
Supporting Information – Distance-Dependent RI Sensitivity 

  The goal of the fit regime described herein is to provide an analytical approximation 

that provides the distance-dependent RI sensitivity S(r) for a nanorod of arbitrary 

dimensions.  This is accomplished by fitting experimental S(r) data, identifying the 

geometric dependence of the fits, and generating expressions to reproduce a theoretical 

S(r) for a nanorod of arbitrary geometry.   

First, a fit is applied to the experimentally determined response curves, λ* versus 

adsorbed polyelectrolyte thickness.  To determine the form that this equation should take, 

we examine the underlying physical process.  Since light energy is driving the detection 

system, it is reasonable to assume that the proper weighting factor for the distance-

dependent response is proportional to the light intensity at that point
1
.  The light intensity 

is the electric field strength squared, and for planar SPR, it has been shown that the field 

decays with distance r from the surface.  Thus, the distance-dependent response can be 

modeled to follow the form exp( 2 / )
d

r l− ⋅ where ld is some characteristic decay length
2
.  

The overall sensor response can then be calculated as the depth integral of the local RI 

weighted by the electric field intensity.  For a system composed of a single adlayer in the 

surrounding medium, the response can be written as
1
:  

Eq. S1   0( ) ( )[1 exp( 2 / )]
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where na and ns are the refractive indices of adlayer and solvent respectively, S0 is the 

bulk RI sensitivity, and ld is the decay length characteristic of a particular SPR geometry.  

This equation has also been shown to be reliably extended to modeling LSPR response of 

individual nanoparticles
3, 4

. 



In order to provide an analytic form of equation S1 in terms of nanoparticle geometry, 

the overall bulk RI sensitivity S0 must first be determined in regard to nanoparticle length 

and diameter.  The value of S0 is in units of nm/RIU and it is a measure of how much λ* 

will shift (in nm) upon a given RI increase of the entire medium surrounding the nanorod. 

S0 can be approximated by taking advantage of the linear correlation in visible 

wavelength range between S0 and λ* for nanoparticles of similar composition described 

by Miller et al
5
.  For single-component nanoparticles, the bulk sensitivity S0 is given by: 
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where n is the RI of the ambient environment, λ0 is the LSPR peak in vacuum, and m is 

the slope of is a linear fit to the real part of the metal’s dielectric function (ε’≈ mλ0+ε0).  

This function describes nanoparticle sensitivity behavior for particles that are in a 

surrounding medium of homogenous RI.  Recently Miller et al. have shown that the 

correlation can be extended to accommodate particles in intimate contact with a substrate 

by introducing a scaling factor by replacing n with βn giving: 
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where β depends on the nanoparticle geometry and substrate RI.  For nanorods on glass, 

they have shown that βn = 1.75 provides excellent agreement with experimental results.  

Using λ0 determined from the simulated scattering spectra, the bulk sensitivity S0 can 

approximated for a nanorod of arbitrary dimensions.  For example, utilizing Equation S3 

with βn = 1.75 predicts a bulk RI sensitivity of 268.7 nm/RIU for 74.1 x 33.2 nm (length 



x diameter) nanorods on glass with λ
*
 of 720 nm, which is in good agreement with the 

experimentally determined bulk RI sensitivity of 261.7 nm/RIU
6
. 

Now S0 has been determined as a function of nanorod geometry and na and ns are 

known, only the decay length ld is yet to be determined to produce an analytical 

expression for R(r).  Mathematically, this decay length determines the rate at which the 

response curve approaches its asymptote.  Physically, this represents the confinement of 

sensitivity to the nanorod surface.  So for lower values of ld, the response curve 

approaches its asymptote more quickly, simulating nanorods where the sensing volume is 

confined closer to the surface.  Because ld is a function describing electric field 

enhancement, we assume its dependence on nanorod geometry is of the same form as the 

shape parameter, e, employed in the Gans
7
 extension of Mie theory

8
 describing the 

scattering cross section of elliptical gold nanoparticles. 
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To determine the correlation between ld and e, Eq. S3 was fit to the experimental 

response curves of twelve experiments, two each for six different nanorod geometries. 

Plotting ld versus e for the range of nanorods used, a linear correlation is observed.  A 

linear fit to this plot yields equation 15 with an R-squared value of 0.941.  Residuals from 

the linear fitting exhibit no clear shape. 
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This expression provides an approximation for describing ld in units of nm based on the 

geometry of the nanorod. Now that the response curve R can be determined for arbitrary 

nanorod geometries, the distance-dependent sensitivity S(r) and the total sensing volume 

VS are defined.   As discussed above, the response is proportional to the square of the 

decaying electric field strength.  Thus, it will be of the form: 

Eq. S6   ( ) exp( 2 / )
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The normalization constant A is chosen to normalize S(r) such that its average value 

over the detection range is equal to the bulk sensitivity, S0.  This normalization is solved 

when A = 3S0, which is then substituted into equation S6 yielding the following. 
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The sensing volume VS is defined as the volume of a cylinder with hemispherical 

endcaps circumscribed by extending a distance rs from the nanorod, where rs is the 

distance at which S(r) drops to 5% of its maximum value.  This distance occurs at 1.5 

decay lengths.  For nanorods on a substrate, the volume occupied by substrate within the 

circumscribed cylinder is subtracted to yield the effective VS.  
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