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ARTICLE INFO ABSTRACT
Keywords: Chronic lead (Pb) exposure causes long term health effects. While recent exposure can be assessed by measuring
Blood lead blood lead (half-life 30 days), chronic exposures can be assessed by measuring lead in bone (half-life of many

Patella lead
Tibia lead
Super learner

years to decades). Bone lead measurements, in turn, have been measured non-invasively in large population-
based studies using x-ray fluorescence techniques, but the method remains limited due to technical availabil-
ity, expense, and the need for licensing radioactive materials used by the instruments. Thus, we developed
prediction models for bone lead concentrations using a flexible machine learning approach-Super Learner, which
combines the predictions from a set of machine learning algorithms for better prediction performance. The study
population included 695 men in the Normative Aging Study, aged 48 years and older, whose bone (patella and
tibia) lead concentrations were directly measured using K-shell-X-ray fluorescence. Ten predictors (blood lead,
age, education, job type, weight, height, body mass index, waist circumference, cumulative cigarette smoking
(pack-year), and smoking status) were selected for patella lead and 11 (the same 10 predictors plus serum
phosphorus) for tibia lead using the Boruta algorithm. We implemented Super Learner to predict bone lead
concentrations by calculating a weighted combination of predictions from 8 algorithms. In the nested cross-
validation, the correlation coefficients between measured and predicted bone lead concentrations were 0.58
for patella lead and 0.52 for tibia lead, which has improved the correlations obtained in previously-published

Abbreviations: BMI, body mass index; CART, classification and regression tree; CCC, concordance correlation coefficients; CV-MSE, cross-validated mean-squared
errors; DBP, diastolic blood pressure; ENET, elastic-net; IQR, interquartile range; KXRF, K-shell X-ray fluorescence; LASSO, least absolute shrinkage and selection
operator; LOD, limit of detection; NAS, Normative Aging Study; NHANES, National Health and Nutrition Examination Survey; SBP, systolic blood pressure.
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linear regression-based prediction models. We evaluated the applicability of these prediction models to the
National Health and Nutrition Examination Survey for the associations between predicted bone lead concen-
trations and blood pressure, and positive associations were observed. These bone lead prediction models provide
reasonable accuracy and can be used to evaluate health effects of cumulative lead exposure in studies where bone

lead is not measured.

1. Introduction

Lead exposure and related health and societal effects remain a sig-
nificant public health concern in the United States and globally. Since
the 1970s, primary preventative initiatives such as the removal of lead
from gasoline and lead solder from food cans have considerably reduced
environmental sources of lead (Pirkle et al., 1994). Nonetheless, the
general population has been exposed to lead through various sources,
including ambient air, smoking, drinking water, and food (Frank et al.,
2019). Furthermore, lead from environmental exposures can accumu-
late in the body, notably in bones, for decades. Bone lead levels have
been shown to be associated with cross-sectionally and prospectively
with adverse health consequences including cardiovascular disease,
neurodegenerative disease, and mortality in aging populations (Bakulski
et al., 2020; Lanphear et al., 2018; Navas-Acien et al., 2007).

Blood lead concentration has been the primary biomarker used to
quantify lead exposure in biomonitoring programs, screening and
diagnostic processes, and epidemiologic studies. However, blood lead
reflects, for the most part, recent lead exposure due to its short half-life
of approximately 30 days. Cumulative lead exposure, on the other hand,
is more relevant than recent exposure for assessing the lead effects on
chronic health outcomes (Hu et al., 2007). Once lead enters the body
from external environmental exposure, circulating lead in the blood is
deposited into multiple bone sites, where it has a half-life on the order of
years to decades (Wilker et al., 2011). In adults, bone lead accounts for
more than 95% of the total lead body burden (Barry and Mossman,
1970), rendering bone lead a better indicator of cumulative lead expo-
sure. Bone lead can be assessed with the noninvasive K-shell X-ray
fluorescence (KXRF) technique (Hu et al., 1995). Several studies have
reported associations of bone lead concentrations as measured by KXRF
with a series of chronic health outcomes (Ding et al., 2018,2016; Park
et al., 2010; Payton et al., 1998; Weisskopf et al., 2009). However,
logistical challenges including the cost and technical expertise required
to operate KXRF, licensing issues for the use of radioactive materials,
and participant burden (travel, measurement time, radiation exposure)
have often precluded the bone lead measurement as an exposure indi-
cator in large population-based studies.

Advances in prediction modeling using modern machine learning
algorithms have paved the way for essential applications in environ-
mental exposure assessment (Di et al., 2019; Verner et al., 2015). Park
et al. developed a prediction model for bone lead concentration using
linear regression where a set of bone lead determinants including blood
lead and other demographic, socioeconomic, and clinical variables were
incorporated (Park et al., 2009). This model imposed stringent as-
sumptions on the association between bone lead concentrations and its
predictors, such as linear and additive relationships. Given the com-
plexities of predicting bone lead concentrations, such assumptions may
be violated, limiting prediction performance if the model is incorrectly
specified—hence, a more flexible modeling option would be favored.

The goal of this study is to develop and validate an updated pre-
diction model for bone lead concentrations (patella and tibia) using a
more flexible machine learning approach, namely Super Learner (Van
der Laan et al., 2007), which combines the predictions from a set of
individual machine learning algorithms to yield a final ensemble of
prediction function that has been proven to be asymptotically as accu-
rate as of its best possible component algorithm across different settings.
We used data from the Normative Aging Study (NAS) where
KXRF-assessed bone lead and potential predictors of bone lead are

available. In addition, we evaluated the applicability of this prediction
model by examining the associations between predicted bone lead
concentrations and blood pressure in the National Health and Nutrition
Examination Survey (NHANES).

2. Materials and methods
2.1. Study population

The NAS is a prospective cohort study of community-dwelling men
with no known occupational lead exposure (Hu et al., 1995). In 1961
and 1962, 2280 men aged 21-80 years were enrolled from the Greater
Boston area. All participants were free of any chronic medical conditions
at the time of enrollment, including heart disease, cancer, diabetes,
peptic ulcer, gout, bronchitis, sinusitis, recurrent asthma, or hyperten-
sion. Participants returned for regular examinations approximately
every three to five years. At each clinical visit, a thorough physical ex-
amination was conducted, and blood specimens for routine clinical
analysis and for blood lead assay, and information on medical history
and other aspects that might impact health were collected. Between
1991 and 2002, a subset of 871 participants underwent patella and tibia
bone lead measurements using KXRF. Bone lead concentrations were
measured at a one-time point within approximately six weeks of a
clinical visit. For the current study, we excluded 9 participants with high
bone lead concentration uncertainties (>15 pg/g for patella lead, and
>10 pg/g for tibia lead), and 167 participants with missing information
on bone lead predictors, yielding a final analytic sample of 695 men for
building the bone lead prediction models.

2.2. Bone and blood lead measurements

Bone lead concentrations were directly measured at two bone sites,
the patella and mid-tibial shaft, using a KXRF instrument (ABIOMED,
Danvers, MA, USA), as described in detail previously (Hu et al., 1995).
The patella is nearly entirely made up of trabecular bone, whereas the
mid-tibia is made up of cortical bone. Lead accumulates faster in
trabecular bone, with a half-life of a few years, compared to cortical
bone, which has a half-life of decades (Wilker et al., 2011). As a result,
tibia bone lead has often been seen as a biomarker of lifetime cumulative
lead exposure, while patella bone lead has been recognized as more
current, mobilizable lead reserves. The KXRF provides unbiased esti-
mates of bone lead concentrations, expressed as pg of lead per g of bone
mineral (ug/g). Negative values can be returned by the KXRF when the
bone lead concentrations are close to zero. All the values, including the
negative ones, were retained in the construction of bone lead prediction
models (Park et al., 2009). KXRF also derives an estimate of the mea-
surement uncertainty that reflects the variance both in the X-ray signal
and in the background underlying the signal, and it is equivalent to the
standard deviation one would expect from multiple measurements.
Participants with high bone lead concentration uncertainties (>15 pg/g
for patella lead, and >10 pg/g for tibia lead) were excluded because
these measurements usually reflect excessive participant movement
during the measurement or a degraded signal of X-ray (Aro et al., 1994).
Whole blood samples were obtained from venous blood draw into trace
metal-free tubes containing ethylenediaminetetraacetic acid. Blood lead
concentration was determined using graphite furnace atomic absorption
spectroscopy (ESA Laboratories, Chelmsford, MA, USA). The limit of
detection (LOD) for blood lead was 1 pg/dL. Less than 1% of participants
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had blood lead concentrations below the LOD, and these values were
imputed with the LOD divided by the square root of two.

2.3. Predictor selection

A total of 17 candidate predictors was initially included as shown in
Table 1 based on their determinant roles and data availability (Park
et al.,, 2009). Health conditions, such as blood pressure and disease
diagnosis, were not included in this list because the previous study found
that using predicted bone lead concentrations from these variables
would lead to inflated significant results when examining the associa-
tions with the related health outcomes (Park et al., 2009). We next
employed the Boruta algorithm (Kursa and Rudnicki, 2010), a novel
variable selection approach, to select the most important predictors for
patella and tibia lead concentrations, respectively. An initial step
screening often improves prediction if signal to noise ratio is not high.
The Boruta algorithm is an extension of the random forest algorithm and
selects important variables by comparing the importance of variables
with the shadows (permutations) of those variables, which performs
well across various variable distributions and provides a subset of all the
independent variables for a given regression task rather than minimal
subsets specified to different algorithms. Briefly, this process consists of
the following four steps:

(1) Create random permutated copies of real variables, which are
called shadow variables.

(2) Fit the random forest on the entire data, including both real and

shadow variables, and compute the z-scores of importance of

each variable (the difference in the average absolute error of the

random forest models with and without this variable).

Compare the mean z-scores of the variable importance between

real and shadow variables and remove the real variables with

significantly lower z-scores than the highest shadow variables.

(4) Repeat the iterations until all variables are retained or removed
or reach a specified limit of random forest iterations (2000 in our
study).

3

-

Table 1
Distributions of lead concentrations and their potential determinants in the
Normative Aging Study (NAS) (N = 695). All participants were White men.

Characteristics Mean (SD) or n (%) Range
Bone lead concentrations
Patella lead (pg/g) 31.1 (19.5) —9-165
Tibia lead (pg/g) 21.6 (13.3) —-5-126
Candidate predictors
Blood lead (pg/dL) 5.0 (1.9) 0.7-27.9
Age (year) 67.1 (7.2) 48-94
Height (m) 1.7 (0.1) 1.5-2.0
Weight (kg) 83.6 (13.0) 52.7-128.5
Body mass index (kg/mz) 27.8 (3.7) 16.7-42.4
Waist circumference (cm) 98.2 (9.6) 70.1-129.7
Serum calcium (mg/dL) 9.6 (0.4) 8.3-11.3
Serum phosphorus (mg/dL) 3.1(0.5) 1.9-4.6
Total cholesterol (mg/dL) 228 (37) 145-438
High-density lipoprotein (mg/dL) 48 (13) 15-131
Triglyceride (mg/dL) 150 (79) 24-470
Hematocrit (%) 434 (3) 29-52
Alcohol consumption (gram/day) 13 (18) 0-104
Cumulative cigarette (pack-year) 22 (26) 0-136
Smoking status

Never 214 (30.8)

Former 418 (60.1)

Current 63 (9.1)
Education

High school dropout 71 (10.2)

High school of some college 425 (61.2)

College and above 199 (28.6)
Job type

White collar 367 (52.8)

Non-white collar 328 (47.2)
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All variables retained in the Boruta algorithm were included as
predictors in patella and tibia lead prediction models. Hereafter, we
refer to these models as “full models.” We also built prediction models
for patella and tibia lead based on a subset of seven predictors that are
selected in the Boruta algorithm and widely available in population-
based studies, including blood lead concentration, age, education, job
type, body mass index (BMI), smoking status, and cumulative cigarette
pack-years. We refer to these models as “reduced models."

2.4. Construction and validation of prediction models

We implemented Super Learner, an ensemble machine learning al-
gorithm seeking optimal prediction by calculating a weighted combi-
nation of predicted values from a collection of candidate algorithms
(Van der Laan et al., 2007), to build bone lead prediction models. In our
study, we utilized the following eight algorithms, including linear
regression, generalized additive model (Wood, 2017), ridge regression
(Hoerl and Kennard, 1970), least absolute shrinkage and selection
operator (LASSO) (Tibshirani, 1996), elastic-net (ENET) (Zou and Has-
tie, 2005), classification and regression tree (CART) (Loh, 2011),
random forest (Breiman, 2001), and XGBoost (Chen and Guestrin,
2016). R packages for implementation of each algorithm and corre-
sponding hyperparameters that we tuned are summarized in Table S1. A
Super Learner ensemble was then calculated as a weighted sum of pre-
dictions from these eight algorithms by

M

Wensembte (E) = Zm any,, (E)

where y,,(E) is the prediction from the m-th algoritm (m =1, 2, 3, ...,
M) and ay, is the corresponding weight. In our study, we log-transformed
blood lead concentration, and standardized each continuous variable
due to scaling requirements for some algorithms and coded categorical
variables as dummy variables. Bone lead concentrations were not log-
transformed because the distributions were not skewed, and worse
prediction performances were observed if log-transformed bone lead
concentrations were used to train the models.

We used nested cross-validation to find the optimal weighted Super
Learner predictions and evaluate their performance (Fig. 1). Nested
cross-validation is a method for optimizing model hyperparameters and
selecting models that seek to address the problem of overfitting the
training dataset (Cawley and Talbot, 2010). This procedure consists of
two cross-validation loops— outer and inner loops. Fifteen-fold cross--
validation was used for the outer loop, and ten-fold was for the inner
loop. The optimal weight a,, for each algorithm in the Super Learner was
estimated in the inner loop. Briefly, cross-validated predictions for each
algorithm were calculated in each validation set. A constrained regres-
sion was then fitted in which the observed bone lead was dependent and
predictions for different algorithms were independent variables, and an
optimal convex combination of regression coefficients was determined,
corresponding to an, for each algorithm such that each a, >0 and
Zi‘n”am = 1. This procedure of obtaining optimal weighted Super Learner
prediction by subdividing the data into distinct training and validation
sets was repeated 15 times (outer loop), and the performance of each
Super Learner prediction was assessed with an additional layer of
cross-validation (testing sets) that has not been used in the training
process. Cross-validated mean-squared errors (CV-MSE) for the Super
Learner and component algorithms predictions were calculated in each
testing set and then averaged over all 15 testing sets. We also calculated
the Pearson’s correlation coefficients and the Lin’s concordance corre-
lation coefficients (CCC) (Lin, 1989) to evaluate the agreement between
observed and predicted bone lead concentrations in the testing sets. The
R package “SuperLearner” (Van der Laan et al., 2007) was used to pre-
dict the bone lead concentrations in our study.
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695 participants in NAS with bone lead concentrations and
complete predictor information
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Application to external data

Examination of the association between predicted bone lead
concentrations and blood pressure in NHANES
N =18,796

Fig. 1. Flow chart of predicted bone lead concentration model development, validation, and application. Normative Aging Study (NAS); National Health and

Nutrition Examination Survey (NHANES).
2.5. Predicted bone lead concentrations and blood pressure in NHANES

To test the prediction models’ applicability in other studies where
bone lead concentrations were not measured, we evaluated the associ-
ations between predicted bone lead concentrations and blood pressure,
using data from NHANES, a representative sample of the civilian, non-
institutionalized U.S. population. The study sample consists of 18,796
adults aged 20 years and older from 8 continuous cycles (1999-2000 to
2013-2014) who had no missing information on predictors used in bone
lead prediction models and blood pressure. Linear regression models
were used to examine the associations between blood pressure (systolic
blood pressure, SBP, and diastolic blood pressure, DBP) and predicted
patella/tibia lead concentrations (from full model and reduced model)
while adjusting for age, gender, race/ethnicity, education, NHANES
survey cycles, smoking status, cumulative cigarette smoking (pack-
year), body mass index, and alcohol consumption. If participants re-
ported current use of anti-hypertensive medicines, a constant of 10
mmHg and 5 mmHg were added to their SBP and DBP, respectively,
according to an established method to correct for medication use (Tobin
et al., 2005). We also examined blood lead for comparison. Blood lead
was log-transformed because the association was close to log-linear.
Adjusted differences in SBP and DBP were computed for an inter-
quartile range (IQR) increase in each lead variable. We further stratified
associations between blood pressure and predicted bone lead by gender
and age (>50 vs. < 50 years) to assess the potential effect modifications
and generalizability of our prediction models, considering that they

were built in men majorly aged 50 years and older.

2.6. Sensitivity analyses

Several sensitivity analyses were conducted to test the robustness of
our findings. First, we log2-transformed predicted bone lead and blood
lead concentrations to better compare the effect size in relation to blood
pressure in NHANES. The effect size was interpreted as changes in blood
pressure of per doubling increase in each lead metal concentration.
Second, we additionally adjusted for the bone lead predictors, including
job type, weight, height, and waist circumference, in the associations of
blood pressure with blood lead and predicted bone lead concentrations.
Finally, to explore the impact of missing values on the associations be-
tween lead exposures and blood pressure, we conducted multiple im-
putations by chained equations (Azur et al., 2011) to impute missing
values. All analyses were conducted using R, version 4.0.5 (www.R-pr
oject.org) and the prediction models are available (https://github.
com/XinWangUmich/Bone-Lead-Prediction-Models).

3. Results
3.1. Prediction models
Distributions of bone lead concentrations and their candidate pre-

dictors in the NAS are shown in Table 1. The mean (range) age of 695
study participants was 67.1 (48-94) years. Most participants had a high
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school degree or higher (89.8%) and had either former or current
smoked (69.2%). The mean (standard deviation, SD) of lead concen-
tration was 31.1 (19.5) pg/g for patella lead, 21.6 (13.3) pg/g for tibia
lead, and 5.0 (1.9) pg/dL for blood lead.

Fig. 2 summarizes the results of predictor selection by the Boruta
algorithm that predictors showing higher mean importance z-score
(green boxes) than the highest shadow variable (blue box) are retained
as “important” predictors of bone lead concentrations. A total of 10
predictors were selected for patella lead, with the most important pre-
dictor of blood lead concentration, followed by age, education, weight,
BMI, job type, waist circumference, cumulative cigarette smoking (pack-
year), height, and smoking status. For the tibia lead, the same 10 pre-
dictors were selected. At the same time, two additional varia-
bles—serum phosphorus and serum hematocrit, were identified as
tentative predictors, which have a higher but not statistically significant
mean importance Z-score than the maximum value of the shadow var-
iables. We only kept serum phosphorus because it had a higher median
importance Z-score than that of the highest shadow variable. Thus, 11
predictors were selected for tibia lead, with the most important pre-
dictors being age, followed by blood lead concentration.

Fig. S1 shows the performance of Super Learner prediction, together
with its 8 component algorithms, for the patella lead prediction,
assessed by the CV-MSEs averaged across 15 testing sets. The Super
Learner predictions outperformed all individual component algorithms
in both full and reduced models, with CV-MSE (standard error, SE) of
253.1 (27.0) for the full model and 253.0 (26.6) for the reduced model,
slightly better than the best performed individual algorithms-random
forest, with CV-MSE (standard error, SE) of 255.8 (27.1) for the full
model and 253.6 (26.7) for the reduced model. Similarly, the Super
Learner showed the best performance in tibia lead concentration pre-
diction compared to any component algorithms (Fig. S2). For the indi-
vidual algorithms predicting tibia lead, the generalized additive model
had the highest individual performance in the full model, while the
random forest was the best in the reduced model.

The full model and reduced model for patella lead predictions show
similar agreement measures (Fig. 3). The Pearson’s correlation co-
efficients between observed and predicted patella lead was 0.580 for
both the full and reduced model. The CCC was 0.482 for the full model

A. Predictors of Patella Lead
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and 0.476 for the reduced model. Similar performance in terms of
agreement measures between the full and reduced models was also
observed for tibia lead predictions (Fig. S3). The Pearson’s correlation
coefficient was 0.519, and CCC was 0.416 for the full model. For the
reduced model, Pearson’s correlation coefficient was 0.518, and CCC
was 0.416.

3.2. Application to NHANES

The distributions of bone lead predictors in the NHANES were
summarized in Table S2. The study sample consists of 18,796 partici-
pants (10,060 mens and 8736 womens) with a mean (range) age of 42.5
(20-85 and above) years. The mean (SD) of blood lead concentration
was 1.7 (1.8) pg/dL. Predicted bone lead concentrations were shown in
Table S3. Mean (SD) of predicted patella lead concentration was 32.0
(12.6) pg/g for the full model and 31.9 (11.9) pg/g for the reduced
model. Mean (SD) of predicted tibia lead concentration was 21.9 (8.3)
pg/g for the full model and 21.9 (8.4) pg/g for the reduced model.
Participants aged 50 years and older had higher predicted patella and
tibia lead concentrations than those younger than 50 years.

Positive associations of SBP with blood and predicted bone lead
concentrations were observed (Table 2). After adjusting for age, gender,
race/ethnicity, education, NHANES survey cycles, smoking status, cu-
mulative cigarette smoking, BMI, and alcohol consumption, an IQR in-
crease in bone lead concentrations was associated with 1.45 (95% CI:
0.96, 1.93) mmHg higher SBP for predicted patella lead from the full
model, 1.98 (95% CI: 1.16, 2.80) mmHg for predicted patella lead from
the reduced model, 2.09 (95% CI: 1.55, 2.63) mmHg for predicted tibia
lead from the full model, and 2.21 (95% CI: 1.69, 2.74) mmHg for
predicted tibia lead from the reduced model. By comparison, an IQR
increase in log-transformed blood lead concentration was associated
with 0.91 (95% CI: 0.57, 1.25) mmHg higher SBP. Stronger positive
associations between predicted bone lead concentrations and SBP were
observed in women except for predicted patella lead from the full model.
Participants aged 50 years and older showed stronger associations be-
tween predicted bone lead and SBP than those aged 50 years and
younger.

Similar to SBP, positive associations were found between lead

B. Predictors of Tibia Lead
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Fig. 2. Predictor importance for A) patella lead, and B) tibia lead in the Boruta algorithm. Ten variables (green) were identified as important predictors for patella
lead, including blood lead concentration, age, education, weight, body mass index, job type, waist circumference, cumulative cigarette smoking (pack-year), height,
and smoking status. Serum phosphorus was additionally identified as an important predictor for tibia lead. A predictor was considered important if it had a
significantly higher mean importance Z-score than the maximum value of the shadow variables (blue). Otherwise, a predictor (red) was excluded if it had a
significantly lower mean importance Z-score than the maximum value of the shadow variables. Two tentative variables (yellow), which has higher but not statis-
tically significant mean importance Z-score than the maximum value of the shadow variables, were identified as tentative predictors for tibia lead. We only kept
serum phosphorus because it had a higher median importance Z-score than the shadow variable.
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A.Full model B.Reduced model

3

Predicted patella lead concentrations

Predicted patella lead concentrations

2. r=0.580, CCC=0.482 z 1=0.580, CCC=0.476

= Observed.‘;alella lead concentrations ° N * ObservEdApnaleHa lead concentrations ? ?
Fig. 3. Validation of the patella lead prediction A. full model and B. reduced model in outer cross-validated testing sets. The solid lines drawn on the plots showed
indicate the regression line from the simple linear regression. The dashed lines indicate the equiangular observed—-predicted line. R: the Pearson correlation coef-
ficient; CCC: the Concordance Correlation Coefficient. Full model included blood lead concentration (log-transformed), age, education, job type, weight, height, body
mass index, waist circumference, smoking status, and cumulative cigarette smoking (pack-year). Reduced model included blood lead concentration (log-trans-
formed), age, education, job type, body mass index, smoking status, and cumulative cigarette smoking (pack-year).

Table 2
Adjusted differences (95% confidence intervals) in systolic blood pressure (mmHg) associated with an interquartile range increase (IQR) in lead concentrations in the
National Health and Nutrition Examination Survey (NHANES).

Log blood lead Predicted patella lead Predicted tibia lead
Full model Reduced model Full model Reduced model

All participants® 0.91 (0.57, 1.25) 1.45 (0.96, 1.93) 1.98 (1.16, 2.80) 2.09 (1.55, 2.63) 2.21 (1.69, 2.74)
By gender”

Men 0.74 (0.31, 1.19) 1.74 (1.15, 2.34) 1.86 (1.21, 2.51) 2.27 (1.63, 2.91) 2.35 (1.70, 2.99)

Women 0.46 (—0.07, 0.99) 1.44 (0.60, 2.29) 2.21 (1.31, 3.11) 2.51 (1.52, 3.51) 2.54 (1.63, 3.45)
By age

>50 years 1.52 (0.72, 2.37) 2.15 (1.28, 3.03) 2.32 (1.36, 3.27) 2.53 (1.57, 3.50) 2.37 (1.45, 3.28)

<50 years 0.44 (0.09, 0.78) 0.60 (—0.01, 1.21) 1.18 (0.51, 1.85) 1.38 (0.71, 2.05) 1.62 (0.93, 2.31)

Note: Interquartile range (IQR) for bone lead is 16.2 pg/g for predicted patella lead from the full model, 16.0 pg/g for predicted patella lead from the reduced model,
10.9 pg/g for predicted tibia lead from the full model, and 10.8 pg/g for predicted tibia lead from the reduced model. Interquartile range for log-transformed blood lead
is 0.89.

2 Models for all participants were adjusted for age, gender, race/ethnicity, education, NHANES survey cycles, smoking status, cumulative cigarette smoking (pack-
year), body mass index, and alcohol consumption.

b Stratified models by gender have the same covariates included in the model for all participants except gender.

concentrations and DBP, where effects of predicted bone lead were 4. Discussion
stronger than blood lead (Table S4). In stratified analysis by gender,
stronger positive associations between predicted bone lead and DBP To allow for the testing of cumulative lead exposure with health
were found in women. In stratified analysis by age, positive associations effects in studies where direct bone lead measurements are not possible,
between predicted bone lead and DBP were observed in participants this study derived prediction models for the bone lead concentration—
aged 50 years and older. By contrast, significant associations were only the biomarker for cumulative lead exposure, using the Super Learner’s
observed with predicted patella and tibia lead from reduced models in ensemble machine learning algorithm. The reduced model, which
those younger than 50 years. included blood lead concentration, age, education, job type, BMI,
smoking status, and cumulative cigarette pack-years as predictors,
3.3. Sensitivity analyses showed reasonable performance in the validation datasets as demon-
strated by the goodness of fit of models and agreement between pre-
In sensitivity analyses, stronger positive associations between pre- dicted and measured bone lead concentrations. When we compared this
dicted bone lead concentrations and blood pressure were observed than reduced model to the full model incorporating more predictors, we
blood lead in models where all lead concentrations were log2- found no differences in prediction performance. We further applied the
transformed (Table S5 and Table S6). Additional adjustments for job prediction models to the NHANES and found that predicted bone lead
type, weight, height, and waist circumference (Table S7 and Table S8) concentrations were associated with higher blood pressure, whereas
and pooled analysis of imputed datasets (Table S9 and Table S10) did blood lead concentrations were not, which agrees with previous findings
not alter the associations. in the NAS that bone lead but not blood lead was associated with

elevated blood pressure (Cheng et al., 2001).
To our knowledge, this study was the first to derive the bone lead
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prediction models based on blood lead and a few predictors that are
available in most population-based studies using the flexible machine
learning approach—Super Learner. More than 12 years ago, Park et al.
(2009) constructed the prediction models for a similar purpose using the
NAS data. However, the bone lead prediction models derived previously
were based on linear regression, and assumptions underlying this
parametric approach may be violated, as the relationship between bone
lead concentrations and their determinants may be highly complex and
hence unlikely to be accurately captured by a linear equation. The Super
Learner algorithm we used here embraced the possible complex re-
lationships and has been shown to achieve the prediction performance
as good as optimum (but unknown) algorithm in the different scenarios
by stacking predictions from a wide range of modeling algorithms (Van
der Laan et al., 2007). In addition, the previous prediction model with
the highest performance included health outcomes as predictors (for
example, blood pressure), precluding the testing of predicted lead
exposure with those health outcomes. Our Super Learner based bone
lead prediction model did not use these variables as predictors, which
allows for more expanded possible future research directions. The
overall prediction performances of our models are not very high, indi-
cating a moderate signal to noise ratio in the dataset. However,
improvement in the performance of both patella and tibia lead pre-
dictions with our Super Learner based bone lead prediction model (r =
0.58 for patella lead and r = 0.52 for tibia lead) was achieved compared
the performance of the previously constructed linear regression (r =
0.50 for patella lead and r = 0.43 for tibia lead) in the same NAS dataset
(Park et al., 2009). We used Super Learner to build the prediction models
as other studies will have a different setting and strength of the signal,
but Super Learner will pick out the best predictions data adaptively.
Future studies may be able to achieve further advances in the prediction
performances.

Blood lead and age were the two most important predictors of bone
lead concentration in the Boruta predictor selection (Fig. 2). When
exposed to lead in the environment, blood and other soft tissues
comprise the first receptacle of absorbed lead. Over weeks, lead in these
compartments continues to circulate, with some being excreted via urine
(and, to some extent bile), but about 10% accumulating into various
skeletal locations for decades throughout mineral deposition. From
there, lead can then be mobilized over ensuing years through bone
resorption and remodeling (Tsaih et al., 2001). In the aging population
with elevated bone resorption, blood lead can capture recent external
exposure as well as endogenous exposure of the released lead from bone
into the circulation (Wang et al., 2019). The high predictor importance
of blood lead and age was supported by the strong positive associations
of blood lead and age with bone lead concentrations in other cohorts
where both blood and bone lead data were available (Korrick et al.,
2002; Kosnett et al., 1994). To note, blood lead showed the highest
importance for patella lead, while age was identified as the most
important predictor for tibia lead in our analysis. This could be
explained by different bone compositions, i.e., patella lead is mainly
made up of trabecular bone which resorbs more rapidly than the cortical
bone in the tibia (Hu et al., 2007). Thus, a closer relationship between
blood lead and patella lead is expected, given patella lead’s role as a
marker of the internal mobilizable lead reserves. By contrast, the strong
association between age and tibia lead suggests tibia lead’s role as an
indicator of lifetime cumulative lead exposure as well as a potential
marker of the birth cohort effect associated with an age cohort that had
much higher exposure as young adults than the young adults of today.

Our analysis detected positive associations between predicted bone
lead concentrations and blood pressure in the NHANES datasets, adding
to the literature that cumulative lead exposure contributes to elevated
blood pressure in the U.S. general population (Navas-Acien et al., 2008).
The larger magnitudes of the association for the predicted bone lead
than that of blood lead highlight the practical value of our prediction
models, in particular, in the examination of associations between cu-
mulative lead exposure and health outcomes. Notably, predicted patella
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lead concentrations from the reduced model were more strongly asso-
ciated with blood pressure than the patella lead predicted from the full
model. It should be pointed out that more highly correlated predictors
(weight, height, BMI, and waist circumference) were included in the full
patella prediction model because the Boruta tended to select all-relevant
predictors rather than a minimal subset (Kursa and Rudnicki, 2010), and
this could lead to greater prediction error due to the potential over-
fitting. When predicted bone lead is treated as exposure in the associa-
tions with health outcomes, the prediction error in the bone lead can be
recast as measurement error in the exposure, resulting in downward bias
(i.e., towards null) in the estimates of the effect coefficient of the bone
lead. Another possible explanation could be that weight, height, BMI,
and waist circumference are risk factors for high blood pressure, and
they could also be affected by lead exposure (Wang et al., 2018). Thus,
the downward bias in the bone lead effect estimates could happen.

In the stratified analysis, much larger effect estimates of predicted
bone lead were observed in participants aged 50 years and older. This
could be explained by the fact that older people are more susceptible to
risk factors of elevated blood pressure (Setters and Holmes, 2017) and
also that age was one of the most important predictors in our bone lead
prediction models and participants aged 50 years and older showed
higher concentrations of predicted bone lead than those younger than
50. Stronger associations between predicted bone lead and blood pres-
sure were also observed in women compared to men. Gender is another
potentially important predictor of bone lead concentrations given the
accelerated bone resorption rate in postmenopausal women, leading to
increased lead mobilization from bone into the circulation (Korrick
et al., 2002). However, gender was not included in our prediction
models due to the design of NAS of a cohort of men. Thus, the associa-
tions between bone lead and blood pressure in women could still be
underestimated. Possible biological mechanisms underlying the associ-
ations between lead exposure and blood pressure include oxidative
stress, inflammation, renin-angiotensin system dysfunction, and
impaired autonomic nervous system function (Navas-Acien et al., 2007).

Our prediction models did not account for all potential determinants
of bone lead concentrations (Table 1). Blood lead, sociodemographic
factors, lifestyle factors, and BMI showed the highest predictor impor-
tance in the Boruta algorithm, suggesting that sociodemographic and
lifestyle factors and BMI provides more information about cumulative
lead exposure than other blood biomarkers when blood lead concen-
tration is available. Furthermore, the reduced model with only seven
predictors showed similar goodness-of-fit as the full model and mini-
mized the risk of potential overfitting, as discussed previously. This way,
we developed the most parsimonious, rather than complete, model for
bone lead concentration prediction, leveraging the most critical factors
required to estimate the cumulative lead exposure, which boosts the
applicability of our model in epidemiologic studies where extensive
blood biomarkers and clinical phenotypes are not available.

The main strength of our study is the application of the Super
Learner, for the first time, to model the bone lead concentration in a
flexible way. Hyperparameters for the machine learning algorithms
embedded in the Super Learner were also tuned for better prediction
performance (Wong et al., 2019). Nevertheless, this study has several
limitations. First, our prediction models were derived from a cohort of
middle-aged-to-elderly White men. The bone lead concentrations in
other populations, such as women, non-White race groups, or different
age groups, may not be accurately predicted. Our models should also be
used cautiously to predict bone lead concentrations in populations with
higher bone turnover rates, for example, pregnant women or post-
menopausal women. Separate models trained in women and younger
populations with different sets of predictors will give a more accurate
estimate of bone lead concentrations and less biased associations with
health outcomes in the corresponding subpopulations in the future.
Additionally, due to data unavailability, other determinants of lead ex-
posures, such as family income (Mahaffey et al., 1982), degree of ur-
banization of the place of residence (Mahaffey et al., 1982), and
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environmental and dietary sources (Gump et al., 2020; Hanna-Attisha
et al., 2016), were not included in the building of prediction models.
Inclusion of such predictors could potentially improve the model pre-
diction performance. Finally, when training the models for predicting
bone lead concentrations in other settings or other chemical exposures,
it should be noted that hyperparameters and performances of machine
learning algorithms may vary due to differences in sample size, number
and types of variables, and the relationships between predictors and
outcomes.

5. Conclusions

In summary, this study provides the prediction models for bone lead
concentration, a marker of cumulative lead exposure, based on blood
lead concentration and other standard predictors including age, edu-
cation, job type, BMI, smoking status, and cumulative cigarette pack-
years using the Super Learner algorithm in the NAS. The positive asso-
ciations between predicted bone lead concentration and blood pressure
in the NHANES suggest the practical value of the prediction models in
evaluating the health effects of cumulative lead exposure in studies
where bone lead measurements are not available. Future studies are
needed to train the model in different populations, for example, women,
non-white racial groups, and younger populations, to further increase
the prediction accuracy.
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