Conceived and designed the experiments: ALR SJT PoS SG. Performed the experiments: RVG AS SJT PoS DHL SG SK. Analyzed the data: JAP ALR AS SJT SCL DHL SG. Contributed reagents/materials/analysis tools: SCL. Wrote the paper: JAP RVG ALR SJT SCL DHL SG SK. Developed the model: JAP. Responsible for data integrity: RVG. Enrolled patients: AS DHL SK.
Dengue virus is endemic in tropical and sub-tropical resource-poor countries. Dengue illness can range from a nonspecific febrile illness to a severe disease, Dengue Shock Syndrome (DSS), in which patients develop circulatory failure. Earlier diagnosis of severe dengue illnesses would have a substantial impact on the allocation of health resources in endemic countries.
We compared clinical laboratory findings collected within 72 hours of fever onset from a prospective cohort children presenting to one of two hospitals (one urban and one rural) in Thailand. Classification and regression tree analysis was used to develop diagnostic algorithms using different categories of dengue disease severity to distinguish between patients at elevated risk of developing a severe dengue illness and those at low risk. A diagnostic algorithm using WBC count, percent monocytes, platelet count, and hematocrit achieved 97% sensitivity to identify patients who went on to develop DSS while correctly excluding 48% of non-severe cases. Addition of an indicator of severe plasma leakage to the WHO definition led to 99% sensitivity using WBC count, percent neutrophils, AST, platelet count, and age.
This study identified two easily applicable diagnostic algorithms using early clinical indicators obtained within the first 72 hours of illness onset. The algorithms have high sensitivity to distinguish patients at elevated risk of developing severe dengue illness from patients at low risk, which included patients with mild dengue and other non-dengue febrile illnesses. Although these algorithms need to be validated in other populations, this study highlights the potential usefulness of specific clinical indicators early in illness.
Patients with severe dengue illness typically develop complications in the later stages of illness, making early clinical management of all patients with suspected dengue infection difficult. An early prediction tool to identify which patients will have a severe dengue illness will improve the utilization of limited hospital resources in dengue endemic regions. We performed classification and regression tree (CART) analysis to establish predictive algorithms of severe dengue illness. Using a Thai hospital pediatric cohort of patients presenting within the first 72 hours of a suspected dengue illness, we developed diagnostic decision algorithms using simple clinical laboratory data obtained on the day of presentation. These algorithms correctly classified near 100% of patients who developed a severe dengue illness while excluding upwards of 50% of patients with mild dengue or other febrile illnesses. Our algorithms utilized white blood cell counts, percent white blood cell differentials, platelet counts, elevated aspartate aminotransferase, hematocrit, and age. If these algorithms can be validated in other regions and age groups, they will help in the clinical management of patients with suspected dengue illness who present within the first three days of fever onset.
Dengue fever (DF) and dengue hemorrhagic fever (DHF), the more severe form of dengue illness, are re-emerging viral diseases
Dengue has a substantial economic impact in developing countries
Currently, there is no licensed vaccine or anti-viral against dengue. The treatment for patients with suspected dengue is supportive care consisting of rehydration and anti-pyretics
We conducted a prospective study of Thai children with acute febrile illness, consistent with dengue, enrolled from an early stage of illness onset
A longitudinal observational study was conducted at two hospitals in Thailand: (1) the Queen Sirikit National Institute of Child Health (QSNICH) in Bangkok during 1994–97, 1999–2002, and 2004–07, and (2) the Kamphaeng Phet Provincial Hospital (KPPH) in the Kamphaeng Phet providence in a rural northern section of Thailand during 1994–97. The study methods have been described in detail elsewhere
A blood sample was obtained on the day of enrollment and daily thereafter until discharge or for a maximum of five consecutive blood collections. Serological assays (IgM/IgG ELISA and hemagglutination inhibition assay), virus isolation, and/or RT-PCR were used to confirm all dengue cases. Patients were observed and daily clinical and laboratory measurements were recorded using standardized data collection forms.
After defervescence (2 consecutive temperatures below 38°C), serial finger-stick hematocrits were measured to capture hemoconcentration. A right lateral decubitus chest x-ray was taken the day following defervescence and a pleural effusion index (PEI) was measured as 100×(maximum width of right pleural effusion)/(maximum width of right hemithorax). After completion of the case record, a single expert physician (author S.N.), who was not directly involved in patient care, assigned a final diagnosis of DF, DHF, or OFI based upon chart review following WHO guidelines
Given that not all DHF cases are severe and not all DF cases are mild, we applied several different categories of dengue disease severity using data from each patient's entire hospital course : (1) dengue shock syndrome (DSS, as defined by WHO criteria); (2) DSS or PEI>15; (3) DSS or required intravenous fluid; (4) DSS or platelet count < = 50,000 anytime during illness; (5) DSS or received fluid intervention (oral or intravenous) in any 24-hour period that exceeded maintenance volume +5% volume deficit
The input variables used for establishing each tree were platelet count, hematocrit, WBC count, percent monocytes, percent lymphocytes, percent neutrophils, AST, ALT, tourniquet test (+/−), age, and gender, all of which were obtained on the day of presentation.
Descriptive characteristics of the study sample were compared using t-tests and Pearson's χ2. CART analysis was performed using SPSS Answer Tree 3.0 software (see
Additional analyses were performed to examine differences in diagnostic trees according to the day of presentation among the low risk, non-severe group. The final trees selected were those that had minimum misclassification of severe dengue illness in low risk nodes (high sensitivity) and maximum correct classification of non-severe dengue and OFI in low risk nodes (high specificity). In each terminal node, patients were classified as low risk or elevated risk of severe dengue illness where optimal sensitivity could be achieved. For all analyses, sensitivity was weighted more heavily than specificity by using misclassification cost ratio of 1∶10 severe dengue vs. non-severe. Each tree was validated using the k-fold cross validation method
In total, 1384 patients were enrolled in the study. Of these, 1311 had a final diagnosis of DHF, DF, or OFI. Of the remaining 73 patients, 32 had an undetermined diagnosis due to lack of convalescent blood sample for serology, and 41 had a presumed non-viral infection. An additional 81 patients (28 DHF, 20 DF, and 33 OFI) were missing one or more variables of interest on the day of presentation and were excluded from the analysis.
| Age (mean, 95% CI, years) | Gender (m∶f ratio) | Days ill at presentation mean (median) | Length of observational period (24 hours after defervescence) mean(median) | |
| DHF | ||||
| Grade 1 (n = 53) | 8.4 (7.4, 9.4) | 2.3 | 2.0 (2) | 6.2 (6) |
| Grade 2 (n = 118) | 9.1 (8.5, 9.6) | 1.3 | 2.3 (2) | 6.4 (6) |
| Grade 3/4 | 8.5 (7.6, 9.4) | 0.9 | 2.4 (2) | 7.3 (7) |
| (n = 37) | ||||
| DF (n = 374) | 8.6 (8.4, 8.9) | 1.1 | 2.1 (2) | 6.3 (6) |
| OFI (n = 648) | 7.1 (6.8, 7.3) | 1.2 | 1.8 (2) | 5.3 (5) |
*Includes only those patients who remained in the study until the end of the observational period (50 DHF grade1; 110 DHF grade 2; all DHF grade 3 and 4; 327 DF; 495 OFI).
**Only 1 patient had DHF grade 4; this subject was combined with DHF grade 3 for analysis.
***DHF grade 3 or 4 had longer observational periods when compared to patients with DHF grade 1 and 2, DF, or OFI (p<.001).
| Tree | Outcome variable for generating tree | Outcome variable for evaluation of tree | % Misclassified severe dengue (# classified as low risk/total severe)¶ | % Correctly classified non- severe (# classified as low risk/total non-severe) |
| 1 | Severity Category 1 | Severity Category 1 | 2.7% | 48.3% |
| (1/37) | (576/1193) | |||
| Severity Category 2 | 16.9% | 49.1% | ||
| (14/83) | (563/1147) | |||
| Severity Category 3 | 16.8% | 51.1% | ||
| (25/149) | (552/1081) | |||
| Severity Category 4 | 12.5% | 52.1% | ||
| (20/160) | (557/1070) | |||
| Severity Category 5 | 17.6% | 48.6% | ||
| (12/68) | (565/1162) | |||
| 2 | Severity Category 2 | Severity Category 1 | 0.0% | 42.2% |
| (0/37) | (504/1193) | |||
| Severity Category 2 | 1.2% | 44.0% | ||
| (1/83) | (505/1147) | |||
| Severity Category 3 | 9.4% | 45.5% | ||
| (14/149) | (492/1081) | |||
| Severity Category 4 | 5.0% | 46.5% | ||
| (8/160) | (498/1070) | |||
| Severity Category 5 | 8.8% | 43.0% | ||
| (6/68) | (500/1162) | |||
| 3 | Severity Category 3 | Severity Category 3 | 34.9% | 72.1% |
| (52/149) | (779/1081) | |||
| 4 | Severity Category 4 | Severity Category 4 | 42.5% | 81.5% |
| (68/160) | (872/1070) | |||
| 5 | Severity Category 5 | Severity Category 5 | 42.6% | 77.3.0% |
| (29/68) | (898/1162) |
*Severity Category 1: DSS (DHF grade 3 or 4).
Severity Category 2: DSS or PEI>15.
Severity Category 3: DSS or required intravenous fluid resuscitation during hospitalization.
Severity Category 4: DSS or had min platelet count < = 50,000 during hospitalization.
Severity Category 5: DSS or received fluid intervention (oral or intravenous) >5% volume deficit above maintenance.
**Severity category used to generate tree.
Severity category used to evaluate the tree that was generated using another severity category (Column 2).
“Severe dengue” refers to criteria in Column 3.
“Non-severe dengue” refers to criteria in Column 3.
Trees were generated for each of the five categories of severe dengue illness. As summarized in
Each node is shown with the selected splitting variable, the number of patients with severe/non-severe or OFI, and the proportion of each from the parent node. Terminal nodes are marked as ‘elevated risk’ of severe dengue illness, outlined in red, and ‘low risk’ of severe dengue, outlined in blue.
A total of 576 (48.3%) patients with non-severe dengue are classified correctly in the low risk group at the cost of misclassifying one patient who later manifested DHF grade 3. The initial splitting variable correctly classified 384 (32%) of the patients with non-severe dengue. The patients that were correctly classified as low risk included 63.7% of all OFI, 32.1% of all DF, 41.5% of all DHF grade 1, and 17.8% of all DHF grade 2. Patients with non-severe dengue illness were more likely than patients with OFI to be classified as elevated risk of severe dengue (70.1% of non-severe dengue versus 36.3% of OFI).
Among the 617 (51.7%) patients with non-severe illness that were classified as elevated risk, the median day of presentation was 72 hours after illness onset and the average length of hospital stay was 6.8 days; patients with non-severe dengue that were correctly classified had a median day of presentation of 48 hours after illness onset and an average length of hospital stay of 7.3 days. To assess differences according to the day of presentation, the tree was applied using data from patients with non-severe illness at 72 hours among patients who were still febrile. In this group of low risk patients, the percent correctly classified as low risk decreased slightly from 48% to 44% (data not shown).
Pleural effusion index (PEI)>15 was used as the criterion for significant pleural effusion. Each node is shown with the selected splitting variable, the number of patients with severe/non-severe or OFI, and the proportion of each from the parent node. Terminal nodes are marked as ‘elevated risk’ of severe dengue illness, outlined in red, and ‘low risk’ of severe dengue, outlined in blue.
This tree correctly classified 505 (44%) patients with non-severe dengue at the cost of misclassifying one patient with severe dengue. The misclassified patient was diagnosed with DHF grade 2 and had PEI of 25.8. All patients with DHF grade 3 or grade 4 were correctly classified in this tree as elevated risk of severe dengue. Among the 505 patients correctly classified as low risk of severe dengue, 380 were OFI (58.6% of OFI), 105 were DF (28.1% of DF), and 20 were DHF grade 1 or 2 (16.0% of non-severe DHF). Patients with non-severe dengue illness were more likely than patients with OFI to be classified as elevated risk. When the tree was applied using data from patients with non-severe illness at 72 hours, the percent of non-severe cases correctly classified as low risk increased from 44% to 50%.
We assessed the generalizability of our trees using other categories of dengue disease severity (
Early diagnosis of severe dengue illness not only has the potential to reduce morbidity and mortality, but could also reduce the economic impact of dengue illness by decreasing the duration of hospitalization and the number of patients who will develop shock. We identified two diagnostic algorithms using early clinical laboratory indicators and patient characteristics that could distinguish patients with severe dengue from those with non-severe dengue or other febrile illnesses within the first 72 hours of illness.
When applying these trees to other (broader) categories of disease severity, a high sensitivity was still achieved. Previous studies have shown that modified definitions of dengue disease severity have better agreement with a treating physician's assessment when compared to strict adherence to WHO criteria
The single patient with severe dengue that was misclassified in Tree 1 presented within the first 24 hours of illness, had an initial WBC count of 13700, and was diagnosed with DHF grade 3. Five other patients with severe dengue in Tree 1 also presented within the first 24 hours and yet were correctly classified as elevated risk. When we further investigated the effect of day of presentation by using day 3 data from all non-severe cases, we found that day of presentation had little effect on the sensitivity of Trees 1 and 2 (within the first 72 hours); Tree 1 still correctly classified 44% of the non-severe cases as low risk of severe dengue infection and, in Tree 2, the percent correctly classified as low risk increased from 44% to 50%.
Many of the variables used in our decision algorithms have been shown to distinguish between patients with dengue and patients with OFI in other settings
One criticism of CART analysis is that the cutoff values may not be clinically meaningful. However, when we re-defined the cutoff values for Trees 1 and 2 the results maintained a high sensitivity. For example, in Tree 1 when we rounded platelet count to 160,000, the results remained the same. In Tree 2, when we rounded the cutoffs of platelet count to 290,000 and 280,000, percent neutrophils to 70%, and age to 7, the tree correctly classified 45.9% of the non-severe cases while still achieving 94.0% sensitivity for severe cases.
Interestingly, many of the cutoff lab values in our decision trees fall within the ‘normal’ range; this suggests that established ‘normal’ ranges for routine laboratory tests have low sensitivity to detect clinically relevant changes. For example, some variables, such as hematocrit are normal early in the course of disease but appear to be able to predict those children who will later develop severe disease, often associated with hemoconcentration, as seen in the final node of Tree 1. We interpret this to indicate an interaction with the outcome of severe dengue and the other clinical values used in this Tree.
Tanner and colleagues published an analysis establishing dengue decision trees; however, their analysis was based on only three WHO-defined DHF cases and it was unclear if these three cases met other objective criteria for severity
Our study is subject to some limitations. First, our study included only pediatric patients at two hospitals in Thailand. However, because the majority of dengue cases in Thailand and other regions of Southeast Asia are children, our findings are clinically relevant
We provide two decision tree algorithms using 12 years of systematically collected clinical data from a well-defined cohort of pediatric patients in a dengue-endemic region. Our algorithms have minimal misclassification of WHO-defined DSS cases among all patients with suspected dengue infection who present within the first 72 hours of illness. These algorithms also have minimal misclassification of other severe dengue illnesses using different categorizations of severity. A robust, validated decision algorithm can be easily implemented in resource limited settings to identify patients who are at risk for developing a more severe dengue illness and limit the number of unneeded hospitalizations.
STROBE checklist
(0.08 MB DOC)
Click here for additional data file.
Supplementary Methods
(0.02 MB DOC)
Click here for additional data file.
We thank the arbovirology and molecular sections of the Armed Forces Research Institute of Medical Sciences for diagnostic testing; doctors and nurses of Queen Sirikit National Institute of Child Health and the staff of the Armed Forces Research Institute of Medical Sciences for patient care and sample collection.
The authors have declared that no competing interests exist.
This work was supported by National Institutes of Health Grant NIH-P01AI34533, Centers for Disease Control and Prevention Office of the Director Grant 1R36CK00123-01 (to J.A.P.), and the Military Infectious Disease Research Program. The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the view of the U.S. Government. The funders had no role in the study design, data collection, analysis, decision to publish or preparation of the manuscript.