Online Methods

Strains and media

All strains used in this study (Supplementary Table 4) were derived from *Escherichia coli* MG165513. LB contained 0.1% Bacto Tryptone, 0.05% yeast extract, and 0.05% NaCl. Asparagine media contained M9 salts14 supplemented with 2 g/L L-asparagine (Sigma), 2 mM MgSO\textsubscript{4}, 0.1 mM CaCl\textsubscript{2}, 10 μM thiamine, and micronutrients15. Sodium chloride and FeSO\textsubscript{4} were omitted from M9 salts and micronutrients, respectively. Glucose media was the same except that glucose (2 g/L) replaced asparagine. Media were supplemented with kanamycin (25 μg/mL) or chloramphenicol (20 or 25 μg/mL) as needed.

Construction of the CmlR strain

In order to insert a GFP and CmlR cassette simultaneously into the lacZ locus of strain MG1655, we first amplified a GFP reporter gene from pCMW516 and a CmlR cassette from pKD317. Then, we used a crossover PCR to link these two products and place them into the genome using the method of Datsenko and Wanner18. The primers used for the construction of this strain are provided (Supplementary Table 5). The GFP gene was not specifically used in this work.

Experimental evolution of strain ASN*

To start the experimental evolution, \(\sim 1 \times 10^9\) washed, LB-grown, mid-exponential phase MG1655 \(\Delta lacZ\)5 cells were added to 50 ml asparaginase media. Using serial transfers that kept the population size above \(\sim 1 \times 10^7\), the culture was maintained for 39 days in early to mid exponential phase. During that time, the bulk population went through 90 generations. We shook the culture at 250 rpm at 37 °C.

Construction of strains to analyze the ASN* mutations
Using the method of Datsenko and Wanner18, we placed antibiotic markers (kanamycin or chloramphenicol) next to each mutation location in both the ASN* and parental strains. Each marker replaced about 20 bases. For \textit{sstT} and \textit{lrp}, we placed the markers upstream of the genes with the promoter of the antibiotic resistance cassette pointing in the direction opposite of the genes in order to minimize polar effects. For \textit{ansA}, we placed the marker downstream of the \textit{ansA-pncA} operon.

To assemble the desired allele combinations, we first transduced the kanamycin-marked \textit{ansA} alleles into the parental strain. Then, we removed the kanamycin markers using a FLP recombinase system18. Next, we transduced the \textit{sstT} alleles using chloramphenicol markers. And finally, we transduced the \textit{lrp} alleles using kanamycin markers. In addition to the desired alleles, the final strains all had kanamycin and chloramphenicol markers and a scar from the original \textit{ansA} kanamycin marker. For comparison, the same markers and scar were put into the ASN* mutant. Sequencing confirmed that all strains had the desired alleles. We used P1\textit{vir} phage for all transductions4.

Sequences of primers used in strain construction and testing are in Supplementary Table 5.

\textbf{P1\textit{vir} lysate preparation}

We prepared P1\textit{vir} lysate as described previously4. In brief, we diluted (1:100) an overnight culture of the Tn5 kanamycin resistant library5, which is in the parental background, into 250 ml of LB with 5 mM CaCl\textsubscript{2} and 0.2% glucose. After growing the culture with aeration at 37°C for 30 minutes, we added 2.5 ml of P1\textit{vir} phage lysate (from MG1655) to the culture. We then continued incubation at 37°C with aeration until the culture cleared. Next, we centrifuged the remains of the culture at 5525 g for 10 minutes to pellet the cell debris. In the end, we filtered the lysate through a 0.2 μm filter and stored it at 4°C.

\textbf{Construction of a secondary library in the “evolved” background}
We used a modified version of a previously published P1\textit{vir} transduction protocol4. We pelleted cells from 25 ml of overnight, stationary phase culture of the evolved strain by centrifugation (5525 \(\times \)g, 15 min) and re-suspended them in 10 mL of LB with 5 mM CaCl\textsubscript{2} and 10 mM Mg SO\textsubscript{4}. Then, in each of 24 microfuge tubes, we mixed 400 \(\mu \)l cells with 200 \(\mu \)l phage lysate from the parental strain library. We incubated the mixtures at 30\textdegree C for 30 minutes without shaking. Then, we combined the reactions into two batches (12 reactions each) and added 12 ml of LB plus 10 mM sodium citrate to each batch. Then, we incubated the mixtures at 37\textdegree C for 30 min without shaking and then pelleted the cells by centrifugation (15 min, 5525 \(\times \)g). We combined the pellets and resuspended them in 4 ml 1 M sodium citrate. To estimate the yield, we plated 1 \(\mu \)l of culture on an LB kanamycin plate. We then added the remaining culture to 250 ml LB plus kanamycin and shook it at 37 \textdegree C for 10 h (until the culture reached mid-stationary phase). Finally, we pelleted the cells by centrifugation (15 min, 5525 \(\times \)g), resuspended them in 15-20 mL LB with 15% glycerol, and snap froze them with dry ice and ethanol.

Growth of secondary library under selective and non-selective conditions

In each experiment, we grew portions of the secondary P1\textit{vir}-transduced transposon library in the presence and absence of selection. Selective and non-selective growth spanned the same number of generations.

Finding the distributions of markers across the genome (genetic footprinting)

We subjected samples of \(\sim \)107 cells from both the population grown in selective conditions and the population grown in nonselective conditions to hybridization-based genetic footprinting to amplify the DNA adjacent to the transposons5. Samples from the selective and non-selective conditions were differentially labeled and hybridized to \textit{E. coli} ORF arrays5. A gene’s signal in each array channel
represented the frequency of mutants from the corresponding growth conditions that had transposon insertions in or near the gene.

We converted the hybridization signals from the selective growth and non-selective growth samples to depletion scores:

$$\text{Score}(g) = \frac{\text{hybridization signal of } \text{ g' from nonselective growth}}{\text{hybridization signal of } \text{ g' from selective growth}},$$

where ‘g’ is an arbitrary gene.

Thus, loci that experienced more depletion from the selected population had higher scores. Depletion scores for all experiments in this work as well as all computational tools are available online at http://tavazoielab.princeton.edu/ADAM/ (also Supplementary Software 1).

Mutual-information based identification of adaptive loci

As ADAM spreads the signal from each adaptive mutation over multiple adjacent genes, neighborhoods of high depletion scores correspond to adaptive mutations. Direct examination of the depletion scores as a function of genome location (Supplementary Fig. 3a) typically indicated the regions in which functional mutations resided. Smoothing the data by taking a simple moving average, which emphasized regions of high depletion scores, typically allowed us to identify all of the true positives in a data set (Supplementary Fig. 3b). While easy and surprisingly effective, such techniques do not constitute a systematic approach for identifying the relevant genomic regions and suffer from a higher false positive rate than the computational method described below.

The core problem is the need to distinguish between the fitness effects of transposon disruptions and the linkage-based effects of adaptive mutations. The key difference between these two phenomena
lies not in the intensity of the scores but rather the number of consecutive genes that show high
depletion scores. For example, in our CmlR experiment, lacI had a depletion score comparable to that
of rfaQ (2.23 vs 2.20); however, we identified lacZ as the site of mutation because in addition to lacI,
a whole stretch of genes from prpR to yaiP showed depletion scores greater than 1.2 (see Fig. 2a in
the main text). To capture these regions, we quantized the vector containing the depletion scores for
all the genes into 4 bins: (i) the top 1% genes, (ii) the top 2-5% genes, (iii) the top 6-10% and (iv) the
rest of the genes.

Then, we tiled the genome with spatial vectors of length 25 (see Supplementary Fig. 4). A spatial
vector is a binary vector of length N (i.e., the total number of genes) in which 25 consecutive genes
are set to ‘1’ and all the rest are ‘0’. Each spatial profile overlaps with 24 of the genes in its
neighboring vectors. The spatial profiles tile the whole genome.

Finally, we asked the question: which spatial profiles contain genes with higher depletion scores than
expected by chance To answer this question, we used the notion of mutual information19,20 to measure
how informative a given spatial profile was about the depletion score categories:

\[
MI(\text{spatial profile};\text{depletion score categories}) = \sum_{i=1}^{2} \sum_{j=1}^{4} P(i,j) \log \frac{P(i,j)}{P(i)P(j)}
\]

where \(P(i,j)\) is the fraction of genes whose spatial profile values are in the \(i^{th}\) state and whose
depletion scores are in the \(j^{th}\) category, \(P(i) = \sum_j P(i,j)\), and \(P(j) = \sum_i P(i,j)\).20 We tested the statistical
significance of each spatial profile by comparing its \(MI\) (mutual information) value to those from
10,000 random shuffles of the depletion scores. We accepted as significant those spatial profiles
whose \(MI\) values were higher than all of the randomly generated values.
Because the spatial profiles largely overlapped (Supplementary Fig. 4), we retained only the most informative profile from each region. To accomplish this, we considered the candidate spatial profiles in order of decreasing MI and used conditional information to remove profiles that did not satisfy the following with respect to each of the previously accepted spatial profiles:

$$\frac{MI \text{ (spatial profile; depletion scores | an accepted spatial profile)}}{MI \text{ (spatial profile; an accepted spatial profile)}} > 5.0$$

This equation compares the additional information provided by a new spatial profile, given an already accepted spatial profile, to the mutual information between the two spatial profiles and requires the ratio to be more than a certain threshold (5 in this case). Comparing the spatial profile being tested against each previously accepted spatial profile determines whether the candidate profile adds significant and independent information. In other words, we ensured that a spatial profile was both informative of the depletion score categories and also had little dependency with the previously accepted profiles\(^2\). The mutation sites had a high likelihood of residing close to the center of these significant regions near the maximal depletion scores. The tools for performing these analyses are available online at http://tavazoielab.princeton.edu/ADAM/.

Data presentation: Smoothing and filtering

Growth of the library under selective conditions caused some genomic regions to become effectively depleted of markers resulting in very low signals. Due to this lower bound on the hybridization signal, the depletion scores were sensitive to the original frequency of insertion events. The frequency of insertion events was more or less uniform across the genome; however, certain regions were “hotspots” or “cold spots” (Supplementary Fig. 5). For example, assume that growth of the library under selective conditions eliminates all markers near two genes and the array signal from the selected channel for both is the background value of say, 0.1. Further assume that the unselected
conditions did not alter the initial insertion frequency for the genes. If that initial insertion frequency for both genes was similar and gave a signal of 1, then the depletion score for both would be 10. If, however, one gene were in an insertion “hot-spot” with a signal of 10, then the depletion score would be 100. While the quantization method used to determine functional mutation locations is robust against such noise, the effects of the initial transposon insertion frequency distorted the plots of the depletion signal. In order to emphasize the effects of the selective conditions and deemphasize the effects of the initial transposon insertion frequency, when plotting the results, we filtered out the ~800 genes whose variance normalized hybridization signal (mean divided by standard deviation) in the unselected transposon library\(^5\) was more than one standard deviation away from the genome-wide average.

After filtering, we smoothed each gene’s score by taking a Gaussian-weighted average across the 15 neighboring genes on either side (Supplementary Fig. 6). This resulted in a smooth, bell-shaped signal around the site of each mutation, which was ideal both for presentation and for choosing candidate genes to search for the precise mutations. Note that these data manipulations did not affect the identification phase.
References

AOP

This array-based discovery tool creates linkage between functional mutations and selectable markers across a bacterial genome and can thus distinguish between adaptive and neutral mutations.

Issue

This array-based discovery tool creates linkage between functional mutations and selectable markers across a bacterial genome and can thus distinguish between adaptive and neutral mutations.