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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Bone lead is an indicator of cumulative 
lead exposure. 

• Bone lead measurement is limited in 
large population-based studies due to 
technical availability and expense. 

• We developed prediction models for 
bone lead concentrations using Super 
Learner. 

• The model provides reasonable accuracy 
and can be used to evaluate health ef
fects of cumulative lead exposure.  
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A B S T R A C T   

Chronic lead (Pb) exposure causes long term health effects. While recent exposure can be assessed by measuring 
blood lead (half-life 30 days), chronic exposures can be assessed by measuring lead in bone (half-life of many 
years to decades). Bone lead measurements, in turn, have been measured non-invasively in large population- 
based studies using x-ray fluorescence techniques, but the method remains limited due to technical availabil
ity, expense, and the need for licensing radioactive materials used by the instruments. Thus, we developed 
prediction models for bone lead concentrations using a flexible machine learning approach–Super Learner, which 
combines the predictions from a set of machine learning algorithms for better prediction performance. The study 
population included 695 men in the Normative Aging Study, aged 48 years and older, whose bone (patella and 
tibia) lead concentrations were directly measured using K-shell-X-ray fluorescence. Ten predictors (blood lead, 
age, education, job type, weight, height, body mass index, waist circumference, cumulative cigarette smoking 
(pack-year), and smoking status) were selected for patella lead and 11 (the same 10 predictors plus serum 
phosphorus) for tibia lead using the Boruta algorithm. We implemented Super Learner to predict bone lead 
concentrations by calculating a weighted combination of predictions from 8 algorithms. In the nested cross- 
validation, the correlation coefficients between measured and predicted bone lead concentrations were 0.58 
for patella lead and 0.52 for tibia lead, which has improved the correlations obtained in previously-published 
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linear regression-based prediction models. We evaluated the applicability of these prediction models to the 
National Health and Nutrition Examination Survey for the associations between predicted bone lead concen
trations and blood pressure, and positive associations were observed. These bone lead prediction models provide 
reasonable accuracy and can be used to evaluate health effects of cumulative lead exposure in studies where bone 
lead is not measured.   

1. Introduction 

Lead exposure and related health and societal effects remain a sig
nificant public health concern in the United States and globally. Since 
the 1970s, primary preventative initiatives such as the removal of lead 
from gasoline and lead solder from food cans have considerably reduced 
environmental sources of lead (Pirkle et al., 1994). Nonetheless, the 
general population has been exposed to lead through various sources, 
including ambient air, smoking, drinking water, and food (Frank et al., 
2019). Furthermore, lead from environmental exposures can accumu
late in the body, notably in bones, for decades. Bone lead levels have 
been shown to be associated with cross-sectionally and prospectively 
with adverse health consequences including cardiovascular disease, 
neurodegenerative disease, and mortality in aging populations (Bakulski 
et al., 2020; Lanphear et al., 2018; Navas-Acien et al., 2007). 

Blood lead concentration has been the primary biomarker used to 
quantify lead exposure in biomonitoring programs, screening and 
diagnostic processes, and epidemiologic studies. However, blood lead 
reflects, for the most part, recent lead exposure due to its short half-life 
of approximately 30 days. Cumulative lead exposure, on the other hand, 
is more relevant than recent exposure for assessing the lead effects on 
chronic health outcomes (Hu et al., 2007). Once lead enters the body 
from external environmental exposure, circulating lead in the blood is 
deposited into multiple bone sites, where it has a half-life on the order of 
years to decades (Wilker et al., 2011). In adults, bone lead accounts for 
more than 95% of the total lead body burden (Barry and Mossman, 
1970), rendering bone lead a better indicator of cumulative lead expo
sure. Bone lead can be assessed with the noninvasive K-shell X-ray 
fluorescence (KXRF) technique (Hu et al., 1995). Several studies have 
reported associations of bone lead concentrations as measured by KXRF 
with a series of chronic health outcomes (Ding et al., 2018,2016; Park 
et al., 2010; Payton et al., 1998; Weisskopf et al., 2009). However, 
logistical challenges including the cost and technical expertise required 
to operate KXRF, licensing issues for the use of radioactive materials, 
and participant burden (travel, measurement time, radiation exposure) 
have often precluded the bone lead measurement as an exposure indi
cator in large population-based studies. 

Advances in prediction modeling using modern machine learning 
algorithms have paved the way for essential applications in environ
mental exposure assessment (Di et al., 2019; Verner et al., 2015). Park 
et al. developed a prediction model for bone lead concentration using 
linear regression where a set of bone lead determinants including blood 
lead and other demographic, socioeconomic, and clinical variables were 
incorporated (Park et al., 2009). This model imposed stringent as
sumptions on the association between bone lead concentrations and its 
predictors, such as linear and additive relationships. Given the com
plexities of predicting bone lead concentrations, such assumptions may 
be violated, limiting prediction performance if the model is incorrectly 
specified—hence, a more flexible modeling option would be favored. 

The goal of this study is to develop and validate an updated pre
diction model for bone lead concentrations (patella and tibia) using a 
more flexible machine learning approach, namely Super Learner (Van 
der Laan et al., 2007), which combines the predictions from a set of 
individual machine learning algorithms to yield a final ensemble of 
prediction function that has been proven to be asymptotically as accu
rate as of its best possible component algorithm across different settings. 
We used data from the Normative Aging Study (NAS) where 
KXRF-assessed bone lead and potential predictors of bone lead are 

available. In addition, we evaluated the applicability of this prediction 
model by examining the associations between predicted bone lead 
concentrations and blood pressure in the National Health and Nutrition 
Examination Survey (NHANES). 

2. Materials and methods 

2.1. Study population 

The NAS is a prospective cohort study of community-dwelling men 
with no known occupational lead exposure (Hu et al., 1995). In 1961 
and 1962, 2280 men aged 21–80 years were enrolled from the Greater 
Boston area. All participants were free of any chronic medical conditions 
at the time of enrollment, including heart disease, cancer, diabetes, 
peptic ulcer, gout, bronchitis, sinusitis, recurrent asthma, or hyperten
sion. Participants returned for regular examinations approximately 
every three to five years. At each clinical visit, a thorough physical ex
amination was conducted, and blood specimens for routine clinical 
analysis and for blood lead assay, and information on medical history 
and other aspects that might impact health were collected. Between 
1991 and 2002, a subset of 871 participants underwent patella and tibia 
bone lead measurements using KXRF. Bone lead concentrations were 
measured at a one-time point within approximately six weeks of a 
clinical visit. For the current study, we excluded 9 participants with high 
bone lead concentration uncertainties (>15 μg/g for patella lead, and 
>10 μg/g for tibia lead), and 167 participants with missing information 
on bone lead predictors, yielding a final analytic sample of 695 men for 
building the bone lead prediction models. 

2.2. Bone and blood lead measurements 

Bone lead concentrations were directly measured at two bone sites, 
the patella and mid-tibial shaft, using a KXRF instrument (ABIOMED, 
Danvers, MA, USA), as described in detail previously (Hu et al., 1995). 
The patella is nearly entirely made up of trabecular bone, whereas the 
mid-tibia is made up of cortical bone. Lead accumulates faster in 
trabecular bone, with a half-life of a few years, compared to cortical 
bone, which has a half-life of decades (Wilker et al., 2011). As a result, 
tibia bone lead has often been seen as a biomarker of lifetime cumulative 
lead exposure, while patella bone lead has been recognized as more 
current, mobilizable lead reserves. The KXRF provides unbiased esti
mates of bone lead concentrations, expressed as μg of lead per g of bone 
mineral (μg/g). Negative values can be returned by the KXRF when the 
bone lead concentrations are close to zero. All the values, including the 
negative ones, were retained in the construction of bone lead prediction 
models (Park et al., 2009). KXRF also derives an estimate of the mea
surement uncertainty that reflects the variance both in the X-ray signal 
and in the background underlying the signal, and it is equivalent to the 
standard deviation one would expect from multiple measurements. 
Participants with high bone lead concentration uncertainties (>15 μg/g 
for patella lead, and >10 μg/g for tibia lead) were excluded because 
these measurements usually reflect excessive participant movement 
during the measurement or a degraded signal of X-ray (Aro et al., 1994). 
Whole blood samples were obtained from venous blood draw into trace 
metal-free tubes containing ethylenediaminetetraacetic acid. Blood lead 
concentration was determined using graphite furnace atomic absorption 
spectroscopy (ESA Laboratories, Chelmsford, MA, USA). The limit of 
detection (LOD) for blood lead was 1 μg/dL. Less than 1% of participants 
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had blood lead concentrations below the LOD, and these values were 
imputed with the LOD divided by the square root of two. 

2.3. Predictor selection 

A total of 17 candidate predictors was initially included as shown in 
Table 1 based on their determinant roles and data availability (Park 
et al., 2009). Health conditions, such as blood pressure and disease 
diagnosis, were not included in this list because the previous study found 
that using predicted bone lead concentrations from these variables 
would lead to inflated significant results when examining the associa
tions with the related health outcomes (Park et al., 2009). We next 
employed the Boruta algorithm (Kursa and Rudnicki, 2010), a novel 
variable selection approach, to select the most important predictors for 
patella and tibia lead concentrations, respectively. An initial step 
screening often improves prediction if signal to noise ratio is not high. 
The Boruta algorithm is an extension of the random forest algorithm and 
selects important variables by comparing the importance of variables 
with the shadows (permutations) of those variables, which performs 
well across various variable distributions and provides a subset of all the 
independent variables for a given regression task rather than minimal 
subsets specified to different algorithms. Briefly, this process consists of 
the following four steps:  

(1) Create random permutated copies of real variables, which are 
called shadow variables.  

(2) Fit the random forest on the entire data, including both real and 
shadow variables, and compute the z-scores of importance of 
each variable (the difference in the average absolute error of the 
random forest models with and without this variable).  

(3) Compare the mean z-scores of the variable importance between 
real and shadow variables and remove the real variables with 
significantly lower z-scores than the highest shadow variables.  

(4) Repeat the iterations until all variables are retained or removed 
or reach a specified limit of random forest iterations (2000 in our 
study). 

All variables retained in the Boruta algorithm were included as 
predictors in patella and tibia lead prediction models. Hereafter, we 
refer to these models as “full models.” We also built prediction models 
for patella and tibia lead based on a subset of seven predictors that are 
selected in the Boruta algorithm and widely available in population- 
based studies, including blood lead concentration, age, education, job 
type, body mass index (BMI), smoking status, and cumulative cigarette 
pack-years. We refer to these models as “reduced models." 

2.4. Construction and validation of prediction models 

We implemented Super Learner, an ensemble machine learning al
gorithm seeking optimal prediction by calculating a weighted combi
nation of predicted values from a collection of candidate algorithms 
(Van der Laan et al., 2007), to build bone lead prediction models. In our 
study, we utilized the following eight algorithms, including linear 
regression, generalized additive model (Wood, 2017), ridge regression 
(Hoerl and Kennard, 1970), least absolute shrinkage and selection 
operator (LASSO) (Tibshirani, 1996), elastic-net (ENET) (Zou and Has
tie, 2005), classification and regression tree (CART) (Loh, 2011), 
random forest (Breiman, 2001), and XGBoost (Chen and Guestrin, 
2016). R packages for implementation of each algorithm and corre
sponding hyperparameters that we tuned are summarized in Table S1. A 
Super Learner ensemble was then calculated as a weighted sum of pre
dictions from these eight algorithms by 

ψensemble(E)=
∑M

m
amψm(E)

where ψm(E) is the prediction from the m-th algorithm (m = 1, 2, 3, …, 
M) and am is the corresponding weight. In our study, we log-transformed 
blood lead concentration, and standardized each continuous variable 
due to scaling requirements for some algorithms and coded categorical 
variables as dummy variables. Bone lead concentrations were not log- 
transformed because the distributions were not skewed, and worse 
prediction performances were observed if log-transformed bone lead 
concentrations were used to train the models. 

We used nested cross-validation to find the optimal weighted Super 
Learner predictions and evaluate their performance (Fig. 1). Nested 
cross-validation is a method for optimizing model hyperparameters and 
selecting models that seek to address the problem of overfitting the 
training dataset (Cawley and Talbot, 2010). This procedure consists of 
two cross-validation loops– outer and inner loops. Fifteen-fold cross-
validation was used for the outer loop, and ten-fold was for the inner 
loop. The optimal weight am for each algorithm in the Super Learner was 
estimated in the inner loop. Briefly, cross-validated predictions for each 
algorithm were calculated in each validation set. A constrained regres
sion was then fitted in which the observed bone lead was dependent and 
predictions for different algorithms were independent variables, and an 
optimal convex combination of regression coefficients was determined, 
corresponding to am for each algorithm such that each am ≥ 0 and 
∑M

mam = 1. This procedure of obtaining optimal weighted Super Learner 
prediction by subdividing the data into distinct training and validation 
sets was repeated 15 times (outer loop), and the performance of each 
Super Learner prediction was assessed with an additional layer of 
cross-validation (testing sets) that has not been used in the training 
process. Cross-validated mean-squared errors (CV-MSE) for the Super 
Learner and component algorithms predictions were calculated in each 
testing set and then averaged over all 15 testing sets. We also calculated 
the Pearson’s correlation coefficients and the Lin’s concordance corre
lation coefficients (CCC) (Lin, 1989) to evaluate the agreement between 
observed and predicted bone lead concentrations in the testing sets. The 
R package “SuperLearner” (Van der Laan et al., 2007) was used to pre
dict the bone lead concentrations in our study. 

Table 1 
Distributions of lead concentrations and their potential determinants in the 
Normative Aging Study (NAS) (N = 695). All participants were White men.  

Characteristics Mean (SD) or n (%) Range 

Bone lead concentrations 
Patella lead (μg/g) 31.1 (19.5) − 9 – 165 
Tibia lead (μg/g) 21.6 (13.3) − 5 – 126 
Candidate predictors 
Blood lead (μg/dL) 5.0 (1.9) 0.7–27.9 
Age (year) 67.1 (7.2) 48–94 
Height (m) 1.7 (0.1) 1.5–2.0 
Weight (kg) 83.6 (13.0) 52.7–128.5 
Body mass index (kg/m2) 27.8 (3.7) 16.7–42.4 
Waist circumference (cm) 98.2 (9.6) 70.1–129.7 
Serum calcium (mg/dL) 9.6 (0.4) 8.3–11.3 
Serum phosphorus (mg/dL) 3.1 (0.5) 1.9–4.6 
Total cholesterol (mg/dL) 228 (37) 145–438 
High-density lipoprotein (mg/dL) 48 (13) 15–131 
Triglyceride (mg/dL) 150 (79) 24–470 
Hematocrit (%) 434 (3) 29–52 
Alcohol consumption (gram/day) 13 (18) 0–104 
Cumulative cigarette (pack-year) 22 (26) 0–136 
Smoking status 

Never 214 (30.8)  
Former 418 (60.1)  
Current 63 (9.1)  

Education 
High school dropout 71 (10.2)  
High school of some college 425 (61.2)  
College and above 199 (28.6)  

Job type 
White collar 367 (52.8)  
Non-white collar 328 (47.2)   
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2.5. Predicted bone lead concentrations and blood pressure in NHANES 

To test the prediction models’ applicability in other studies where 
bone lead concentrations were not measured, we evaluated the associ
ations between predicted bone lead concentrations and blood pressure, 
using data from NHANES, a representative sample of the civilian, non- 
institutionalized U.S. population. The study sample consists of 18,796 
adults aged 20 years and older from 8 continuous cycles (1999–2000 to 
2013–2014) who had no missing information on predictors used in bone 
lead prediction models and blood pressure. Linear regression models 
were used to examine the associations between blood pressure (systolic 
blood pressure, SBP, and diastolic blood pressure, DBP) and predicted 
patella/tibia lead concentrations (from full model and reduced model) 
while adjusting for age, gender, race/ethnicity, education, NHANES 
survey cycles, smoking status, cumulative cigarette smoking (pack- 
year), body mass index, and alcohol consumption. If participants re
ported current use of anti-hypertensive medicines, a constant of 10 
mmHg and 5 mmHg were added to their SBP and DBP, respectively, 
according to an established method to correct for medication use (Tobin 
et al., 2005). We also examined blood lead for comparison. Blood lead 
was log-transformed because the association was close to log-linear. 
Adjusted differences in SBP and DBP were computed for an inter
quartile range (IQR) increase in each lead variable. We further stratified 
associations between blood pressure and predicted bone lead by gender 
and age (≥50 vs. < 50 years) to assess the potential effect modifications 
and generalizability of our prediction models, considering that they 

were built in men majorly aged 50 years and older. 

2.6. Sensitivity analyses 

Several sensitivity analyses were conducted to test the robustness of 
our findings. First, we log2-transformed predicted bone lead and blood 
lead concentrations to better compare the effect size in relation to blood 
pressure in NHANES. The effect size was interpreted as changes in blood 
pressure of per doubling increase in each lead metal concentration. 
Second, we additionally adjusted for the bone lead predictors, including 
job type, weight, height, and waist circumference, in the associations of 
blood pressure with blood lead and predicted bone lead concentrations. 
Finally, to explore the impact of missing values on the associations be
tween lead exposures and blood pressure, we conducted multiple im
putations by chained equations (Azur et al., 2011) to impute missing 
values. All analyses were conducted using R, version 4.0.5 (www.R-pr 
oject.org) and the prediction models are available (https://github. 
com/XinWangUmich/Bone-Lead-Prediction-Models). 

3. Results 

3.1. Prediction models 

Distributions of bone lead concentrations and their candidate pre
dictors in the NAS are shown in Table 1. The mean (range) age of 695 
study participants was 67.1 (48–94) years. Most participants had a high 

Fig. 1. Flow chart of predicted bone lead concentration model development, validation, and application. Normative Aging Study (NAS); National Health and 
Nutrition Examination Survey (NHANES). 
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school degree or higher (89.8%) and had either former or current 
smoked (69.2%). The mean (standard deviation, SD) of lead concen
tration was 31.1 (19.5) μg/g for patella lead, 21.6 (13.3) μg/g for tibia 
lead, and 5.0 (1.9) μg/dL for blood lead. 

Fig. 2 summarizes the results of predictor selection by the Boruta 
algorithm that predictors showing higher mean importance z-score 
(green boxes) than the highest shadow variable (blue box) are retained 
as “important” predictors of bone lead concentrations. A total of 10 
predictors were selected for patella lead, with the most important pre
dictor of blood lead concentration, followed by age, education, weight, 
BMI, job type, waist circumference, cumulative cigarette smoking (pack- 
year), height, and smoking status. For the tibia lead, the same 10 pre
dictors were selected. At the same time, two additional varia
bles—serum phosphorus and serum hematocrit, were identified as 
tentative predictors, which have a higher but not statistically significant 
mean importance Z-score than the maximum value of the shadow var
iables. We only kept serum phosphorus because it had a higher median 
importance Z-score than that of the highest shadow variable. Thus, 11 
predictors were selected for tibia lead, with the most important pre
dictors being age, followed by blood lead concentration. 

Fig. S1 shows the performance of Super Learner prediction, together 
with its 8 component algorithms, for the patella lead prediction, 
assessed by the CV-MSEs averaged across 15 testing sets. The Super 
Learner predictions outperformed all individual component algorithms 
in both full and reduced models, with CV-MSE (standard error, SE) of 
253.1 (27.0) for the full model and 253.0 (26.6) for the reduced model, 
slightly better than the best performed individual algorithms-random 
forest, with CV-MSE (standard error, SE) of 255.8 (27.1) for the full 
model and 253.6 (26.7) for the reduced model. Similarly, the Super 
Learner showed the best performance in tibia lead concentration pre
diction compared to any component algorithms (Fig. S2). For the indi
vidual algorithms predicting tibia lead, the generalized additive model 
had the highest individual performance in the full model, while the 
random forest was the best in the reduced model. 

The full model and reduced model for patella lead predictions show 
similar agreement measures (Fig. 3). The Pearson’s correlation co
efficients between observed and predicted patella lead was 0.580 for 
both the full and reduced model. The CCC was 0.482 for the full model 

and 0.476 for the reduced model. Similar performance in terms of 
agreement measures between the full and reduced models was also 
observed for tibia lead predictions (Fig. S3). The Pearson’s correlation 
coefficient was 0.519, and CCC was 0.416 for the full model. For the 
reduced model, Pearson’s correlation coefficient was 0.518, and CCC 
was 0.416. 

3.2. Application to NHANES 

The distributions of bone lead predictors in the NHANES were 
summarized in Table S2. The study sample consists of 18,796 partici
pants (10,060 mens and 8736 womens) with a mean (range) age of 42.5 
(20–85 and above) years. The mean (SD) of blood lead concentration 
was 1.7 (1.8) μg/dL. Predicted bone lead concentrations were shown in 
Table S3. Mean (SD) of predicted patella lead concentration was 32.0 
(12.6) μg/g for the full model and 31.9 (11.9) μg/g for the reduced 
model. Mean (SD) of predicted tibia lead concentration was 21.9 (8.3) 
μg/g for the full model and 21.9 (8.4) μg/g for the reduced model. 
Participants aged 50 years and older had higher predicted patella and 
tibia lead concentrations than those younger than 50 years. 

Positive associations of SBP with blood and predicted bone lead 
concentrations were observed (Table 2). After adjusting for age, gender, 
race/ethnicity, education, NHANES survey cycles, smoking status, cu
mulative cigarette smoking, BMI, and alcohol consumption, an IQR in
crease in bone lead concentrations was associated with 1.45 (95% CI: 
0.96, 1.93) mmHg higher SBP for predicted patella lead from the full 
model, 1.98 (95% CI: 1.16, 2.80) mmHg for predicted patella lead from 
the reduced model, 2.09 (95% CI: 1.55, 2.63) mmHg for predicted tibia 
lead from the full model, and 2.21 (95% CI: 1.69, 2.74) mmHg for 
predicted tibia lead from the reduced model. By comparison, an IQR 
increase in log-transformed blood lead concentration was associated 
with 0.91 (95% CI: 0.57, 1.25) mmHg higher SBP. Stronger positive 
associations between predicted bone lead concentrations and SBP were 
observed in women except for predicted patella lead from the full model. 
Participants aged 50 years and older showed stronger associations be
tween predicted bone lead and SBP than those aged 50 years and 
younger. 

Similar to SBP, positive associations were found between lead 

Fig. 2. Predictor importance for A) patella lead, and B) tibia lead in the Boruta algorithm. Ten variables (green) were identified as important predictors for patella 
lead, including blood lead concentration, age, education, weight, body mass index, job type, waist circumference, cumulative cigarette smoking (pack-year), height, 
and smoking status. Serum phosphorus was additionally identified as an important predictor for tibia lead. A predictor was considered important if it had a 
significantly higher mean importance Z-score than the maximum value of the shadow variables (blue). Otherwise, a predictor (red) was excluded if it had a 
significantly lower mean importance Z-score than the maximum value of the shadow variables. Two tentative variables (yellow), which has higher but not statis
tically significant mean importance Z-score than the maximum value of the shadow variables, were identified as tentative predictors for tibia lead. We only kept 
serum phosphorus because it had a higher median importance Z-score than the shadow variable. 
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concentrations and DBP, where effects of predicted bone lead were 
stronger than blood lead (Table S4). In stratified analysis by gender, 
stronger positive associations between predicted bone lead and DBP 
were found in women. In stratified analysis by age, positive associations 
between predicted bone lead and DBP were observed in participants 
aged 50 years and older. By contrast, significant associations were only 
observed with predicted patella and tibia lead from reduced models in 
those younger than 50 years. 

3.3. Sensitivity analyses 

In sensitivity analyses, stronger positive associations between pre
dicted bone lead concentrations and blood pressure were observed than 
blood lead in models where all lead concentrations were log2- 
transformed (Table S5 and Table S6). Additional adjustments for job 
type, weight, height, and waist circumference (Table S7 and Table S8) 
and pooled analysis of imputed datasets (Table S9 and Table S10) did 
not alter the associations. 

4. Discussion 

To allow for the testing of cumulative lead exposure with health 
effects in studies where direct bone lead measurements are not possible, 
this study derived prediction models for the bone lead concentration— 
the biomarker for cumulative lead exposure, using the Super Learner’s 
ensemble machine learning algorithm. The reduced model, which 
included blood lead concentration, age, education, job type, BMI, 
smoking status, and cumulative cigarette pack-years as predictors, 
showed reasonable performance in the validation datasets as demon
strated by the goodness of fit of models and agreement between pre
dicted and measured bone lead concentrations. When we compared this 
reduced model to the full model incorporating more predictors, we 
found no differences in prediction performance. We further applied the 
prediction models to the NHANES and found that predicted bone lead 
concentrations were associated with higher blood pressure, whereas 
blood lead concentrations were not, which agrees with previous findings 
in the NAS that bone lead but not blood lead was associated with 
elevated blood pressure (Cheng et al., 2001). 

To our knowledge, this study was the first to derive the bone lead 

Fig. 3. Validation of the patella lead prediction A. full model and B. reduced model in outer cross-validated testing sets. The solid lines drawn on the plots showed 
indicate the regression line from the simple linear regression. The dashed lines indicate the equiangular observed–predicted line. R: the Pearson correlation coef
ficient; CCC: the Concordance Correlation Coefficient. Full model included blood lead concentration (log-transformed), age, education, job type, weight, height, body 
mass index, waist circumference, smoking status, and cumulative cigarette smoking (pack-year). Reduced model included blood lead concentration (log-trans
formed), age, education, job type, body mass index, smoking status, and cumulative cigarette smoking (pack-year). 

Table 2 
Adjusted differences (95% confidence intervals) in systolic blood pressure (mmHg) associated with an interquartile range increase (IQR) in lead concentrations in the 
National Health and Nutrition Examination Survey (NHANES).   

Log blood lead Predicted patella lead Predicted tibia lead 

Full model Reduced model Full model Reduced model 

All participantsa 0.91 (0.57, 1.25) 1.45 (0.96, 1.93) 1.98 (1.16, 2.80) 2.09 (1.55, 2.63) 2.21 (1.69, 2.74) 
By genderb 

Men 0.74 (0.31, 1.19) 1.74 (1.15, 2.34) 1.86 (1.21, 2.51) 2.27 (1.63, 2.91) 2.35 (1.70, 2.99) 
Women 0.46 (− 0.07, 0.99) 1.44 (0.60, 2.29) 2.21 (1.31, 3.11) 2.51 (1.52, 3.51) 2.54 (1.63, 3.45) 

By age 
≥50 years 1.52 (0.72, 2.37) 2.15 (1.28, 3.03) 2.32 (1.36, 3.27) 2.53 (1.57, 3.50) 2.37 (1.45, 3.28) 
<50 years 0.44 (0.09, 0.78) 0.60 (− 0.01, 1.21) 1.18 (0.51, 1.85) 1.38 (0.71, 2.05) 1.62 (0.93, 2.31) 

Note: Interquartile range (IQR) for bone lead is 16.2 μg/g for predicted patella lead from the full model, 16.0 μg/g for predicted patella lead from the reduced model, 
10.9 μg/g for predicted tibia lead from the full model, and 10.8 μg/g for predicted tibia lead from the reduced model. Interquartile range for log-transformed blood lead 
is 0.89. 

a Models for all participants were adjusted for age, gender, race/ethnicity, education, NHANES survey cycles, smoking status, cumulative cigarette smoking (pack- 
year), body mass index, and alcohol consumption. 

b Stratified models by gender have the same covariates included in the model for all participants except gender. 
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prediction models based on blood lead and a few predictors that are 
available in most population-based studies using the flexible machine 
learning approach—Super Learner. More than 12 years ago, Park et al. 
(2009) constructed the prediction models for a similar purpose using the 
NAS data. However, the bone lead prediction models derived previously 
were based on linear regression, and assumptions underlying this 
parametric approach may be violated, as the relationship between bone 
lead concentrations and their determinants may be highly complex and 
hence unlikely to be accurately captured by a linear equation. The Super 
Learner algorithm we used here embraced the possible complex re
lationships and has been shown to achieve the prediction performance 
as good as optimum (but unknown) algorithm in the different scenarios 
by stacking predictions from a wide range of modeling algorithms (Van 
der Laan et al., 2007). In addition, the previous prediction model with 
the highest performance included health outcomes as predictors (for 
example, blood pressure), precluding the testing of predicted lead 
exposure with those health outcomes. Our Super Learner based bone 
lead prediction model did not use these variables as predictors, which 
allows for more expanded possible future research directions. The 
overall prediction performances of our models are not very high, indi
cating a moderate signal to noise ratio in the dataset. However, 
improvement in the performance of both patella and tibia lead pre
dictions with our Super Learner based bone lead prediction model (r =
0.58 for patella lead and r = 0.52 for tibia lead) was achieved compared 
the performance of the previously constructed linear regression (r =
0.50 for patella lead and r = 0.43 for tibia lead) in the same NAS dataset 
(Park et al., 2009). We used Super Learner to build the prediction models 
as other studies will have a different setting and strength of the signal, 
but Super Learner will pick out the best predictions data adaptively. 
Future studies may be able to achieve further advances in the prediction 
performances. 

Blood lead and age were the two most important predictors of bone 
lead concentration in the Boruta predictor selection (Fig. 2). When 
exposed to lead in the environment, blood and other soft tissues 
comprise the first receptacle of absorbed lead. Over weeks, lead in these 
compartments continues to circulate, with some being excreted via urine 
(and, to some extent bile), but about 10% accumulating into various 
skeletal locations for decades throughout mineral deposition. From 
there, lead can then be mobilized over ensuing years through bone 
resorption and remodeling (Tsaih et al., 2001). In the aging population 
with elevated bone resorption, blood lead can capture recent external 
exposure as well as endogenous exposure of the released lead from bone 
into the circulation (Wang et al., 2019). The high predictor importance 
of blood lead and age was supported by the strong positive associations 
of blood lead and age with bone lead concentrations in other cohorts 
where both blood and bone lead data were available (Korrick et al., 
2002; Kosnett et al., 1994). To note, blood lead showed the highest 
importance for patella lead, while age was identified as the most 
important predictor for tibia lead in our analysis. This could be 
explained by different bone compositions, i.e., patella lead is mainly 
made up of trabecular bone which resorbs more rapidly than the cortical 
bone in the tibia (Hu et al., 2007). Thus, a closer relationship between 
blood lead and patella lead is expected, given patella lead’s role as a 
marker of the internal mobilizable lead reserves. By contrast, the strong 
association between age and tibia lead suggests tibia lead’s role as an 
indicator of lifetime cumulative lead exposure as well as a potential 
marker of the birth cohort effect associated with an age cohort that had 
much higher exposure as young adults than the young adults of today. 

Our analysis detected positive associations between predicted bone 
lead concentrations and blood pressure in the NHANES datasets, adding 
to the literature that cumulative lead exposure contributes to elevated 
blood pressure in the U.S. general population (Navas-Acien et al., 2008). 
The larger magnitudes of the association for the predicted bone lead 
than that of blood lead highlight the practical value of our prediction 
models, in particular, in the examination of associations between cu
mulative lead exposure and health outcomes. Notably, predicted patella 

lead concentrations from the reduced model were more strongly asso
ciated with blood pressure than the patella lead predicted from the full 
model. It should be pointed out that more highly correlated predictors 
(weight, height, BMI, and waist circumference) were included in the full 
patella prediction model because the Boruta tended to select all-relevant 
predictors rather than a minimal subset (Kursa and Rudnicki, 2010), and 
this could lead to greater prediction error due to the potential over
fitting. When predicted bone lead is treated as exposure in the associa
tions with health outcomes, the prediction error in the bone lead can be 
recast as measurement error in the exposure, resulting in downward bias 
(i.e., towards null) in the estimates of the effect coefficient of the bone 
lead. Another possible explanation could be that weight, height, BMI, 
and waist circumference are risk factors for high blood pressure, and 
they could also be affected by lead exposure (Wang et al., 2018). Thus, 
the downward bias in the bone lead effect estimates could happen. 

In the stratified analysis, much larger effect estimates of predicted 
bone lead were observed in participants aged 50 years and older. This 
could be explained by the fact that older people are more susceptible to 
risk factors of elevated blood pressure (Setters and Holmes, 2017) and 
also that age was one of the most important predictors in our bone lead 
prediction models and participants aged 50 years and older showed 
higher concentrations of predicted bone lead than those younger than 
50. Stronger associations between predicted bone lead and blood pres
sure were also observed in women compared to men. Gender is another 
potentially important predictor of bone lead concentrations given the 
accelerated bone resorption rate in postmenopausal women, leading to 
increased lead mobilization from bone into the circulation (Korrick 
et al., 2002). However, gender was not included in our prediction 
models due to the design of NAS of a cohort of men. Thus, the associa
tions between bone lead and blood pressure in women could still be 
underestimated. Possible biological mechanisms underlying the associ
ations between lead exposure and blood pressure include oxidative 
stress, inflammation, renin-angiotensin system dysfunction, and 
impaired autonomic nervous system function (Navas-Acien et al., 2007). 

Our prediction models did not account for all potential determinants 
of bone lead concentrations (Table 1). Blood lead, sociodemographic 
factors, lifestyle factors, and BMI showed the highest predictor impor
tance in the Boruta algorithm, suggesting that sociodemographic and 
lifestyle factors and BMI provides more information about cumulative 
lead exposure than other blood biomarkers when blood lead concen
tration is available. Furthermore, the reduced model with only seven 
predictors showed similar goodness-of-fit as the full model and mini
mized the risk of potential overfitting, as discussed previously. This way, 
we developed the most parsimonious, rather than complete, model for 
bone lead concentration prediction, leveraging the most critical factors 
required to estimate the cumulative lead exposure, which boosts the 
applicability of our model in epidemiologic studies where extensive 
blood biomarkers and clinical phenotypes are not available. 

The main strength of our study is the application of the Super 
Learner, for the first time, to model the bone lead concentration in a 
flexible way. Hyperparameters for the machine learning algorithms 
embedded in the Super Learner were also tuned for better prediction 
performance (Wong et al., 2019). Nevertheless, this study has several 
limitations. First, our prediction models were derived from a cohort of 
middle-aged-to-elderly White men. The bone lead concentrations in 
other populations, such as women, non-White race groups, or different 
age groups, may not be accurately predicted. Our models should also be 
used cautiously to predict bone lead concentrations in populations with 
higher bone turnover rates, for example, pregnant women or post
menopausal women. Separate models trained in women and younger 
populations with different sets of predictors will give a more accurate 
estimate of bone lead concentrations and less biased associations with 
health outcomes in the corresponding subpopulations in the future. 
Additionally, due to data unavailability, other determinants of lead ex
posures, such as family income (Mahaffey et al., 1982), degree of ur
banization of the place of residence (Mahaffey et al., 1982), and 
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environmental and dietary sources (Gump et al., 2020; Hanna-Attisha 
et al., 2016), were not included in the building of prediction models. 
Inclusion of such predictors could potentially improve the model pre
diction performance. Finally, when training the models for predicting 
bone lead concentrations in other settings or other chemical exposures, 
it should be noted that hyperparameters and performances of machine 
learning algorithms may vary due to differences in sample size, number 
and types of variables, and the relationships between predictors and 
outcomes. 

5. Conclusions 

In summary, this study provides the prediction models for bone lead 
concentration, a marker of cumulative lead exposure, based on blood 
lead concentration and other standard predictors including age, edu
cation, job type, BMI, smoking status, and cumulative cigarette pack- 
years using the Super Learner algorithm in the NAS. The positive asso
ciations between predicted bone lead concentration and blood pressure 
in the NHANES suggest the practical value of the prediction models in 
evaluating the health effects of cumulative lead exposure in studies 
where bone lead measurements are not available. Future studies are 
needed to train the model in different populations, for example, women, 
non-white racial groups, and younger populations, to further increase 
the prediction accuracy. 
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