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Online Methods

Strains and media

All strains used in this study (Supplementary Table 4) were derived from Escherichia coli

MG165513. LB contained 0.1% Bacto Tryptone, 0.05% yeast extract, and 0.05% NaCl. Asparagine 

media contained M9 salts14 supplemented with 2 g/L L-asparagine (Sigma), 2 mM MgSO4, 0.1 mM 

CaCl2, 10 μM thiamine, and micronutrients15. Sodium chloride and FeSO4 were omitted from M9 

salts and micronutrients, respectively. Glucose media was the same except that glucose (2 g/L) 

replaced asparagine. Media were supplemented with kanamycin (25 g/mL) or chloramphenicol (20 

or 25 g/mL) as needed.

Construction of the CmlR strain

In order to insert a GFP and CmlR cassette simultaneously into the lacZ locus of strain MG1655, we 

first amplified a GFP reporter gene from pCMW516 and a CmlR cassette from pKD317. Then, we used 

a crossover PCR to link these two products and place them into the genome using the method of 

Datsenko and Wanner18. The primers used for the construction of this strain are provided 

(Supplementary Table 5). The GFP gene was not specifically used in this work. 

Experimental evolution of strain ASN*

To start the experimental evolution, ~1×109 washed, LB-grown, mid-exponential phase MG1655 

∆lacZ5 cells were added to 50 ml asparagine media. Using serial transfers that kept the population 

size above ~1×107, the culture was maintained for 39 days in early to mid exponential phase. During 

that time, the bulk population went through 90 generations. We shook the culture at 250 rpm at 37 °C.

Construction of strains to analyze the ASN* mutations
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Using the method of Datsenko and Wanner18, we placed antibiotic markers (kanamycin or 

chloramphenicol) next to each mutation location in both the ASN* and parental strains. Each marker 

replaced about 20 bases. For sstT and lrp, we placed the markers upstream of the genes with the 

promoter of the antibiotic resistance cassette pointing in the direction opposite of the genes in order to 

minimize polar effects. For ansA, we placed the marker downstream of the ansA-pncA operon.  

To assemble the desired allele combinations, we first transduced the kanamycin-marked ansA alleles 

into the parental strain. Then, we removed the kanamycin markers using a FLP recombinase system18. 

Next, we transduced the sstT alleles using chloramphenicol markers. And finally, we transduced the 

lrp alleles using kanamycin markers. In addition to the desired alleles, the final strains all had 

kanamycin and chloramphenicol markers and a scar from the original ansA kanamycin marker. For 

comparison, the same markers and scar were put into the ASN* mutant. Sequencing confirmed that 

all strains had the desired alleles. We used P1vir phage for all transductions4. 

Sequences of primers used in strain construction and testing are in Supplementary Table 5.

P1vir lysate preparation 

We prepared P1vir lysate as described previously4. In brief, we diluted (1:100) an overnight culture of 

the Tn5 kanamycin resistant library5, which is in the parental background, into 250 ml of LB with 5 

mM CaCl2 and 0.2% glucose. After growing the culture with aeration at 37C for 30 minutes, we 

added 2.5 ml of P1vir phage lysate (from MG1655) to the culture. We then continued incubation at 

37˚C with aeration until the culture cleared. Next, we centrifuged the remains of the culture at 5525 g 

for 10 minutes to pellet the cell debris. In the end, we filtered the lysate through a 0.2 μm filter and 

stored it at 4C.

Construction of a secondary library in the “evolved” background
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We used a modified version of a previously published P1vir transduction protocol4. We pelleted cells 

from 25 ml of overnight, stationary phase culture of the evolved strain by centrifugation (5525 g, 15 

min) and re-suspended them in 10 mL of LB with 5 mM CaCl2 and 10 mM Mg SO4. Then, in each of 

24 microfuge tubes, we mixed 400 l cells with 200 l phage lysate from the parental strain library. 

We incubated the mixtures at 30ºC for 30 minutes without shaking. Then, we combined the reactions 

into two batches (12 reactions each) and added 12 ml of LB plus 10 mM sodium citrate to each batch. 

Then, we incubated the mixtures at 37ºC for 30 min without shaking and then pelleted the cells by 

centrifugation (15 min, 5525 g). We combined the pellets and resuspended them in 4 ml 1 M sodium 

citrate. To estimate the yield, we plated 1 l of culture on an LB kanamycin plate. We then added the 

remaining culture to 250 ml LB plus kanamycin and shook it at 37 ºC for 10 h (until the culture 

reached mid-stationary phase). Finally, we pelleted the cells by centrifugation (15 min, 5525 g), 

resuspended them in 15-20 mL LB with 15% glycerol, and snap froze them with dry ice and ethanol.

Growth of secondary library under selective and non-selective conditions

In each experiment, we grew portions of the secondary P1vir-transduced transposon library in the 

presence and absence of selection. Selective and non-selective growth spanned the same number of 

generations. 

Finding the distributions of markers across the genome (genetic footprinting)

We subjected samples of ~107 cells from both the population grown in selective conditions and the 

population grown in nonselective conditions to hybridization-based genetic footprinting to amplify 

the DNA adjacent to the transposons5. Samples from the selective and non-selective conditions were 

differentially labeled and hybridized to E. coli ORF arrays5. A gene’s signal in each array channel 
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represented the frequency of mutants from the corresponding growth conditions that had transposon 

insertions in or near the gene. 

We converted the hybridization signals from the selective growth and non-selective growth samples 

to depletion scores:

Score g  hybridization signal of ' g'  from nonselective growth
hybridization signal of ' g'  from selective gowth

, 

where ‘g’ is an arbitrary gene.

Thus, loci that experienced more depletion from the selected population had higher scores. Depletion 

scores for all experiments in this work as well as all computational tools are available online at 

http://tavazoielab.princeton.edu/ADAM/ (also Supplementary Software 1).

Mutual-information based identification of adaptive loci

As ADAM spreads the signal from each adaptive mutation over multiple adjacent genes, 

neighborhoods of high depletion scores correspond to adaptive mutations. Direct examination of the 

depletion scores as a function of genome location (Supplementary Fig. 3a) typically indicated the 

regions in which functional mutations resided. Smoothing the data by taking a simple moving 

average, which emphasized regions of high depletion scores, typically allowed us to identify all of the 

true positives in a data set (Supplementary Fig. 3b). While easy and surprisingly effective, such 

techniques do not constitute a systematic approach for identifying the relevant genomic regions and 

suffer from a higher false positive rate than the computational method described below.  

The core problem is the need to distinguish between the fitness effects of transposon disruptions and 

the linkage-based effects of adaptive mutations. The key difference between these two phenomena 
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lies not in the intensity of the scores but rather the number of consecutive genes that show high 

depletion scores. For example, in our CmlR experiment, lacI had a depletion score comparable to that 

of rfaQ (2.23 vs 2.20); however, we identified lacZ as the site of mutation because in addition to lacI, 

a whole stretch of genes from prpR to yaiP showed depletion scores greater than 1.2 (see Fig. 2a in 

the main text). To capture these regions, we quantized the vector containing the depletion scores for 

all the genes into 4 bins: (i) the top 1% genes, (ii) the top 2-5% genes, (iii) the top 6-10% and (iv) the 

rest of the genes. 

Then, we tiled the genome with spatial vectors of length 25 (see Supplementary Fig. 4). A spatial 

vector is a binary vector of length N (i.e., the total number of genes) in which 25 consecutive genes 

are set to ‘1’ and all the rest are ‘0’. Each spatial profile overlaps with 24 of the genes in its 

neighboring vectors. The spatial profiles tile the whole genome. 

Finally, we asked the question: which spatial profiles contain genes with higher depletion scores than 

expected by chance To answer this question, we used the notion of mutual information19,20 to measure 

how informative a given spatial profile was about the depletion score categories:

MI spatial profile;depletion score categories  P i, j log
P i, j 

P i P j j 1

4


i 1

2


where P(i,j) is the fraction of genes whose spatial profile values are in the ith state and whose 

depletion scores are in the jth category, P(i) = j P(i,j), and P(j) = i P(i,j)20. We tested the statistical 

significance of each spatial profile by comparing its MI (mutual information) value to those from 

10,000 random shuffles of the depletion scores. We accepted as significant those spatial profiles 

whose MI values were higher than all of the randomly generated values.
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Because the spatial profiles largely overlapped (Supplementary Fig. 4), we retained only the most 

informative profile from each region. To accomplish this, we considered the candidate spatial profiles 

in order of decreasing MI and used conditional information to remove profiles that did not satisfy the 

following with respect to each of the previously accepted spatial profiles:

MI (spatial profile;depletion scores |  an accepted spatial profile)
MI (spatial profile; an accepted spatial profile)

>  5.0

This equation compares the additional information provided by a new spatial profile, given an already 

accepted spatial profile, to the mutual information between the two spatial profiles and requires the 

ratio to be more than a certain threshold (5 in this case). Comparing the spatial profile being tested 

against each previously accepted spatial profile determines whether the candidate profile adds 

significant and independent information. In other words, we ensured that a spatial profile was both 

informative of the depletion score categories and also had little dependency with the previously 

accepted profiles20. The mutation sites had a high likelihood of residing close to the center of these 

significant regions near the maximal depletion scores. The tools for performing these analyses are 

available online at http://tavazoielab.princeton.edu/ADAM/.

Data presentation: Smoothing and filtering

Growth of the library under selective conditions caused some genomic regions to become effectively 

depleted of markers resulting in very low signals. Due to this lower bound on the hybridization 

signal, the depletion scores were sensitive to the original frequency of insertion events. The frequency 

of insertion events was more or less uniform across the genome; however, certain regions were

“hotspots” or “cold spots” (Supplementary Fig. 5). For example, assume that growth of the library 

under selective conditions eliminates all markers near two genes and the array signal from the 

selected channel for both is the background value of say, 0.1. Further assume that the unselected 
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conditions did not alter the initial insertion frequency for the genes. If that initial insertion frequency 

for both genes was similar and gave a signal of 1, then the depletion score for both would be 10. If, 

however, one gene were in an insertion “hot-spot” with a signal of 10, then the depletion score would 

be 100. While the quantization method used to determine functional mutation locations is robust 

against such noise, the effects of the initial transposon insertion frequency distorted the plots of the 

depletion signal. In order to emphasize the effects of the selective conditions and deemphasize the 

effects of the initial transposon insertion frequency, when plotting the results, we filtered out the ~800 

genes whose variance normalized hybridization signal (mean divided by standard deviation) in the 

unselected transposon library5 was more than one standard deviation away from the genome-wide 

average. 

After filtering, we smoothed each gene’s score by taking a Gaussian-weighted average across the 15 

neighboring genes on either side (Supplementary Fig. 6). This resulted in a smooth, bell-shaped 

signal around the site of each mutation, which was ideal both for presentation and for choosing 

candidate genes to search for the precise mutations. Note that these data manipulations did not affect 

the identification phase.
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Supplementary File Title
Supplementary Figure 1 The fitness effects of transposon insertion events
Supplementary Figure 2 Adaptive mutations underlying increased ethanol tolerance
Supplementary Figure 3 Identifying functional mutations using the ANS* data
Supplementary Figure 4 Identifying the mutated loci using the deletion scores
Supplementary Figure 5 Data filtering
Supplementary Figure 6 The Gaussian weights used for smoothing the data
Supplementary Table 1 Mutations identified in this study
Supplementary Table 2 Validating the adaptive mutations in ASN*
Supplementary Table 3 Validation of ETM adaptive mutations
Supplementary Table 4 Strains used in this study
Supplementary Table 5 Primers used for strain construction and verification
Supplementary Note 1 Adaptive mutations in experimental evolution of ethanol tolerance
Supplementary Software 1 ADAM computational tools

AOP
This array-based discovery tool creates linkage between functional mutations and selectable 
markers across a bacterial genome and can thus distinguish between adaptive and neutral 
mutations.
Issue
This array-based discovery tool creates linkage between functional mutations and selectable 
markers across a bacterial genome and can thus distinguish between adaptive and neutral 
mutations.


