analytical solution when considering T = single layer thickness. If 
the misclassified models were not considered, the baseline method 
maintained reasonable accuracy for predicting model stresses, with 
RMSE values of 48% and 29% for midspan and abutment stresses, 
respectively. When using the bolted interval thickness, both midspan 
and abutment stresses are consistently and significantly underpredicted 
by the baseline Diederichs & Kaiser3 analytical solution. In considering 
both analyses (single layer vs. bolted thickness), it appears that the 
trends in maximum horizontal stress can be related to some interaction 
between individual layer thickness and bolted thickness as governed by 
the properties of the beam material, discontinuities, and bolt elements. 

Another optimization using fminsearch in MATLAB was used to 
identify the effective beam thickness in the analytical solution that best 
predicted the maximum midspan stress in a multi-layered bolted beam. 
However, this was complicated by the difference in midspan and abut
ment stress (i.e. which should be considered?) and the consideration of 
rockmass modulus (i.e. should Ermn or Ermx be used in back calculating 
an effective beam thickness, and which should be used when imple
menting an adjusted thickness method?). Recall that smaller- 
displacement cases tended to contain voussoir arching within individ
ual layers, and that midspan crushing controls inelastic beam defor
mation. Therefore, the analysis minimized the difference between the 
model midspan and analytical stresses using Ermx, as the majority of 
models had developed largely independent voussoir arches in each layer 
of the composite beam. Subsequent statistical analysis of the relation
ship between model inputs and back calculated effective thickness 
identified that the individual beam thickness, Ermx, and number of layers 
were critical controls on the effective thickness required to most accu
rately account for model maximum midspan stresses using the analytical 

Fig. 10. Comparison of the predicted displacement by the layer-adjusted Erm 
analytical method and stable bolted model displacement results. The layer- 
adjusted Erm is used in conjunction with the thickness of the bolted interval. 
The results that plot on the y-axis (i.e. x = 1.0(10)− 5, circled in red) indicate 
that the analytical solution predicted an unstable result, but model results 
indicated stability had been maintained. A 1:1 trend line is shown in black and 
the percent root mean square error for results where both the model and the 
adjusted analytical solution predicted stability is shown; note the log-log axes. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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solution. When calculating the effective thickness ratio for use in the 
baseline Diederichs & Kaiser3 analytical solution, Ermx and number of 
layers were considered simultaneously through the previously devel
oped layer-adjusted Erm (Ermn) (Fig. 12). 

This resulted in a 12% RMSE, an R2-adjusted of 52% and the 
following best-fit equation: 

Te

Ti
= 0.19*

1
̅̅̅̅̅̅̅̅̅
Ermn

√ + 1.05 (5)  

where Te = effective thickness, Ti = individual layer thickness, and Ermn 
= layer-adjusted rockmass modulus in GPa (Eqn. (4)). As the number of 
layers in the bolted beams decreases, or as the material stiffness, joint 
stiffness, and joint spacing increase (i.e. Ermn increases), the effective 
thickness ratio approaches 1.05. The Te values derived from Eqn. (5) 
were then utilized in the baseline Diederichs & Kaiser3 analytical solu
tion (i.e. using Ermx) to evaluate the accuracy of the effective thickness 
method in predicting model midspan stresses (Fig. 13). 

This method provided much higher accuracy than either method that 
directly utilized the baseline Diederichs & Kaiser3 solution, as shown in 
Fig. 11. The percent RMSE decreased by half and only 16 of the 69 
misclassified models were still misclassified. The remaining error was 
restricted to models featuring 2 or 4 m bolted thicknesses and thin in
dividual layers (i.e. 0.5 m thick). This was related to the combined in
fluence of bolt spacing and bolted thickness, discontinuous beam 
deformation, and inverted stresses (i.e. abutment stresses lower than 
midspan). As in the case of the stiffness adjustment for beam displace
ment prediction, additional non-linear regressions considering individ
ual model inputs and various combinations were undertaken to assess 
the point for model improvement (Table 5). 

Regressions 2a-c and 3 resulted in effective thickness equations that 
were tested in the Diederichs & Kaiser3 analytical solution with no 
significant changes in predictive accuracy. Although the added 

Fig. 11. Comparison of the Diederichs & Kaiser3 

analytical stress solution and model midspan (top) 
and abutment (bottom) horizontal stress results when 
considering the thickness input to be a single layer 
(left), or the entire bolted beam interval (right). Note 
that results that plot on the y-axis (i.e. x = 0, circled 
in red) indicate that the analytical solution predicted 
an unstable result, but model results indicated sta
bility had been maintained. A 1:1 trend line is shown 
in black and a percent RMSE has been calculated for 
the results where both model and the analytical so
lution predicted stability. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the Web version of this article.)   

Fig. 12. Two-dimensional non-linear regression of effective thickness ratio 
results and layer-adjusted Erm calculated using Eqn. (4). 
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complexity in both Regression 2a-c and 3 was more accurate in esti
mating the “correct” effective thickness, the stresses calculated by those 
effective thicknesses were not significantly more accurate. Therefore, 
the original regression given as Eqn. (5) remains the method suggested 
for practical use for bolt spacings analyzed (i.e. 1.2–2.4 m). 

4. Guidelines for application of the adjusted analytical method 

A step-by-step guide to applying the methods presented above is 
provided to present how the adjusted analytical methods should be 
implemented in practice. Note that the limitations of these adjustments 
are largely the same as those of the baseline Diederichs & Kaiser3 

analytical method, which remains the more conservative method from a 
design standpoint. The adjusted methods should only be applied to 
flat-roof excavations in homogeneous, well-jointed rockmasses (i.e. 
RMR > 50). Furthermore, the adjusted methods developed in this study 
have not been verified for dipping excavations, and the impact of bolt 
spacing has only been explicitly considered for the spacings tested 
herein. 

4.1. Maximum displacement determination 

In order to determine maximum midspan displacement, the required 
analytical inputs include beam span, bolted thickness, layer thickness, 
specific weight, Young’s Modulus, joint normal stiffness, and horizontal 
(i.e. bedding) joint spacing. Account for anticipated surcharge pressure 
(i.e. groundwater or weak back) or support pressure from suspension 
elements (i.e. cable bolts) by adjusting the beam specific weight using 
the appropriate formulae from Diederichs & Kaiser.3 The only adjust
ments to the baseline Diederichs & Kaiser3 analytical solution required 
are to the beam thickness and the rockmass modulus. 

The beam thickness should be set equal to the bolted interval and the 
rockmass modulus in the horizontal direction should be calculated as: 

1
Ermx

=
1
E
+

1
(jkn)sj

(6) 

The layer-adjusted rockmass modulus of the beam should be calcu
lated based on the number of layers (n) in the bolted interval as: 

Ermn =Cx*Ermx (7)  

where: 

Cx=
1.1
n2 (8) 

The iterative solution loop should then be run as it is in the baseline 
Diederichs & Kaiser3 analytical solution. However, the only valid out
puts from this analysis will be the displacement and the buckling limit. 

4.2. Maximum stress determination 

In order to determine the maximum stress, the analytical inputs 
required are identical to those in the previous section. The baseline 
rockmass modulus (Eqn. (6)) should be utilized as the beam stiffness and 
the effective thickness to be used in the analytical solution is be calcu
lated as: 

Te =

(

0.19 *
1
̅̅̅̅̅̅̅̅̅
Ermn

√ + 1.05
)

∗Ti (9)  

where Ti = individual layer thickness and Ermn=layer-adjusted rockmass 
modulus in GPa. 

The iterative solution loop shall then be run as it is in the baseline 
Diederichs & Kaiser3 analytical solution and the maximum stress (σmax) 
utilized to calculate the FoScrushing as: 

Fig. 13. Comparison of the effective thickness method with and stable bolted 
model midspan stress results. Note that the effective thickness is used in 
conjunction with the baseline (i.e. single-layer) Ermx. Note that results that plot 
on the y-axis (i.e. x = 0, circled in red) indicate that the effective thickness 
analytical solution predicted an unstable result, but model results indicated 
stability had been maintained. A 1:1 trend line is shown in black and the 
percent root mean square error for results where both model and the analytical 
solution predicted stability. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Table 5 
Coefficients, p-values, and R2-Adjusted for multiple linear regressions consid
ering the effect of additional model inputs on the effective thickness. Ermn =

Layer-adjusted Erm.  

Bolt 
Spacing 

Variable Coefficient p-value R2 

Adjusted 

Regression 1 – Fig. 12 

All 

1/sqrt(Ermn) 0.19 <1.0 
(10)− 6 

0.52 
Intercept 1.06 <1.0 

(10)− 6 

Bolted Thickness − 0.001 0.9 
Intercept 1.09 <1.0 

(10)− 6 

Regression 2a-c 

1.2 

1/sqrt(Ermn) 0.26 <1.0 
(10)− 6 

0.71 Vertical Joint 
Spacing 

0.09 <1.0 
(10)− 6 

Intercept 0.93 <1.0 
(10)− 6 

1.8 

1/sqrt(Ermn) 0.20 <1.0 
(10)− 6 

0.67 
Vertical Joint 
Spacing 

0.09 <1.0 
(10)− 6 

Intercept 0.93 <1.0 
(10)− 6 

2.4 

1/sqrt(Ermn) 0.11 <1.0 
(10)− 6 

0.42 
Vertical Joint 
Spacing 

0.11 <1.0 
(10)− 6 

Intercept 0.95 <1.0 
(10)− 6 

Regression 3 

All 

1/sqrt(Ermn) 0.20 <1.0 
(10)− 6 

0.63 

Bolts/m 0.31 <1.0 
(10)− 6 

Vertical Joint 
Spacing 

0.10 <1.0 
(10)− 6 

Intercept 0.74 <1.0 
(10)− 6  
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FoScrushing =
UCS*
σmax

*B (10)  

where UCS* = field scale unconfined compressive strength (e.g. in the 
absence of other information, adjusted from lab scale to field scale 
values with a 0.3–0.5 multiplier), and B = 0.6–1.25 multiplier 
depending on the post-peak behavior of the material (i.e. elastic-brittle- 
plastic = 0.6, perfectly plastic = 1.25). 

5. Conclusions 

Systematic analysis of voussoir beam mechanical behavior under a 
wide range of loading conditions has verified that simple alterations to 
the existing voussoir analytical solution can capture the behavior of 
relatively complex voussoir beam scenarios as determined using nu
merical models. Accounting for inelastic material behavior, as well as 
horizontal joints in multi-layer systems and the presence of passive rock 
bolts allows for practical use of the voussoir beam analog in more 
realistic scenarios. 

This study has demonstrated that the accuracy of FoScrushing relies 
heavily on the post-peak behavior of the modeled material. Further
more, inelastic beams did not fail unless the midspan yielded. The results 
suggest that an additional 0.6- or 1.25-times adjustment be made to Eqn. 
(3) for brittle and perfectly plastic post-peak behavior end-members, 
respectively, once the UCS has been adjusted to field scale values (e.g. 
using a multiplier 0.3–0.5 suggested in Diederichs & Kaiser3). This 
adjustment also accounts for the midspan-abutment stress discrepancy, 
and the propensity for brittle material to yield in tension. 

A parametric sensitivity analysis of 810 models analyzed the impact 
of different beam sizes, joint spacings, layer thicknesses, material 
properties, joint properties, and bolt spacing. Stable model results were 
analyzed statistically to determine an effective Erm that minimized the 
difference between the displacement results of numerical and analytical 
methods. This adjustment value was determined to be influenced by the 
number of horizontal layers in a given model. The layer-adjusted Erm (i. 
e. Ermn) was then used to predict the deflection of the bolted interval 
with greater accuracy than the baseline Diederichs & Kaiser3 analytical 
solution. In order to predict model stresses, an analysis of effective beam 
thickness was conducted. The effective thickness method for midspan 
stress prediction also proved more accurate than the baseline Diederichs 
& Kaiser3 analytical solution. 

Given the mechanical complexity of the bolted voussoir models 
presented herein, a mathematically derived analytical solution to pre
dict the maximum displacement and stress may not be achievable. 
However, the rockmass-bolt interaction has been shown to have a 
distinct and repeatable impact on model displacement and maximum 
stress. In particular, the use of either the overall beam thickness or single 
layer thickness in the existing Diederichs & Kasier3 analytical solution 
was shown to be either too conservative or too optimistic when applied 
to more complex conditions. Finally, a mechanical basis for softening of 
a bedded and jointed roof for use in the voussoir beam analog has been 
developed. 

Due to the combination of predominantly bolt element shear and bolt 
interface normal loading towards the beam abutments, as well as the 
non-negligible impact of bolt element axial and bolt interface shear 
loading at the beam midspan, the effective stiffness and thickness of the 
supported voussoir beam in its simplest possible geometry (i.e. orthog
onal, fully-persistent discontinuities tested herein) decrease and in
crease, respectively. These changes can be accounted for through the 
equations developed through the statistical analysis of model results to 
improve the accuracy of the analytical solution. 
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