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Genome-wide association studies (GWAS) provide biological insights into disease onset and progression and have potential to
produce clinically useful biomarkers. A growing body of GWAS focuses on quantitative and transdiagnostic phenotypic targets,
such as symptom severity or biological markers, to enhance gene discovery and the translational utility of genetic findings. The
current review discusses such phenotypic approaches in GWAS across major psychiatric disorders. We identify themes and
recommendations that emerge from the literature to date, including issues of sample size, reliability, convergent validity, sources of
phenotypic information, phenotypes based on biological and behavioral markers such as neuroimaging and chronotype, and
longitudinal phenotypes. We also discuss insights from multi-trait methods such as genomic structural equation modelling. These
provide insight into how hierarchical ‘splitting’ and ‘lumping’ approaches can be applied to both diagnostic and dimensional
phenotypes to model clinical heterogeneity and comorbidity. Overall, dimensional and transdiagnostic phenotypes have enhanced
gene discovery in many psychiatric conditions and promises to yield fruitful GWAS targets in the years to come.
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DIMENSIONAL AND TRANSDIAGNOSTIC PHENOTYPES IN
PSYCHIATRIC GENOME-WIDE ASSOCIATION STUDIES
The field of molecular psychiatric genetics has made enormous
advances in the last decade, predominantly through large-scale case-
control genome-wide association studies (GWAS) [1-7]. GWAS have
catalyzed genetic discovery by identifying hundreds of replicable
molecular genetic markers associated with mental health conditions.
The findings provide insights into the molecular basis of complex
traits, downstream biological processes, and genetic architecture of
psychiatric conditions. Summary statistics from GWAS allow for the
estimation of genetic correlations among an array of traits and
disorders and the calculation of polygenic scores (PGS), which enable
the investigation of the correlates and sequelae of genetic risk.
Most of the progress to date has been achieved using GWAS
dependent on binary, case-versus-control analyses embedded
within traditional diagnostic classification systems. Obtaining large
sample sizes is critical to increasing GWAS power, and a case-
control design is well-suited for attaining and mega-analyzing

large samples from electronic medical records, direct-to-consumer
genetic testing, and other sources. As effective as this approach
has been, the single nucleotide polymorphisms (SNPs) identified
by the most recent diagnostic GWAS explain relatively little of the
heritability of psychopathology (e.g., approximately 8% for major
depressive disorder (MDD) [8] and 24% for schizophrenia [9]). One
approach to discovering unique genetic variants associated with
psychopathology has focused on incorporating novel phenotypes.
Quantitative and transdiagnostic approaches to phenotype
measurement—including but not limited to symptom severity;
personality and behavioral traits; clinical features such as age-at-
onset and recurrence; ecological momentary and ambulatory
assessments utilizing surveys; actigraphy and smartphone
sensing; and laboratory-based markers from blood tests and
neuroimaging—can complement insights gained from case-
control GWAS to enhance power for gene discovery.

The current review focuses on recent developments in
dimensional, transdiagnosticc and other novel phenotypic
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(clinical ratings, informant reports)
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S Self-reported symptoms
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of episodes, age of onset) ’
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Externalizing
No symptoms
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Fig.1 Dimensional and transdiagnostic GWAS phenotypes across the lifespan. Psychiatric phenotypes demonstrate temporal features such

as age of onset and developmental trajectories, ‘state’ fluctuations around the ‘stable’ severity levels, recurrences, and treatment response.
Many dimensional, transdiagnostic, and other non-diagnostic phenotypes are well-suited to measuring such temporal features. Higher-order
phenotypes such as the general factor of psychopathology (p-factor) can ‘lump’ symptom burden at a particular point in time. The most
optimal sources of information may vary across the lifespan, e.g., externalizing behaviors might be assessed via informant-reports in

childhood, and via self-reports and cotinine in adulthood.

definitions in GWAS across all major psychiatric and neurodeve-
lopmental disorders. We identify a number of useful properties of
quantitative phenotypes, including the impact of such pheno-
types on statistical power and validity, the utility of illness course,
informant report, and behavioral and biological phenotypes, and
the potential of hierarchical ‘splitting’ and ‘lumping’ approaches
(Fig. 1). Our goal is to appraise this evolving literature in
psychiatric GWAS, synthesize its accomplishments to date, and
identify avenues for future research.

THEMES IN DIMENSIONAL AND TRANSDIAGNOSTIC GWAS
Sample size

Gene discovery necessitates large samples, as sample size is one
of the most important factors determining statistical power in
GWAS. Since phenotype operationalization can limit sample size—
expensive or time-consuming phenotypes being harder to collect
on large samples—phenotype operationalization can thereby
influence statistical power for gene discovery [10, 11]. This issue
applies to both case-control (e.g., diagnostic) and non-diagnostic
dimensional phenotypes, as either can be operationalized in such
a way as to maximize sample size. While the prototypical
diagnostic GWAS uses structured interviews administered by
trained clinicians, diagnoses abstracted from electronic medical
records yield large sample sizes and have demonstrated utility as
target phenotypes [12, 13]. However, some diagnoses have been
shown to be underrepresented in electronic medical records [14],
and optimal clinical diagnoses require trained clinicians and
lengthy interviews. Conversely, a comprehensive dimensional
measure of psychopathology can be collected in under one hour
[15-17]. Computer-adaptive methods that select the most
appropriate items for each individual can further reduce length
[18]. While some quantitative phenotypes are costly—for example,
imaging phenotypes collected by the ENIGMA consortium
(N =30,000-50,000) [19, 20]—many quantitative phenotypes,
particularly those evaluating symptoms and behaviors, are
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inexpensive to collect—for instance, self-reported well-being
(N =298,420) [21]. Ascertaining large, representative samples is
challenging, regardless of phenotype. However, for a given
amount of money, time, and other resources, a carefully-
designed quantitative phenotype may allow for a larger sample
than a case-control design. In sum, operationalizing phenotypes
so as to maximize sample size may improve statistical power for
gene discovery, assuming phenotypes are equally reliable and
valid, assumptions we discuss below.

RELIABILITY

Reliability is a function of how closely scores on a measure match
individuals’ true standing on the underlying trait. In GWAS, this
underlying trait is genetic risk. According to the common-disease
common-variant framework [22], genetic risk is attributable to
many small effects, which in aggregate approximate a normal
distribution [23]. If genetic risk is continuously distributed,
measures that most reliably assess individuals’ standing on that
continuum should maximize power for gene discovery. In all
statistical association tests, dichotomizing a continuous variable
decreases statistical power [24, 25]. When a continuous trait is
dichotomized at the median, the loss of statistical power is
equivalent to discarding a third of the sample—the loss increases
as the cut-point moves away from the median [24]. In their 2010
analysis, Yang, Wray, and Visscher extended findings on the
effects of dichotomization to simulated GWAS [26]. Yang and
colleagues show that for a given sample size drawn from a
population-based sample, a quantitative trait will always outper-
form a case-control phenotype in terms of power, as information
is always lost when the continuous trait is transformed to be
binary. This is because the case-control dichotomization discards
information about severity: an individual with persistent, severe
symptoms is made statistically equivalent to an individual with
mild symptoms that barely surpass the diagnostic threshold. As an
example, the interrater reliability of dimensional measures of

Molecular Psychiatry (2023) 28:4943 - 4953



positive and negative symptoms of schizophrenia ranges from
0.70 to 0.92 [27], whereas the interrater reliability of schizophrenia
in DSM-5 field trails was 0.50 [28]. Similarly, interrater reliability for
the Hamilton Rating Scale for Depression averages 0.94 [29],
whereas that of MDD diagnosis is only 0.28 [28]. Accordingly,
dichotomizing questionnaire data into the most and least severe
scores, without including variability in the middle range, has also
been shown to reduce GWAS power. Moreover, poor reliability
results in diagnostic misclassifications, which decrease heritability
and inflate genetic correlations between diagnoses [30].

Empirical studies corroborate the conclusions from simulations,
showing that quantitative phenotypes detect more, and more
novel, SNPs, than case-control phenotypes. Dimensional pheno-
types identified additional novel significant loci compared with
diagnostic phenotypes in the two largest PTSD GWAS [31, 32].
Whereas case-control PTSD GWAS (N = 214,408) uncovered three
loci, fifteen loci were identified using dimensional PTSD pheno-
types (N = 186,689), even with a smaller sample [31]. Despite high
genetic correlations among dimensional, diagnostic, and external
PTSD phenotypes, only one of the fifteen loci identified in the
dimensional GWAS was also identified in the case-control GWAS,
indicating the dimensional phenotype provided unique informa-
tion. Likewise, a recent case-control GWAS of self-reported anxiety
diagnosis yielded two significant SNPs (N =224,330), whereas a
dimensional anxiety severity phenotype based on a two-item
instrument in a slightly smaller sample size (N=199,611) yielded
four additional SNPs [33]. Overall, GWAS of dimensional pheno-
types have been fruitful, collectively revealing hundreds of novel
SNPs associated with psychiatric disorders.

The impact of phenotype definition on SNP-based heritability is
less clear. Case-control phenotypes have occasionally resulted in
higher SNP-based heritability estimates. In a depression GWAS, a
diagnosis phenotype had an estimated hgyp = 0.113, self-reported
diagnosis phenotype had hsyp = 0.078, and dimensional depres-
sion severity phenotype had hsyp = 0.055 [34]. Larger heritability
estimates for case-control phenotypes relative to dimensional
phenotypes are consistent with other depression GWAS [8, 35] as
well as anxiety disorders GWAS [33]. Jermy and colleagues (2021)
showed a dimensional phenotype calculated from fifteen
symptoms of depression increased the SNP-based heritability by
1.4%, on average, relative to a dichotomous phenotype based
only on cardinal symptoms, although a number of quantitative
phenotypes did not markedly improve SNP-based heritability [36].
Many of these GWAS had similar sample sizes for dimensional and
diagnostic phenotypes, hence these potential differences do not
appear to be artifacts of discovery N.
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It is important to note that most of studies cited above were
based on population samples. For rare phenotypes—i.e., severe
psychosis—oversampling for the pathological end of the dimen-
sion can increase the power of case-control designs [26]. However,
little is known about how oversampling affects GWAS of
dimensional phenotypes. If, for example, the sum of ratings on
the Young Mania Rating Scale [37] were used instead of DSM-
defined bipolar disorder, oversampling for bipolar disorder cases
might also increase quantitative GWAS power in a way that is not
accounted for in the simulations reported in Yang, Wray, and
Visscher (2010).

CONVERGENT VALIDITY

Dimensional phenotype GWAS often have strong genetic correla-
tions with case-control GWAS of the same construct, implying
convergent validity between the two. A recent study used three
depression phenotypes in GWAS of comparable sample sizes: an
ICD code-based algorithm derived from electronic health records,
a self-reported physician diagnosis, and a dimensional symptom
scale [34]. Genetic correlations among these three definitions were
high (ry > 0.88). In the two largest PTSD GWAS to date, genetic
correlations between dimensional and case-control (diagnostic)
phenotypic definitions were very strong, nearing 1.00 [31, 32].

The data from substance use disorders similarly indicates
convergent validity between dimensional and case-control
phenotypes. Self-reported problematic alcohol use is moderately
genetically correlated with alcohol dependence (rqy=0.63) [38].
The degree to which dimensional phenotypes align with case-
control phenotypes is likely moderated by the source of
information (see section: Source of Information). The close
correlation between alcohol use and alcohol dependence might
be in part due to the data for both phenotypes being most often
derived from an individual’s self-report.

Table 1 reports genetic correlations between selected corre-
sponding dimensional and diagnostic phenotypes of comparable
sample size, to illustrate convergent validity—moderate to high
correlations between different measures of conceptually similar
phenotypes—and  discriminant  validity—low  correlations
between measures of conceptually distinct phenotypes. In
general, correlations between similar phenotypes are moderate
to very strong. The genetic correlation between a dimensional
measure of PTSD symptoms [31] and a PTSD diagnosis [39]
(rg=0.92) is very strong, and the correlation between a
dimensional measure of problematic alcohol use [38] and alcohol
use disorder [40] (ry=0.71) is strong, in line with published

Table 1.
Categorical phenotype
PTSD dx [39]

Dimensional phenotype GWAS N 174,659

1. PTSD sx on PCL total [31] 186,689 0.92 [0.75, 1.00]
2. GAD sx on GAD-2 [33] 175,163 0.95 [0.77, 1.00]
3. Neuroticism [41] 170,911 0.60 [0.46, 0.74]
4. AUD sx on AUDIT-P [38] 121,568 0.40 [0.23, 0.57]

Genetic correlations (rg) between dimensional and categorical phenotype.

GAD dx [115] MDD dx [42] AUD dx [40]
58,133 510,321 267,080

0.57 [0.85, 0.99] 0.64 [0.59, 0.69] 034 [0.27, 0.41]
0.59 [0.49, 0.68] 0.66 [0.60, 0.72] 037 [0.27, 0.47]
0.69 [0.63, 0.74] 0.68 [0.65, 0.71] 0.24 [0.17, 0.30]
0.29 [0.18, 0.30] 029 [0.21, 0.36] 0.71 [0.62, 0.80]

Sx Symptom dimensions, dx Diagnosis, PCL Post-traumatic stress disorder checklist, GAD-2 Generalized anxiety disorder 2-item, AUDIT-P Alcohol use disorders
identification test, problems subscale, PTSD Post-traumatic stress disorder, GAD Generalized anxiety disorder, MDD Major depressive disorder, AUD Alcohol use

disorder.

All genetic correlations and heritability estimates were calculated using LD score regression (LDSC version 1.0.1 [149]), with LD scores computed from
European ancestry individuals from the 1000 Genomes study. Summary statistics are based on GWAS of European-ancestry cohorts. Genetic correlations
between diagnostic and dimensional phenotypes of corresponding phenotypes are bolded.

Corresponding dimensional and categorical phenotypes are based on summary statistics from discovery samples of comparable size.

Note that the GAD-2 is a 2-item measure of anxiety, illustrating the limitations of this and other “minimal phenotypes’ as this measure has significant genetic

correlations with a number of phenotypes capturing non-specific genetic risk.
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findings. This pattern holds even between a higher-order
dimensional phenotype, such as neuroticism [41], and a specific
diagnosis such as MDD [42] (r;=0.68; see the section on “Lumping
and Splitting” for discussion of higher-order phenotypes). Some
diagnoses and symptoms that do not correspond directly are very
strongly correlated, e.g. ry=0.95 between PTSD [39] and
symptoms of anxiety [33], which reflect the expected pleiotropy,
as well as the heterogeneity of diagnoses and limitations of
“minimal phenotypes”.

In some cases, non-diagnostic phenotypes have shown poor
convergence with case-control phenotypes. First, a GWAS of
“minimal phenotypes” of depression, i.e. assessments comprising
just a few items, was critiqued as identifying non-specific loci [43, 44].
However, it is important to distinguish between phenotype
conceptualization and phenotype operationalization. Reliability is
determined by phenotype operationalization, which places an upper
limit on validity. Minimal phenotypes—whether dimensional, such as
a few items assessing depression, or dichotomous, such as self-
reported diagnosis or diagnoses obtained from electronic medical
records—are likely to be less reliable, and the resulting GWAS will
have lower specificity, and consequently lower validity. Second,
initial GWAS of a subset of items from the alcohol use disorders
Identification Test (AUDIT) [45] measuring alcohol consumption had
only low to moderate convergence with alcohol use disorder [40].
Subsequent item-level modeling revealed that one item captured
socially-stratified differences in alcohol use behavior rather than the
alcohol phenotypes of clinical interest [46]. GWAS using an
empirically-derived consumption score found high convergence
with alcohol use disorder [46], indicating that scale psychometrics
may change when investigated at the genetic level, necessitating
revised scoring for GWAS.

Third, GWAS of self-reported psychosis-like experiences in
adolescents, positive symptoms, cognitive problems, and both
self- and parent-reported negative symptoms resulted in small
genetic correlations with schizophrenia [47]. Some domains of
psychosis-like experiences were negatively correlated with bipolar
disorder, in contrast to the strong positive genetic correlations
observed between the schizophrenia and bipolar disorder
diagnostic GWAS [48]. In this case, weak genetic correlations
may be attributable to partially differential genetic liabilities
underlying psychopathology across development (see “Long-
itudinal Phenotypes”, below), as well as imperfect phenotypic
correspondence between individual symptom dimensions and
heterogeneous diagnoses. For example, the schizophrenia diag-
nosis comprises several major symptom dimensions, including
reality distortion, unusual psychosis-like experiences, dissociation,
anhedonia, and emotional detachment [49], hence the genetic
liability for a single symptom domain will only partially overlap
with genetic risk for the diagnostic category.

SOURCE OF INFORMATION

Quantitative and transdiagnostic phenotypes can reflect informa-
tion from an array of sources, including friends, significant others,
parents, teachers, and most commonly, self-report. A common
concern about such phenotypes is that some clinical phenomena
may not be accurately measured via self-report. The differences
between self-reported and clinician-rated psychopathology, and
their implications for gene discovery, is a topic requiring more
research. In some disorders, such as psychotic disorders, lack of
insight is common, and interviewer-rated symptoms may capture
psychopathology that self-reports do not. In a population sample,
however, a GWAS of self-reported psychotic experiences identified
two genome-wide significant associations [50]. Genetic correlation
analysis identified significant genetic correlations between psy-
chotic experiences and MDD (ry = 0.46), autism spectrum disorder
(rg=0.39), ADHD (rg = 0.24), and schizophrenia (ry =0.21), and a
PGS for self-reported psychotic symptoms was associated with
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development of psychosis in a longitudinal cohort. The sparse self-
report data may explain non-specific associations between self-
reported psychotic symptoms and psychiatric disorders. Results
may also be affected by excluding individuals with psychotic
disorders from the analysis. Regardless, these results suggest the
GWAS of self-reported psychotic experiences identified novel loci
with some relevance to psychopathology broadly, and perhaps
psychosis specifically. This hints at the potential of self-reported
symptoms to capture the same genetic vulnerability to psycho-
pathology as diagnostic data.

In some cases, self-report may be more valid than informant
report. Pain et al. (2018) showed that self-reported anhedonia was
more heritable than parent-rated negative symptoms[47], and
self-reported internalizing symptoms were more heritable than
informant-reported symptoms [51]. This may be because internal
mood states are generally considered more amenable to self-
report than informant report [52, 53]. Similarly, psychopathology
and traits that are highly stigmatized, unlawful, taboo, or that may
not be readily observable—e.g. theft—are more amenable to self-
report than informant-report [54, 55]. Conversely, in contexts
where individuals are motivated to respond normatively,
informant-reports can be more useful than self-report [56].

The relative utility of self- and informant-report data has been
carefully studied in twin research, which find genetic convergence
between informant- and self-report. Twin studies suggest that
different informants appear to measure a largely common genetic
liability, but there are also rater-specific genetic effects [57-59].
Accordingly, a GWAS of childhood aggressive behavior found that
SNP-based heritability ranged from 4% for father-report to 8% for
teacher-report [60]. Genetic correlations between informants
ranged from ry =0.46 between self- and teacher-assessment to
ry=0.81 between mother- and teacher-assessment (phenotypic
correlations among raters ranged between 0.22 and 0.65), and
genetic correlations with other forms of psychopathology were
moderated by informant. These findings need to be replicated in
other molecular genetic analyses, but show promise for aggregat-
ing data across multiple sources [61]. In sum, the optimal source,
or sources, of information vary between forms of psychopathology
and assessment contexts.

BIOLOGICAL & BEHAVIORAL PHENOTYPES

Biological, especially neurological, and behavioral phenotypes
show promise as targets for GWAS. Endophenotypes are inter-
mediate phenotypes between genetic risk and psychopathology
that are independent of illness state [62, 63]. Because endophe-
notypes are theoretically “closer to the gene”, it has been
hypothesized that their genetic underpinnings are less polygenic
and less influenced by environment than psychiatric diagnoses,
and therefore constitute a more powerful GWAS phenotype. These
hypotheses continue being studied, but some endophenotypes’
utility for gene discovery is supported by comparisons of the
genetic architecture of psychiatric, neurological, and structural
traits [64, 65]. GWAS of Alzheimer’s disease and stroke endophe-
notypes, even of relatively small sample size (N =3146 and 2471,
respectively), have identified significant loci that converge with
larger GWAS of those disorders [66-68]. Endophenotypes of
schizophrenia, e.g. oculomotor inhibition and directed attention
measured on the antisaccade task [69], and alcohol dependence,
e.g. fast beta (20-28 Hz) electroencephalogram (EEG) oscillatory
activity [70], show similar promise, as have biomarkers such as
chronotype [71].

Biological and behavioral phenotypes need not be mediators
between genetic risk and psychopathology to function as useful
targets for GWAS. Some endophenotypes might simply be more
feasible to collect than clinical data, or might serve as more
objective and reliable markers of psychopathology than self-
report, as discussed in sections above. Cotinine, a nicotine
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metabolite, may be a more accurate endophenotype than self-
reported tobacco use, if differences in body mass and metabolism
confound self-reported severity measures such as packs-per-day.
Indeed, cotinine GWAS have identified several significant associa-
tions [72, 73], despite relatively small sample sizes (N=5185 and
4548). Relatively common behaviors and normal personality traits
can also serve as GWAS endophenotypes, because individual
differences in such behaviors can be markers of vulnerability to
psychopathology [74-76]. For example, risk-taking behavior is not
necessarily pathological, but it is useful both in predicting and
understanding mental health problems such as alcohol use
disorder or conduct disorder. Analyses of the risk-taking PGS in
validation samples has revealed links between risk-taking and
altered neuroanatomy, which may ultimately inform the under-
standing of externalizing disorders such as addiction [77]. Other
endophenotypes relevant to psychiatric conditions that were
successfully employed in GWAS include disinhibition and number
of sexual partners [74], loneliness and social withdrawal [78, 79],
subjective well-being [21], and employment in leadership
roles [80].

Ultimately, the utility of biological and behavioral phenotypes
for psychiatric GWAS will depend on the association between
those phenotypes and psychopathology. However, early GWAS of
phenotypes at multiple levels of analysis have resulted in novel
genetic findings and constitute valuable additions to diagnostic
GWAS. This suggests that endophenotypes will continue to
constitute a powerful approach to identifying loci associated with
complex psychiatric traits, and should be included in data
collection for GWAS.

COURSE OF ILLNESS PHENOTYPES

Longitudinal phenotypes allow the stable ‘trait’ element of
psychopathology to be investigated separately from the ‘state’
element to increase power for genetic discovery. As first
demonstrated in twin studies, phenotypes reflecting temporal
stability or agreement over measures have a higher heritability
than phenotypes measured at individual assessments [81, 82]. In
molecular genetic research, Cheesman et al. [61]. observed an
analogous phenomenon. SNP-based heritability estimates
increased from an average of 5% (not significant) for individual
state measures to 14% (p = 0.002) for an emotional problems trait
constructed from 12 measures spanning 9 years. This is consistent
with the view that genetics constitute core vulnerability to
psychopathology that is best captured by stable, trait-like
phenotypes. Time-specific phenotypes are more likely to be under
transient environmental influences and have lower assessment
reliability (i.e, more measurement error). Furthermore, cross-
sectional assessments of rare, episodic phenotypes such as mania
likely miss substantial variance. The frequency of mania appears to
be a more robust indicator of genetic risk than cross-sectional
measures of psychosis or mania [83].

Longitudinal phenotypes can also take the form of temporal
iliness features. Age of onset has been shown to be an indicator of
genetic risk for depression [84], and when used as moderator, can
increase GWAS power. Incorporating age of onset of ADHD
revealed additional genome-wide significant associations, relative
to a case-control design that did not account for age of onset [85].
Moreover, a recent GWAS found that SNP-based heritability was
three times higher for early-onset MDD (onset at or before age 30)
as compared to late-onset MDD (onset at or after age 44,
hsyp =0.130 vs 0.043, respectively) [86]. Similarly, MDD with
recurrent features may be more heritable than single episode
MDD (hsnp=0.107 vs 0.082, respectively). Finally, GWAS stratified
by these temporal features identified additional six genome-wide
significant loci (3 loci for early-onset MDD and 3 loci for recurrent
MDD) [87]. While some GWAS, e.g., schizophrenia and anorexia
nervosa age of onset GWAS, have not identified significant
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associations [88, 89], this
sample sizes.

Treatment resistance is another clinical feature that has resulted
in new genetic discoveries. Treatment-resistant depression might
be more heritable than non-treatment-resistant depression
(hsnp=0.23 vs 0.17, respectively) [87]. The correlation between
the two depression phenotypes is significantly different from 1
(ry=0.78), suggesting that although the two phenotypes are
closely related, treatment resistance could provide novel genetic
signal. Similarly, a GWAS of treatment resistant schizophrenia is
useful not only as an additional phenotype with potential clinical
utility [90], but also because it may be a more precise phenotype
for identifying distinct etiological pathways. Variants increasing
risk for treatment resistant schizophrenia may indicate a parallel
pathway to psychosis that is non-overlapping with the dopami-
nergic pathway modulated by antipsychotics.

Longitudinal analyses can also inform our understanding of
how genetic architecture changes over the lifespan. Cheesman
et al. [61]. demonstrated that stable emotional problems in youth
had only a moderate genetic correlation with adult depression
and anxiety (average rg = 0.52), implying distinct genetic liabilities
at different ages. However, genetic risk for antisocial behavior
based on GWAS performed in adults was associated with several
antisocial outcomes across the lifespan [91]. Such comparisons
could reveal how genetic risk changes or persists over develop-
ment. However, there is a disconnect between GWAS in youth and
adult samples. Studies of adults lack a life-course lense, and for
many phenotypes GWAS in youth and adults are conducted by
independent consortia—e.g. GWAS of antisocial behavior in adults
[91] and GWAS of childhood aggressive behavior [60]. Connec-
tions between these findings remain to be explored. For many
phenotypes (e.g. PTSD), GWAS in child and adolescent samples do
not yet exist.

may be attributable to small

PHENOTYPE/SAMPLE INTERACTIONS

For both quantitative and diagnostic phenotypes, it is important
to consider how phenotype operationalization affects sample
selection, and how any selection bias impacts subsequent GWAS.
Case-control designs often use super-healthy controls, e.g.
controls screened for the target and related phenotypes. Controls
typically differ from cases on characteristics unrelated to the
psychopathology of interest, such as intelligence, socio-economic
status, and co-occurring mental health symptoms [92-94]. Such
artifacts tend to be magnified when super-healthy controls are
additionally screened for related psychopathology, or psycho-
pathology among relatives. Use of such super-healthy control
groups substantially inflates genetic correlations between traits
[95]. Furthermore, individuals with severe symptoms experience
more functional impairment, psychiatric, somatic, and physical
comorbidities, and other burdens. These phenotypes are different
from the trait of interest, but might be included in its
measurement, e.g., impairment is often required to derive a
clinical diagnosis in a case-control design, but may have distinct
genetic risk factors, operating as an unmeasured confounder.
Because there is no need to define groups for dimensional GWAS,
samples may naturally be more heterogeneous, avoiding this
source of confounding.

However, quantitative phenotypes are not immune from
selection bias. Phenotypes collected through online portals
require individuals have access to a smartphone or computer,
and some degree of technological literacy. In UK Biobank,
Mendelian randomization analyses indicate neuroticism and
schizophrenia decreased the odds of participation in optional
assessments, including a mental health questionnaire [96].
Consent to have one’s 23andMe data used for research is non-
random [97, 98], but it is difficult to study how this affects the
resulting GWAS, as doing so would require performing research
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“lumping” GWAS GWAS
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Fig.2 “Lumping” and “Splitting” of dimensional GWAS phenotypes. Dimensional and transdiagnostic phenotypes can be measured using

various sources of information, such as interview, self-reports, tissue samples, passive sensors, and other biological and behavioral markers.
Variance (either phenotypic, or genetic if using genomic SEM) that is common to all measured phenotypes can be statistically “lumped” into a
single higher-order phenotype, which can enhance GWAS power and result in discovery of pleiotropic SNPs. Simultaneously, variance that is
unique to the measured phenotype can be statistically “split” into a lower-order phenotype, which can result in additional SNP discoveries

with higher phenotype-specificity.

on individuals who have opted out of research. lliness course
phenotypes are only identified among symptomatic individuals.
The effect of such selection on power for gene discovery is
unclear. Alternatively, it may be possible to collect behavioral
phenotypes for individuals whose symptoms are too severe to
allow for completion of a structured interview, reducing selection
bias. In sum, failure to account for the factors affecting study
participation can lead to spurious associations and incorrect
biological inferences [99], regardless of phenotype.

TRANSDIAGNOSTIC VERSUS SPECIFIC PHENOTYPES
“Lumping” and “splitting” phenotypes into broader, transdiag-
nostic phenotypes and narrower, specific, constructs, respec-
tively, may increase power for gene discovery by capitalizing on
patterns of genetic covariance (Fig. 2). Transdiagnostic pheno-
typic targets are consistent with a longstanding hypothesis that
patterns of phenotypic covariance mimic patterns of genetic
covariance [100]. This hypothesis has first been supported in the
literature on plant and animal genomics and has been observed
for most psychological traits observed in humans [101]. The
“lumping” and “splitting” approaches result in hierarchical
phenotypes that are based on longstanding empirical evidence
that psychopathology’s genetic architecture is also hierarchical,
with some genes influencing broad (i.e., higher-order) psychia-
tric phenotypes and others a specific (i.e., lower-order)
phenotype [102-106].

The “lumping” approach may be particularly useful when there
is evidence that a general phenotype is more heritable than the
specific phenotype. In the case of intelligence, the heritability of
individual subtests, e.g. working memory, is largely explained by
general intelligence [107]. Accordingly, a general intelligence
GWAS in a modestly sized sample (N=35,298) returned a
relatively high SNP-based heritability of 0.22 [108]. An analysis of
multiple cognitive phenotypes within the UK Biobank data is also
informative [109]. Participants completed a tests of fluid
intelligence, visual memory, and reaction time, all of which were
approximately equal in length. The SNP-based heritability of fluid
intelligence was 0.31, while the heritability of reaction time was
0.11 and visual memory was 0.05. The fluid intelligence phenotype
was much more heritable than that for the specific cognitive
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abilities, despite the sample size for this phenotype being less
than one-third that of specific phenotypes. It is difficult to
disentangle the effects of test reliability, trait stability, and
pleiotropy in these analyses, but each of these factors favors the
use of higher-order phenotypes to improve statistical power for
gene discovery.

Higher-order phenotypes may also be useful for moderately
heritable but highly correlated phenotypes. Salient examples
include anxiety disorders, which are highly genetically correlated
in twin studies [110-112]. A genetic liability for anxiety may be
shaped by specific environmental exposures (e.g., a dog bite, a
trauma), resulting in any number of specific phobias in line with
the general genes hypothesis [113]. Consistent with this hypoth-
esis, the largest anxiety GWAS have combined all anxiety disorders
to maximize sample size and power, akin to the fear factor
[33, 114-117]. Notably, information is additive [118]. To the extent
that any two measures of the same construct are correlated—that
is, assess a common construct—a phenotype that combines data
from both measures will be more powerful than either measure
alone. The property underlies the utility of multi-trait methods
such as genomic SEM [102] and multi-trait analysis of GWAS
(MTAG) [119], when multiple phenotypes are available for the
same individuals. Higher-order phenotypes may be especially
useful in conditions with significant heterotypic continuity, such as
eating disorders, in which high genetic risk may manifest as
any number of different behaviors—binge eating, restricting,
purging—over time [120-123]. More generally, due to shifts
among different successive disorders [124], a higher-order general
psychopathology factor (p-factor) may serve as a phenotype that
captures genetic vulnerability to psychopathology across the
lifespan. Higher-order phenotypes have more often been statis-
tically inferred than measured directly using a dedicated instru-
ment. That is, rather than assessing internalizing directly, genetic
risk for internalizing is quantified through genetic covariance
among more specific internalizing phenotypes, such as depres-
sion, anxiety, and PTSD, using genomic SEM [102, 103, 125] as well
as other meta-analytic approaches such as MTAG [119]. Given the
parallels between phenotypic and genetic patterns of covariance,
these two approaches should converge. Box 1 discusses results
from genomic SEM as an indication of how higher-order
phenotypes may be useful targets for GWAS.
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Box 1. Genomic SEM

Genomic structural equation modeling (SEM) studies identify patterns of genetic
covariance among results from multiple GWAS. The findings to date suggest that
many genes broadly influence liability to numerous psychiatric disorders
[102, 103, 125]. In a prominent example, a GWAS of a broad, dimensional
externalizing phenotype obtained using genomic SEM identified 579 genome-
wide significant loci, 121 of which were not discovered in disorder-specific GWAS
of any of the seven phenotypes comprising the broad externalizing [125]. Genetic
risk for externalizing predicted many useful phenotypes in independent samples,
including opioid use and suicide, phenotypes that have been difficult to predict
even from GWAS specific to those phenotypes, although this enhanced discovery
is driven at least in part by a much larger sample size of the genomic SEM-derived
externalizing phenotype. Using a similar approach, a genomic SEM identified two
transdiagnostic genetic factors, broadly corresponding to internalizing and
thought disorder spectra, that in turn yielded novel and spectrum-specific loci
in GWAS [150]. In an analysis that identified genetic risk at its broadest, the general
factor of psychopathology, genomic SEM identified 128 loci with a sample size of
321,901 [102]. Notably, a cross-disorder meta-analysis, which is equivalent to a
case-control design on the same phenotype, yields around the same number of
SNPs (136) with a much larger sample size of 727,126 [6]. Taken together,
phenotypes based on patterns of genetic covariance have the potential to
increase the power of GWAS, as these phenotypes will parallel the structure of
genetic influences. Consistent with these insights from genomic SEM, recent
GWAS focus on phenotypes that represent major dimensions underlying
numerous psychiatric conditions (e.g. the internalizing factor) [51], as well as on
tight-knit lower-order phenotypes (e.g. anhedonia, suicidal ideation) [86, 131, 151].

If specific phenotypes are heterogeneous, “splitting” may be a
preferred approach to capture additional lower-order influences.
Indeed, GWAS of individual items from a dimensional depression
measure (Patient Health Questionnaire-9; PHQ-9) [126] yielded 7
associations as compared to 4 obtained using the sum-score [127].
Results revealed genetic heterogeneity in depressive symptoms
with no overlap in significant loci across PHQ-9 items. Genetic
correlations between depressive symptoms ranged from moder-
ate (rg <0.60) to very strong (ry >0.90). The underlying genetic
structure between symptoms was best explained by two very
strongly correlated genetic factors: psychological and somatic
(rg=10.93). In a similar analysis, a set of GWAS of 16 clinically-
informed MDD phenotypes (e.g. MDD with suicidal thoughts,
postpartum depression) identified 47 independent genomic loci, a
third of which were undetected in the latest MDD GWAS, despite
that analysis having five times more cases [86]. Most notably, MDD
with vegetative (i.e., atypical) features showed only a moderate
genetic correlation with MDD without vegetative features
(rg=10.55), indicating considerable unique genetic etiology of
these two subtypes. Moreover, MDD with vegetative features
showed a moderate positive genetic correlation with BMI
(rg = 0.40) while non-vegetative MDD had a negligible correlation
with BMI (rg = —0.09). In sum, “splitting” the depression pheno-
type suggests that while some symptoms have high genetic
overlap, a considerable amount of genetic variation is unique
rather than shared, and ‘split’ phenotypes can be useful for
detecting these liabilities. The “splitting” approach to phenotyping
has also been successfully implemented for gene discovery in
OCD [128] and autism spectrum disorder [129, 130].

“Splitting” can also be useful in identifying genetic liability to
specific components which are observed transdiagnostically, such
as anhedonia [131]. This narrow phenotype had significant SNP-
based heritability and positive genetic correlations with MDD,
schizophrenia, and bipolar disorder—diagnoses in which anhe-
donia is often observed. Similarly, a GWAS of suicide death has
demonstrated that suicide is heritable (.16 on the liability scale),
and identified genetic variants shared between suicide death and
schizophrenia, bipolar disorder, and autism [132]. Furthermore, a
recent study conducted GWAS of data-driven PTSD subscales: re-
experiencing, hyperarousal, and avoidance [31]. Although PTSD
subscales demonstrated very strong genetic correlations
(rg>0.90), supporting the importance of a general genetic
vulnerability to PTSD, genomic SEM showed that hyperarousal
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had a unique genetic association with MDD, anxiety, and
neuroticism, hinting at transdiagnostic pathways linking these
diagnoses.

“Splitting” can also be a useful approach for identifying
methodological artifacts in GWAS. In an alcohol use GWAS, items
measuring alcohol consumption was closely related to socio-
economic status, whereas a distinct subset measuring alcohol-
related problems better captures variance shared with pathologi-
cal consumption [46]. This finding explained paradoxical genetic
correlations between alcohol use disorder and better physical
health [38]. Future GWAS could take the “splitting” approach to
study whether other related phenotypes such as impairment or
stressful life events have separate genetic underpinnings from
psychopathology.

In conclusion, lumping can increase statistical power in contexts
where genetic risk increases psychopathology at the broadest
level, or in cases of true pleiotropy. “Splitting”, however, may
increase power to detect additional genetic risk, including the
instances when specific symptoms or traits are observed across
multiple heterogeneous phenotypes. Simulations evaluating how
lumping and splitting capture genetic risk across a variety of
genetic architectures would be informative for the design of
future phenotyping efforts.

QUANTIFYING GENETIC RISK VERSUS GENE DISCOVERY

The choice of target phenotypes for GWAS is not a purely
statistical decision, but one that depends on the GWAS'’s purpose.
If the purpose of performing a GWAS is to develop a PGS of
automobile speeding propensity, the best predictor may be a
GWAS of automobile speeding propensity [74]. However, if the
GWAS for the target phenotype is based on a small sample size, a
related phenotype for which a larger sample size exists will likely
produce a more powerful PGS. For example, a PGS from the recent
externalizing GWAS [125] predicts opioid use disorder, a
phenotype that was not part of the externalizing GWAS and has
not been associated with opioid use disorder PGS, as discussed in
Box 1. Because information is additive, and psychiatric traits tend
to be both phenotypically and genetically correlated, the best way
to improve prediction may be to use multiple PGS for related
phenotypes. Likewise, PGS for anthropometric traits are currently
more closely associated with eating disorders than the PGS based
on GWAS for anorexia nervosa [133], and PGS of traits emerging in
late adolescence or adulthood, such as substance abuse, can
nonetheless predict important outcomes among children, or other
populations in which the phenotype is not observed.

However, GWAS are not purely for the purposes of developing
PGS, but also gene discovery and understanding etiology. For
instance, a recent analysis of polygenic risk for PTSD and lifetime
trauma exposure determined that, while genetic risk for PTSD is
partially explained by genetic risk for trauma, PTSD also has some
unique genetic risk that is correlated with neuroticism and
irritability, indicating an alternative pathway to pathology that is
not necessarily via trauma [32]. Relatedly, PTSD was significantly
more genetically correlated with recurrent MDD than with MDD in
individuals not reporting trauma, likely because individuals with
recurrent MDD experience more traumatic events and, hence,
might share genetic vulnerability to trauma exposure [134]. If the
aim of a proposed GWAS is to inform genetic pathways and
downstream biological mechanisms for a specific psychiatric
phenotype, a corresponding dimension, perhaps refined using the
“splitting” approach, will likely be the optimal phenotype.

MEASURING DIMENSIONAL AND TRANSDIAGNOSTIC
PHENOTYPES

While genomic SEM and other meta-analytic approaches such as
MTAG [119] infer empirically-based transdiagnostic phenotypes,
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they depend on re-analysis of existing data and can therefore be
constrained. For example, negative symptoms drive psychosocial
impairment in psychotic disorders [135], and a negative symptoms
GWAS would be of utility for etiological and translational research.
However, genomic SEM has not identified a negative symptom
factor, and without directly phenotyping negative symptom:s, it
may not be possible to capture genetic variants contributing to
this important outcome. For negative symptoms and other
dimensional, transdiagnostic phenotypes, empirically-validated
classification systems can provide useful targets for gene
discovery at every level of specificity [136]. Below, we highlight
two systems that may be particularly well-suited for informing the
assessment of mental health phenotypes for molecular genetic
research.

First, the Hierarchical Taxonomy of Psychopathology (HiTOP)
consortium proposed a data-driven phenotypic classification
system for a wide range of psychiatric disorders [136-138]. The
methods used to identify the structure of psychiatric phenotypes
within the HITOP model are equivalent to the structural equation
modelling methods that are used to identify the structure of
genetic risk in genomic SEM as well as in multivariate twin studies.
The phenotypic hierarchy in the HITOP model makes comorbidity
an explicit and predictable feature by classifying related pheno-
types together into higher-order factors: superspectra of emo-
tional dysfunction [139], externalizing [140], and psychosis[49];
subfactors such as fear, distress, mania, sexual problems and
eating pathology within emotional dysfunction [139]. Moreover,
the phenotypes in the HITOP model are dimensional, in order to
capture the continuous variation of mental health problems across
all levels of specificity (i.e., “lumping” and “splitting”).

The National Institute of Mental Health developed the Research
Domain Criteria (RDoC) model to guide research on the
neurobiological bases of psychopathology. RDoC provides another
toolbox of novel phenotypes [141-143]. RDoC phenotypes are
organized around dimensional biobehavioral systems that cross
diagnostic boundaries in a similar way to the higher-order
genomic SEM phenotypes. Although RDoC is not hierarchical,
each system contains narrow phenotypic constructs and sub-
constructs that “split” each system. The Negative Valence Systems,
for example, consists acute threat, potential threat, sustained
threat, loss, and frustrative nonreward. Each construct/subcon-
struct is transdiagnostic, e.g., acute threat characterizes a wide
range of disorders such as OCD, panic, and PTSD. Although HiTOP
and RDoC models come from different research traditions, they
have many commonalities and points of convergence [144].

CONCLUSION

In recent years, psychiatric genetics research has incorporated a
wide range of phenotypic targets to enhance genetic discovery.
Some of the most promising options are dimensional and
transdiagnostic measures, assessing constructs at varying levels
of analysis that are empirically derived from our understanding of
symptom co-occurrence. Other effective phenotypic targets
incorporate novel sources of information, such as collateral
informants, longitudinal data, test performance, and biological
measures.

A great deal remains unknown regarding how dimensional and
transdiagnostic phenotypes compare to case-control designs.
While simulations have been useful in understanding how case
prevalence affects power of case-control designs, it is unknown
how this manipulation affects quantitative phenotypes, which
may also benefit from oversampling. More broadly, this review
focuses on the impact of quantitative phenotypes for GWAS and
gene discovery, rather than genetic prediction. A comparison of
the phenotypic profile of quantitative and diagnostic PGS was
beyond the scope of this review, despite its relevance to
characterizing the utility of these phenotypes for gene discovery.
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We discussed prominent examples in which performing a GWAS
of a broad phenotype in a population sample improved prediction
of specific, rare phenotypes in validation samples. However,
further research is needed on the conditions under which this
phenomenon holds, and at what cost to precision. Similarly,
longitudinal phenotypes are a nascent field of gene discovery.
How to incorporate longitudinal data in a way that captures
stability as well as change and heterotypic continuity is needed.
Finally, this review has focused on discovering common genetic
variants, rather than rare variants. We hypothesize that dimen-
sional phenotypes will be especially informative in studying rare
variants, because rare variants are more common in patients
with severe psychopathology [145-147], so power to detect
rare variants should be enhanced by the ability to discriminate
between cases of varying severity. Similarly, “lumping” may
be useful for the discovery of rare variants, many of which
increase risk for multiple forms of psychopathology (i.e., 16p11.2
duplication (MAPK3)) [147, 148]. However, there is little research
on this topic.

Ultimately, exploring novel target phenotypes for psychiatric
GWAS has the potential to accelerate gene discovery, increase our
understanding of the etiology of mental illness, and improve the
power and precision of genetic prediction.
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