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Abstract

Background: New algorithms for disease outbreak detection are being developed to take advantage of full
electronic medical records (EMRs) that contain a wealth of patient information. However, due to privacy concerns,
even anonymized EMRs cannot be shared among researchers, resulting in great difficulty in comparing the
effectiveness of these algorithms. To bridge the gap between novel bio-surveillance algorithms operating on full
EMRs and the lack of non-identifiable EMR data, a method for generating complete and synthetic EMRs was
developed.

Methods: This paper describes a novel methodology for generating complete synthetic EMRs both for an outbreak
illness of interest (tularemia) and for background records. The method developed has three major steps:
1) synthetic patient identity and basic information generation; 2) identification of care patterns that the synthetic
patients would receive based on the information present in real EMR data for similar health problems;
3) adaptation of these care patterns to the synthetic patient population.

Results: We generated EMRs, including visit records, clinical activity, laboratory orders/results and radiology orders/
results for 203 synthetic tularemia outbreak patients. Validation of the records by a medical expert revealed
problems in 19% of the records; these were subsequently corrected. We also generated background EMRs for over
3000 patients in the 4-11 yr age group. Validation of those records by a medical expert revealed problems in fewer
than 3% of these background patient EMRs and the errors were subsequently rectified.

Conclusions: A data-driven method was developed for generating fully synthetic EMRs. The method is general
and can be applied to any data set that has similar data elements (such as laboratory and radiology orders and
results, clinical activity, prescription orders). The pilot synthetic outbreak records were for tularemia but our
approach may be adapted to other infectious diseases. The pilot synthetic background records were in the 4-11
year old age group. The adaptations that must be made to the algorithms to produce synthetic background EMRs
for other age groups are indicated.

I. Background
I.a Motivation
Despite the current push to adopt electronic medical
records (EMRs) as the standard for patient records,
research concerned with utilizing all the information in
EMRs may be compromised because legal restrictions
and privacy concerns limit access to EMRs in academic
and industrial research settings to a small number of
institutions that have access to the full records. For
example, any algorithm designed to work on EMRs can
only be tested on a specific set of records so that there

is no consistent set of test data that can be used by all
interested parties to compare the efficacy of different
algorithms. To avoid compromising patient privacy and
hospital proprietary concerns, the intent of the Synthetic
Electronic Medical Records Generator (EMERGE) pro-
ject is to develop a methodology for creating synthetic
EMRs from a set of real EMRs. Using EMERGE, test
beds could be synthesized, creating EMRs for both back-
ground records and artificial outbreaks or emergencies
that are not present in the real data. The availability of
a standardized set of test data would allow comparison
of different algorithms and procedures that operate on
EMRs as well as provide a set of records for the devel-
opment of such algorithms.
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There are privacy and proprietary concerns with the
dissemination of medical record data [1]. These con-
cerns remain even if it is sanitized or anonymized [2,3]
because of the variety of different types and sources of
data tied together within the EMR. Even having just the
compound of ZIP code, gender, and date of birth has
been described as being sufficient for uniquely identify-
ing a large percentage of the population of the United
States [4]. The development of synthetic EMR data for
both background records and injected disease records is
thus vital for increased research in the mining of data in
EMRs to improve quality of care, detection of health
threats, and monitoring for adverse drug effects.
The first EMERGE product provided us with valuable

lessons that were used in the methodology described in
this paper. This earlier product was a set of synthetic
EMRs of infected patients who were exposed to a ficti-
tious bioterrorism event, the release of airborne tulare-
mia in the restrooms at a sporting event [5]. The
synthetic victims (i.e., infected patients) were 4 to 89
years old and included both males and females. The vic-
tims’ demographics were chosen from the typical demo-
graphics of individuals using the luxury boxes at a
baseball game. We created synthetic EMRs that reflected
the entire timeline of pneumonic tularemia from pro-
drome, when present, to severe illness, and that were
based upon synthesized models of care using informa-
tion from the literature on the progression of the dis-
ease, as well as similar cases of flulike illness and
progression to pneumonia present in the set of original
background EMRs. Unfortunately, the utility of these
synthetic EMRs was limited because, although the
injected victims were completely synthetic, the back-
ground records were not. Even though these back-
ground EMRs were de-identified and date-scrambled via
the RBNR algorithm [6], they were considered real
enough that they could not be posted on the public
health grid [7,8]. In contrast, the completely synthetic
EMRs were allowed to be posted. However, the useful-
ness of the total set of EMRs as a test data set for out-
break detection algorithms was limited to the
institutions that had legal and proprietary access to the
background data. For this reason, the synthesis of back-
ground records became a major part of the EMERGE
project. At the time of the creation of this earlier syn-
thetic tularemia outbreak, it was not at all clear that the
complexity of the records for a background population
would lend itself to synthesis.
We tested, analyzed, and refined methods to extract

meaningful information from real EMRs to produce syn-
thetic EMRs, as well as ways to represent the informa-
tion in a mathematically consistent fashion. After this
analysis, we devised a three-part method that would
allow automation of the synthesis process with as much

fidelity as possible in information content but without
compromising details that defined any original patient’s
identity. This three-part-method consists of: 1) the
synthesis of patient identities; 2) the identification of
models-of-care in real EMRs; and 3) the adaptation of
models-of-care to the synthetic patients. We will
describe the processes in detail both for the set of
injected tularemia patients and the set of synthetic back-
ground patients. Because the pilot age group for the
background records was 4-11 yr olds, we will suggest
adaptations to this method that we believe are necessary
for the creation of data sets beyond this single age
group.

I.b Related Work
There has been considerable research utilizing the infor-
mation contained in EMRs. Some recent results occur
in bio-surveillance [9-13], screening for reportable dis-
ease [14-16] and pharmacovigilance [17,18]. However,
there has not been a corresponding increase in the avail-
ability of non-identifiable complete EMRs for the devel-
opment or test of algorithms that operate on them.
There have been various efforts at de-identification of

medical record information, including the Realistic But
Not Real (RBNR) project [6], and recent work on de-
identification of clinical notes [19]. Algorithms to de-
identify visit records are an active area of research (see,
e.g. [20] and references therein) but these algorithms in
general do not operate on the entire EMR. As men-
tioned before, there is some danger in the widespread
dissemination of even anonymized or de-identified data.
The main risk is that an individual patient or a particu-
lar facility or practitioner could potentially be uniquely
identified from the conjunction of different types of
information within the EMR, such as age group, gender,
ethnic group, race, time of medical encounter, or a rare
or unusual-for-age diagnosis. Because the medical infor-
mation itself is not altered by anonymization and date-
shuffling algorithms, it is possible that some information
in the EMR could be used to identify a patient, a practi-
tioner, or a facility. Proprietary as well as privacy con-
cerns, then, motivate the need to produce synthetic
patients that display enough variation in demographic
and sanitized medical record information to make iden-
tification of the patient and the facility ambiguous.
As a recent effort to model the progression of chronic

disease in an individual [21], the Archimedes project
models the entire clinical timeline of a fictitious patient,
including test and radiology results. Its innovation is in
realistically and verifiably modeling the progression of a
particular chronic disease, the disease manifestation in
test and radiology results, and the outcome of clinical
interventions in the individual. It does not model the
incidence of the chronic diseases in the population and
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does not, at this time, model the clinical timelines of
patients with infectious disease or injury.
There are many different models for the spread of

infectious disease through a population. From a simple
lognormal curve [22-24] through the injection of artifi-
cial disease outbreaks in simulated time series [25] to
the recent population model for the Models of Infec-
tious Disease Agent Study (MIDAS, [26]), they can vary
in complexity, scope and purpose. The focus in Project
Mimic [25] is in the generation of realistic but totally
synthetic time series of case counts. The MIDAS project
[26] models the incidence and spread of disease in a
completely synthetic population in a geographic area.
While it does generate time series of healthcare encoun-
ters with verifiably accurate timelines for disease spread,
it does not produce EMRs for the synthetic population.
The injection of artificial disease outbreaks into real

time-series data, so-called hybrid data, is commonly
used to test the effectiveness of disease outbreak detec-
tion or clustering algorithms. Typically a series of out-
breaks or events is calculated according to an epidemic
model, and case counts are added to the real data to
simulate the additional cases that would occur as a
result of the outbreak. Algorithms can then be tested
with and without this outbreak data to gauge their sen-
sitivity (for a general reference see, e.g. [27]). However,
injected data is generally limited to time series, or in
some cases, injected chief complaint or syndromic data
(see, e.g., [28] and references therein) and does not
include the complete EMR.
The addition of EMR to the available data sources has

fueled recent advances in surveillance methods [29-31].
The ability to engineer outbreaks into synthetic data
would allow the development of other surveillance algo-
rithms that can improve sensitivity and specificity of
outbreak detections.
The rest of this paper is organized as follows: Section

II presents an overview of the method developed, a
description of the data set used, and details of the major
steps of the methodology: Synthetic Patient Identities
and basic information generation, Identification of Clo-
sest Patient Care Models and Descriptors, and Adapta-
tion of Patient Care Models. Section III presents the
results, and we finish with discussion and conclusions in
Section IV.

II. Methods
II.a Overview
We have developed two methods, one for generating
synthetic EMRs for patients included in an infectious
disease outbreak (Figure 1) and the second for generat-
ing synthetic EMRs for background patients (Figure 2).
While these two methods share many features, there are
significant differences between them. When describing

the methods below, we will point both to similarities
and differences between the two techniques.
The synthesis of EMRs for either an injected disease out-

break or for a set of background medical records begins
with the determination of who becomes ill (or injured),
when they become ill (or injured), and what diseases (or
injuries) are the underlying causes of their seeking medical
care. In this paper, we will refer to these simulated patients
with the disease of interest as the victims. Therefore, the
two techniques may be called respectively the Injected Vic-
tim Generation Technique (Figure 1), and the Background
Patient Generation Technique (Figure 2).
Once the basic information about patients has been

synthesized (date of birth, gender, etc.), the next step is
the identification of the care patterns that the synthetic
patients would receive. This care pattern is defined as
the sequence of health-care events that the patient
experiences and it is used to create entries in the syn-
thetic EMR. These EMR entries may include laboratory
test orders/results, radiology orders/results, and pre-
scription orders, as well as the clinical history such as
working and final diagnoses.
After an appropriate care pattern is identified from the

care patterns present in the real EMR data set - the
method is described in detail in [49], the creation of the
full EMR for the synthetic patient can proceed. The EMR
creation steps for the Injected Victim Generation differ
somewhat from those for the Background Patient Genera-
tion. Both include the time-stamping of various parts of
the EMRs so that the visit time of the synthetic patient and
the timeline of the care pattern match, although with some
added noise. Both include the assignment of fictitious lab
test and radiology order numbers, and the subsequent
renumbering of matching results occurs in both techni-
ques. The synthetic background records require sanitiza-
tion of clinician names, dates and additional reporting
events from any records and removal of details, e.g. allu-
sions to specific injury scenarios on radiology results, so
that the records could be meaningfully adapted to the syn-
thetic patients. Compared with the background patients,
the creation of the synthetic injected disease victim EMRs
includes the additional step of altering the information in
test and radiology results to simulate those data that would
be expected for patients with the particular disease of inter-
est. This step utilizes information such as disease incuba-
tion period ranges, frequencies of particular presenting
symptoms and signs, disease progression and severity, test
results, etc., that may be found in case reports and litera-
ture describing outbreaks of the injected disease.

II.b Definitions
Inject
The simulated disease outbreak is called an inject
because it is injected over the background population.
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The synthetic EMRs of patients who are infected with
the disease of interest will be called injects.
Victims
The synthetic patients who are infected with the out-
break disease of interest will be called victims.
Background records or patients
The EMRs of patients other than those with the disease
of interest will be called background records.
Care Model (also called Care Pattern)
A Care Model is defined as the sequence of health-care
events that a patient experiences. These care models are
identified from real EMR data and described in detail in
section II.e.
Rx
The abbreviation Rx will be used for prescriptions.

II.c Data Set
We developed the synthetic EMR creation techniques
using a dataset that contained 14 months of EMRs from
the BioSense [32] program. These data represented
458,346 patients that belonged to five age groups (0-3,
4-11, 12-19, 20-49, 50+ yrs). The records were first

anonymized by removing the patients’ identifying infor-
mation (e.g., name, social security number, address). To
further protect patient privacy, the records were pro-
cessed via the RBNR [6] algorithm to shuffle visit dates
within a two-week period and patient ages within an age
group. The original EMR data were from a metropolitan
area in the Midwestern United States.
These BioSense data included seven tables defined as

follows: 1) the Analysis Visit Table, which includes
patient and visit identifier numbers, age and gender
information, a summary of clinical activity, and syn-
drome and sub-syndrome; 2) the Clinical Activity Table,
which includes patient identifiers and detailed records of
chief complaint/reason for visit, working diagnoses and
final diagnoses; 3) Laboratory Orders; 4) Laboratory
Results; 5) Radiology Orders; 6) Radiology Results; and
7) Rx (defined as prescription) Orders. All tables for a
particular patient were linked via a patient identification
number and a visit identification number. The tables
were in the format used by the SAS system [33].
Different subsets of the BioSense data set were used

for Injected Victim Generation and for the Background

Figure 1 Injected Victim Generation Technique.
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Patient Generation. For the victims, we extracted from
the full data set records of patients who had symptoms
similar to those exhibited by patients with any stage of
tularemia. Typically, these patients have fever and some
combination of cough, chest pain, sore throat, painful
respiration, malaise/fatigue, sometimes diarrhea or nau-
sea and vomiting; in later stages they could have
hemoptysis, respiratory failure and enlarged lymph
nodes. A query on the whole data set to retrieve patients
who have combinations of the symptoms described
above identified a subset of over 10,000 patients. The
rest of the operations for synthetic EMRs of tularemia
victims were performed on that subset.
For the Background Patient Generation, we extracted

from the whole data set the patients from each of age
groups: 0-3, 4-11, 12-19, 20-49, 50+ yrs. In further
research we concentrated on the 4-11 age group that
had 12,599 patients. All data extraction was done via
SAS procedures, with most extracted frequencies and
tables of data values exported to .csv (comma-separated
value) or .xls (Excel spreadsheet) files. We constructed
the progression of illness and created patient identities

for the injected tularemia patients, constructed the syn-
thetic patient timelines and identities for the back-
ground data, and wrote the synthetic EMRs for both
sets of patients using Matlab functions. Most of the data
analyses and comparisons were performed using Matlab
[34]. The computing time necessary for these steps was
minimal, on the order of a few minutes.

II.d Step One: Synthetic Patient Identity and Basic
Information Generation
The first major step of our method (see Figure 1 and
Figure 2) is the generation of the synthetic patient iden-
tities and basic information about the synthetic patients.
Because there are some differences in the method for
Injected Victim Generation and the Background Patient,
these will be described separately in the next two
sections.
Injected Victim Record Generation (Figure 1)
In a simulated disease outbreak scenario, the disease is
typically modeled to infect a target population, which
may be defined geographically, demographically, and by
the scenario itself. The method of infection and type of

Figure 2 Background Patient Generation Technique.
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disease dictates the epidemic curve, the type and sever-
ity of symptoms, and the disease progression. For exam-
ple, in the simulated bioterrorist release of tularemia,
the release of airborne tularemia occurred in the
restrooms near the luxury boxes at a summer sporting
event. The timelines for the initial prodrome and then
full-blown illness were taken from values in the litera-
ture [35,36] that were identified for primary pneumonic
tularemia. The expected symptoms, signs, and progres-
sion of disease for the simulated victims were adapted
from case studies and disease descriptions in the litera-
ture (e.g., [36]). For the synthetic tularemia outbreak, we
considered patterns of care and produced synthetic vic-
tims for the entire metropolitan area and all age groups
present at the sporting event (all groups except for 0-3
year olds).
The timelines and illness progression for the synthetic

tularemia victims were dependent on the dose of bacter-
ial particles to which each victim was exposed, age, and
other disease information found in the literature [35-40].
Because the simulated exposure was to take place in the
restrooms at a sports venue, the bacterial dosages for
women were slightly higher than for men based on stu-
dies showing that women generally spend longer in the
restroom than men [41]. A small subset of the victims
sought care for influenza-like prodrome symptoms from
4 to 7 days after exposure and returned with increased
severity of symptoms 14 to 18 days later. Most victims
sought care 18 to 22 days after exposure. We synthesized
these patients with demographic information and chief
complaints. Using information from literature describing
the disease presentations and progression [35-37,40], we
compiled a list of symptoms, signs, and their probability
of occurrence in patients infected with the disease. For
the 10% of the patients who sought care for the initial
flu-like illness, symptoms were fever/chills (95% of
patients), cough (non-productive) (38%), headache (45%),
sore throat(15%), malaise/fatigue (50%), muscle aches
(25%), chest pain (20%), nausea and vomiting (20%), joint
pain (15%), abdominal pain (10%), and painful pink eye
(5%). For severe illness, occurring 18-22 days after expo-
sure, the possible symptoms were fever/chills (in 85% of
patients), difficulty breathing (in 30% of patients), short-
ness of breath (in 24% of patients), hemoptysis (in 11% of
patients), respiratory failure (in 12% of patients), rash
(30%), chest pain (40%) and cough (65%). Of the people
seeking care for severe illness, 10% were chosen to have
fever, abdominal pain, nausea, vomiting, and diarrhea, as
these are symptoms of sepsis that are particular to tulare-
mia [35].
Using the syndromes and sub-syndromes assigned to

the injected patients and a distribution of additional
patient attributes that we compiled from the literature,
we produced a victim descriptor for each patient. The

victim descriptor included the basic characteristics of
the injected patient: age, gender, race, ethnic group, cer-
tain syndromes and sub-syndromes related to tularemia
(described in the previous paragraph). These victim
descriptors were then passed to the next step (identifica-
tion of closest care models) of the EMR synthesis
procedure.
It is worth noting that the real EMRs we used did not

contain any diagnoses of tularemia. Thus, using expert
medical opinion, we searched for patterns of care that
matched the sequence of symptoms that were generated
in the course of simulating the illness progression in
each synthetic victim. This procedure is described in
detail in section II.e. In some cases patterns of care
could be found that were quite close to what was
expected for tularemia and in some cases there were
discrepancies; we describe the required adjustments to
the data in section II.f.
Synthetic Background Records Generation (Figure 2)
There is no single scenario or target population when
the intention is to produce synthetic background
records. The underlying causes of symptoms and rea-
sons for seeking care are not known and need to be
imposed on the synthetic patients in an approximation
of those that appear in the real EMRs. However, the real
EMR is an inexact reflection of the underlying condition
of a patient. Even the most carefully entered EMR has
been filtered by medical personnel subject to insurance
rules and hospital or office protocols (see, e.g. [42]). To
synthesize the background patients, these real EMRs
must be analyzed for the probable underlying illnesses
and injuries and their timelines. The pilot group of
patients for the synthetic background records was the 4-
11 year age group. We further restricted the patterns of
care and synthetic patient demographics to a 5-county
area including the metropolitan area and some sur-
rounding suburban areas. We used the timelines in the
clinical activity record as the data to drive creation of
the synthetic patient identities.
In order to implement our data-driven approach to

create synthetic EMRs from real EMRs, we needed to
select a driving data element (i.e., an independent vari-
able).that could be used to determine the other linked
patient information for the background patients. For
this driving data element, we considered using syndrome
classification, sub-syndrome classification, 3-digit ICD-9
final diagnosis code [43], and chief complaint/reason for
visit. The percentage of each data element present in
the real EMRs is listed in Table 1. The percentage of
patients who had each data element present was impor-
tant to the choice of driving variable. If a particular data
element is missing in a majority of the patients but is
used as a driving variable, fewer patients comprise the
pool of records that can be mined for information.
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Another, even more relevant, consideration is the defi-
nition of the mapping from the driving data element to
illness. By the mapping from data element to illness, we
mean the identification of a single value of a data ele-
ment with a particular illness, injury or condition. Ide-
ally, the data element used to define the patients would
have a clear and easily recognized relationship to under-
lying illness or injury. The mapping from data element
to illness is “well defined” in the real data if the patient
visits are grouped by a single value of this data element
and if it differs very little in the underlying illness or
condition that can be inferred from the information in
the medical record. This is akin but not equal to the
notion of specificity; a well-defined mapping minimizes
the inclusion of dissimilar records associated to the data
element. This mapping also has to be well-defined in
the inverse sense, meaning that there is little overlap in
the underlying illness or injury (as manifested in the
EMR) for patient visits that are grouped by different
values of the data element. This notion is akin but not
equal to sensitivity; a well-defined inverse mapping
minimizes the number of data elements that are asso-
ciated with similar electronic medical records. If such a
mapping is reasonably well-defined in both directions,
the timelines of different values for this data element
could be mimicked to impose the entire spectrum of ill-
ness and injury to a synthetic population via an auto-
mated process. If the mapping is not well-defined, using
this data element to drive the synthetic population

creates several problems. We illustrate the possible pro-
blems by considering the mapping for various candidate
data elements in the EMR.
First let us consider the use of chief complaint, syn-

drome or sub-syndrome as the driving data element.
Because of the variations in the spelling and abbrevia-
tions in chief complaints, the additional step of natural
language processing (e.g. [44,53]) is necessary to cate-
gorize chief complaints in advance of associating them
with particular illnesses. Even with the use of a natural
language processor, this association is not particularly
well-defined. For example, the chief complaint sore
throat (and many variations) appears quite often in this
age group. However, sore throat can define or be pre-
sent in multiple illnesses. Table 1 shows the diagnoses
that are extracted from the real data for the chief com-
plaint sore throat for this age group. Similarly, the 10
syndrome definitions and 68 sub-syndrome definitions
do not exactly define an illness or injury. Although mul-
tiple chief complaints, syndrome definitions and sub-
syndrome definitions can more accurately describe the
illness or injury, this mapping is still inexact.
There are different possible illnesses or injuries that

may be associated with a chief complaint, syndrome or
sub-syndrome and the inverse is also true: there are
many possible chief complaints for each underlying ill-
ness (or injury). To illustrate this, we extracted all
patient visits with a single final diagnosis code of strep
throat (ICD-9 code 034.0) from both emergency and
outpatient cases in the subset of 4-11 year old patients
from the real data set. Among emergency cases, there
were 49 different chief complaint strings, taken from a
list of 28 different single complaints (e.g. fever, nausea,
neck pain, cold, cough, stuffy nose, abdominal pain,
vomiting, sore throat or variations such as throat pain,
throat sore, etc. as well as others). Although sore throat
(and variations) appeared quite often in the strings,
there were 26 complaints (53%) that did not contain
sore throat, throat pain, or other such variations any-
where in the complaint text. In the outpatient cases,
there were 62 different reasons-for-visit, with 30 differ-
ent single complaints. Of these, 9 (14.5%) did not con-
tain sore throat, throat pain or other such variations
anywhere in the reason-for-visit text. This ill-defined
mapping translates to the following problem with using
chief complaint as the driving data element. If patients
were synthesized only from timelines of particular chief
complaints, the variety of underlying causes would have
to be synthesized independent from, but consistent with,
the chief complaints. This would require either consid-
erable expert input on the possible conditions associated
with those chief complaints or the categorization of
ICD-9 codes and/or syndromes and sub-syndromes by
chief complaint.

Table 1 Data elements present in the real data set

Data Element % of visits in model data

Chief Complaint or Reason for Visit 85.16

Sub-syndrome 83.52

Syndrome 54.41

Final diagnosis ICD-9 code 99.72

Table 2 Possible ICD-9 codes associated with the chief
complaint “sore throat”

ICD-9 Code Description

034.0 034.0 STREP SORE THROAT

079.99 079.99 VIRAL INFECTION NOS

382.9 382.9 OTITIS MEDIA NOS

462 462 ACUTE PHARYNGITIS

463 463 ACUTE TONSILLITIS

465.9 465.9 ACUTE URI NOS

466.0 466.0 ACUTE BRONCHITIS

473.9 473.9 CHRONIC SINUSITIS NOS

486 486 PNEUMONIA, ORGANISM NOS

528.0 528.0 STOMATITIS

786.07 786.07 WHEEZING

This does not include misspellings or abbreviations.
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An additional difficulty with using chief complaints,
syndromes or sub-syndromes is that temporal variations
in specific conditions would be inherited from the gen-
eral category of data elements and may not match those
for specific illnesses in the real data. For example, ear
pain may be associated with Otitis externa or Otitis
media. Otitis externa exhibits different seasonal inci-
dence from otitis media (see Figure 3) but, if chief com-
plaint were used to drive the synthetic patient data,
neither seasonal variation would be apparent. The
inverse mapping from illness to chief complaint is also
important for this reason. If cases for a particular illness
(e.g. strep throat - see Figure 4) are spread across more
than one chief complaint (as they usually are), it is diffi-
cult to recover the timeline for this illness reliably from
the chief complaints. Conversely, different timelines for
variations in a syndrome or subsyndrome (e.g. falls) can-
not be recovered by using the timeline for the syndrome
or sub-syndrome alone (see Figure 5).
Next, let us consider using ICD-9 code as the driving

data element. Although the final diagnosis ICD-9 code
does not always completely describe or define the
underlying illness or injury of a patient [45,46], there is

a relatively clear relationship between final diagnosis
ICD-9 code and the care that a patient would receive, as
well as possible chief complaints, syndromes and sub-
syndromes. There is some overlap in the mapping from
underlying illness or injury to ICD-9 code, because of
inexact coding, coding conventions and insurance reim-
bursement rules. The timelines for specific ICD-9 codes
should reflect, to a certain degree, seasonal or sporadic
variations in disease and injury occurrences. We also
note that this is the data element that is least likely to
be omitted in an EMR. Thus, we settled on the final
diagnosis ICD-9 code as the “driving” data element. In
other words, we replicated statistical and mathematical
properties of the ICD-9 code time series and used those
to impose those illnesses and injuries on the synthetic
patients. All attributes of the patients were chosen by
using the final diagnosis ICD-9 code as the determining
variable for age (within the age group), gender, race/eth-
nic group, and syndrome and sub-syndrome classifica-
tions. The use of a single ICD-9 code as the driving
data element proved to be sufficient for this age group
because the majority of the visits in the real data exhib-
ited a single ICD-9 code. Other age groups may require

Figure 3 Seasonal Differences between two underlying causes of the chief complaint “ear pain” (or “ear ache”) from the real data,
along with seasonal distribution of “ear pain.” Note that using the timeline for “ear pain” to drive patient visit data would not
recover the seasonal variation of either cause.
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a multi-dimensional ICD-9 code map, depending on the
characteristics present in the real data.
The BioSense dataset contained 6426 clinical activity

records for Emergency (ER) patients and 3248 records
for outpatient (OP) patients. Of the 6426 ER visit
records, 65% of the visits had 29 different final diagnosis
ICD-9 codes with 100 or more patient visits. These 29
included ICD-9 codes 873., 382., 493., 465., and 034 as
the codes with the most patient visits; those 5 ICD-9

codes comprised 28% of the patient visit records. How-
ever, we reconstructed timelines for 295 ICD-9 final
diagnosis codes for the synthetic ER patients. Of the
3248 OP visits, 43% of the visits had 14 different final
diagnosis ICD-9 codes with 60 or more patient visits.
These 14 included codes 382, 079, 462, and 034.
Because the primary diagnosis and any secondary

diagnoses were not differentiated in the BioSense dataset
we received, we used a convention to define the primary

Figure 4 The inverse map from underlying illness to Chief Complaint is not well defined; multiple overlapping and non overlapping
chief complaints contain the strep throat cases.

Figure 5 Seasonal distribution of two underlying causes of the subsyndrome “falls.” Using subsyndrome alone to generate synthetic
patients would not recover the seasonal variation of different types of falls.
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diagnosis. For each patient in the real data set, we
sorted the final diagnosis codes in numeric order, with
the exception that specific injury codes (prefixed E)
were excluded from occurring as primary diagnoses.
The first code (after alphanumerically sorting) was
defined to be the primary diagnosis. The time series of
healthcare events related to this primary diagnosis were
mimicked to produce the synthetic patient timelines.
Furthermore, we verified that this set of primary diagno-
sis ICD-9 codes did not contain diagnoses that were
either considered rare by a subject matter expert or
never appeared as a single primary diagnosis. This pro-
cedure thereby assured that sorting the ICD-9 codes
and using the first code as the primary diagnosis did not
omit any other potential primary diagnoses.
Rare diagnoses, diagnoses that are unusual in this age

group, and diagnoses that included multiple congenital
conditions were excluded from consideration because an
individual could be identified from such a diagnosis
together with knowledge of the particular region. Produ-
cing multiple records from these ICD-9 codes in order to
remove the possibility of identification would yield a
higher-than-usual incidence of rare or unusual conditions
in the synthetic data. Although it could be argued that
exclusion of rare diagnoses reduces the fidelity and realism
of the synthetic data, a data set without the particular rare
diagnoses that were excluded is not unrealistic. Care mod-
els for randomly chosen rare or unusual illnesses or condi-
tions could be synthesized using expert opinion to
improve the realism of a large synthetic data set.
We extracted the timelines of truncated (without

detail codes after the decimal point) final diagnosis ICD-
9 codes from the clinical activity records of the real data
and reconstructed similar (but not identical) timelines in
two ways, dependent on the sparseness or richness of
the data stream. For time series with on average more
than 1 case per week, we performed a Haar wavelet-2
[47] reconstruction to de-noise but replicate the fre-
quencies in the time series. We tested reconstructions
using both Haar and Daubechies wavelets as well as a
reconstruction based on nonlinear prediction (see, e.g.
[48] section 4.2). The Haar wavelet-2 reconstruction
yielded the best prediction in terms of root-mean-square
(rms) values and total numbers of cases. For time series
with less than 1 case per week, we calculated seasonally-
varying weekly Poisson parameters. We reconstructed
those time series by taking Poisson draws from the spe-
cified distribution, and by using day-of-week probabil-
ities from the actual time series (again, adjusted
seasonally) to assign a day of the week to the cases.
Demographic data was extracted from the real data,
keyed from primary final diagnosis ICD-9 code, and
assigned to each synthetic patient based on the primary
ICD-9 code. The birth date for each synthetic patient

was chosen randomly based on the synthetic patient’s
age to further distance each synthetic patient’s identity
from that of a real patient. Additional ICD-9 codes were
assigned to the synthetic patients according to a season-
ally varying multivariate distribution dependent on pri-
mary diagnosis ICD-9 code. Sub-syndromes and
syndromes were assigned to the synthetic patients
dependent on all the final diagnosis ICD-9 codes using
the patterns extracted from the real EMR data. The
patient’s visit descriptor with the basic characteristics of
the synthetic patient’s visit includes patient’s age, gen-
der, race, ethnic group, syndromes, sub-syndromes, and
final diagnosis ICD-9 codes. At this point, the basic visit
descriptors for the synthetic patients contained enough
information for the identification of closest patient care
descriptors (Figure 2) to proceed. We note that the
chief complaint is that of the pattern of care rather than
chosen from a distribution based on the final diagnosis
ICD-9 code. Since the synthetic background patients
were created from ICD-9 code streams of the real
patient population, the patterns of care that this popula-
tion would receive were present in the real data. We
note that the synthetic patients mimicked rather than
exactly duplicated the real patient population: no syn-
thetic patient matched a real patient exactly in age, gen-
der, demographic variables and visit information (ICD-9
codes, syndromes and sub-syndromes) although as a
group the age, gender, demographic variables and ICD-9
diagnoses displayed the same statistical distributions as
the real data. Although this was precisely the intent of
producing completely synthetic patient identities, this
inexact matching made locating appropriate patterns of
care for the synthetic patients complicated. This method
cannot match the multidimensional data fidelity of, for
example, a shuffling and anonymization algorithm (e.g.
RBNR). However, it does reproduce many of the multi-
ple dimensions present in the real data (see verification
results here and in [49]) and mitigates many objections
to dissemination of anonymized and shuffled data. In
the next section we describe, in detail, the methods for
identifying patterns of care for both the injected disease
victims and for the background synthetic patients. The
identification of the pattern of care for the background
patients is another safeguard for anonymization.
Although it was not necessary for this particular data
set, the algorithm that chooses the care model can be
adapted to exclude any exact matches in demographics,
ICD-9 codes, syndromes and sub-syndromes from
consideration.

II.e Step Two: Identification of Closest Patient Care
Models and Descriptors
Step Two performs the identification of the medical care
that each of the synthetic patients would receive. Basic
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characteristics of the synthetic patient are coming from
the Injected Victim Generation Model (see Figure 1)/
Background Patient Generation Model (see Figure 2).
They include syndromes, sub-syndromes, age, gender,
race and ethnic group of each synthetic patient. For the
background patient EMRs, these characteristics addi-
tionally include visit information and the final diagnosis
ICD-9 codes.
Step 2 for Injected Victim Generation operates on

Patient Care Descriptors (Figure 1) and for Background
Patient Generation it operates on Analysis Visit Descrip-
tors (Figure 2). A distance measure is defined, and the
closest Patient Care Descriptor/Analysis Visit Descriptor
is identified in the original data set. The information
from this Patient Care Descriptor/Analysis Visit Descrip-
tor is next given to major step 3: Adaptation of Patient
Care Model. The steps mentioned need to be executed
separately for each synthetic patient (and for each visit
in case of Background Patient Generation. These steps
are described in detail in Section II.f.
Before the above steps can be executed, Patient Care

Models, Patient Care Descriptors, and Analysis Visit
Descriptors need to be extracted from the EMR data
set. This is a process that is performed only once for
the whole data set. It is described in detail later in this
section. The computation of Patient Care Models and
Patient Care descriptors is computationally expensive: it
takes about 30 sec per patient. For 10,000 patients such
a computation takes about 80 hours on a 32-bit PC.
Patient Care Models
A Patient Care Model [50] is a sequence of all the health
care encounters (that we will also call events) that were
present in the original EMR data set for a given patient.
The care model consists of up to seven types of events: 1)
Analysis visit (abbreviated AVisit); 2) Laboratory order; 3)
Laboratory result; 4) Radiology order; 5) Radiology result,
6) Prescription order (abbreviated Rx), 7) Death event - if
applicable. The events in the extracted care model are
sequentially ordered based on the dates and times they
occurred (as present in the data).
The AVisit contains the information about a given

patient visit including patient’s demographic data, visit
identification number, visit date, syndromes, and sub-
syndromes. For Background Patient Generation, AVisit
also incorporates working diagnoses ICD-9 codes and
final diagnoses ICD-9 codes. The demographic data con-
sists of patient birth date, age, race, ethnic group, and
gender. Inside the laboratory orders, there is information
on each of the laboratory tests that were ordered during
a given visit, including date and time. In the laboratory
results, there is information on each of the labs with, for
example, bacteria identified or information that the test
was negative. Individual Patient Care Models are of dif-
ferent lengths (depending on the number of visits and

specific information in laboratory orders, laboratory
results, radiology orders, radiology results and Rx
orders). People who came only once and did not have
any laboratory or radiology orders have patient care
models with one record. People who came many times
and had many laboratory or radiology orders and results
have very lengthy care models (hundreds of records).
Figure 6 shows the Patient Care Model for a 4-11 year
old girl with two AVisits, one laboratory test (for Strep),
one radiology test (DX Sinus paranasal complete) and
one radiology result (DX Sinus paranasal complete).
Patient Care Descriptors
Patient Care Descriptors summarize Patient Care Mod-
els. For each Patient Care Model, one Patient Care
Descriptor is computed. For Background Patient Gen-
eration, Patient Care Descriptors consist of individual
Analysis Visit Descriptors (see Table 3 and Table 4) that
describe a given visit in detail, including any laboratory
and radiology tests related to that visit. The Analysis
Visit Descriptor for visit 2307262 is shown in Table 3. It
has many empty fields because there were no laboratory
or radiology orders or results related to that visit. The
Analysis Visit Descriptor for visit 3102841 (Table 4) is
more complicated because it contains information on
one laboratory order, one radiology order and one radi-
ology result. If a given patient (e.g., the one from Figure
3) had two visits, his or her Patient Care Descriptor will
consist of two Analysis Visit Descriptors chronologically
ordered. For that patient, the Patient Care Descriptor
encompasses the Analysis Visit Descriptor for visit
2307262 and the Analysis Visit Descriptor for visit
3102841. Should the patient visit the hospital often and
have 30 analysis visits, his or her Patient Care Descrip-
tor would consist of 30 Analysis Visit Descriptors.
For Injected Victim Generation because lower level of

detail was available, Patient Care Descriptors summarize
all the care given to a patient without distinguishing for
which Avisit the care occurred. An example Patient
Care Descriptor for Background Patient Generation is
shown in Table 5. In addition to patient identification
number, ethnic and demographic information, it con-
tains the numbers of AVisits, laboratory orders and
results, radiology orders and results, Rx orders, all the
syndromes, sub-syndromes, types of laboratory and radi-
ology tests, and test results.
Extraction of Existing Patient Care Models and Descriptors
The goal of the methodology developed is to derive,
from the available real EMR data, a care model of how
the patients are treated. This method has the following
main steps (Figures 7 and 8):
1) Build Patient Care Models - sequences of patient

care events for each patient.
2) Build Patient Care Descriptors summarizing Patient

Care Models.
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Figure 7 shows the procedure for Injected Victim
Generation, and Figure 8 shows the procedure for Back-
ground Patient Generation. The first part of the proce-
dure is exactly the same in both cases: Patient Care
Models are computed from the EMRs anonymized by
the RBNR algorithm and; all seven tables (described in
Section II.c) with RBNR records are accessed in order to
extract all the information pertaining to a given patient.
For Synthetic Inject Records Generation (Figure 7),

the Patient Care Descriptors are determined next, one
descriptor per patient. An example Patient Care
Descriptor was shown in Table 5. However, for Back-
ground Patient Generation (Figure 8), the procedure is
slightly more complicated: after the calculation of Ana-
lysis Visit Descriptors (one descriptor per analysis visit),
they are grouped into Patient Care Descriptors. The
Analysis Visit Descriptors are ordered by occurrence
date in the Patient Care Descriptors. The process of
building both Analysis Visit and Patient Care descriptors
is completely data driven: if there are n different micro-
organisms identified in the data set, there will be n

corresponding fields in the descriptor; if there are m dif-
ferent types of laboratory tests in the data set, there will
be m corresponding attributes in the descriptor.
Identification of Closest Descriptors
The information coming from Step One into Step Two
is different for the Injected Victim Generation (Figure 1)
and Background Patient Generation (Figure 2). For
Injected Victim Generation, this information does not
include any data about individual visits for a given
patient (Figure 1). For our tularemia example, this infor-
mation only contains certain syndromes and sub-syn-
dromes related to tularemia-like illness at different
stages of disease progression (e.g., fever, cough, head-
ache, sore throat, malaise and fatigue, muscle aches,
chest pain, nausea and vomiting, abdominal pain, diffi-
culty breathing, respiratory failure, rash). This is the rea-
son for having the matching algorithm, subsequently
described, operate on Patient Care Descriptors.
In the case of Background Patient Generation, the

information coming from Step One into Step Two is
much richer: it contains a high level description of every

Figure 6 Example of Patient Care Model.
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patient visit including syndromes, sub-syndromes, and
final ICD-9 codes (Figure 2). Because of the high granu-
larity of this information, it is possible to operate on
individual patient visits, and hence the matching algo-
rithm uses Analysis Visit Descriptors.
For Injected Victim Generation, the process of finding

the closest set of patient care descriptors is shown as

step 2 on Figure 1. A distance measure is computed
between the inject descriptors and existing Patient Care
Descriptors. The few closest descriptors are identified
(Distance Measure). Next, the patient care models corre-
sponding to the Closest Patient Care Descriptors are
selected from the background data (Closest Care Model).

Table 3 Example Analysis Visit Descriptor (for Visit
2307262)

Patient Id 127151

Visit Id 2307262

Visit Date 12AUG2006:20:15:00.000

Patient Class E

Age Range 4-11 Years

Gender F

Race White

Ethnic Group Not Hispanic or Latino

Deceased Flag

Deceased Date

Syndrome 1 Respiratory

Syndrome 2

... ...

Subsyndrome 1 Otitis media

Subsyndrome 2

... ...

Working Diagnosis 1 388.7

Working Diagnosis 2

...

Final Diagnosis 1 382.7

Final Diagnosis 2

...

Number Laboratory Orders

Number Laboratory Results

Number Radiology Orders

Number Radiology Results

Number Rx Orders

Botulism Like

Fever

...

Respiratory 1

...

Abdominal pain

...

Otitis media 1

...

Blood Culture

MRSA Culture

...

Strep Group A Culture

Urine Culture

DX Chest

DX Sinus Paranasal

Table 4 Example Analysis Visit Descriptor (for Visit
3102841)

Patient Id 127151

Visit Id 3102841

Visit Date 10JAN2007:08:41:07.000

Patient Class E

Age Range 4-11 Years

Gender F

Race White

Ethnic Group Not Hispanic or Latino

Deceased Flag

Deceased Date

Syndrome 1 Fever

Syndrome 2 Respiratory

... ...

Subsyndrome 1 Fever

Subsyndrome 2 Headache

... ...

Working Diagnosis 1 462

Working Diagnosis 2

...

Final Diagnosis 1 462

Final Diagnosis 2 465.9

...

Number Laboratory Orders 1

Number Laboratory Results

Number Radiology Orders 1

Number Radiology Results 1

Number Rx Orders

Botulism Like

Fever 1

...

Respiratory 1

...

Abdominal pain

Abdominal cramps

...

Headache 1

...

Blood Culture

MRSA Culture

...

Strep Group A Culture 1

Urine Culture

DX Chest

DX Sinus Paranasal 2
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A distance measure is used to identify the closest
(minimum distance) Patient Care Descriptor to the
desired inject. Gower’s General Similarity Coefficient
[51] and several Euclidean distances were investigated.
The distance measure needs to be well-tuned to the ill-
ness of interest because its goal is to identify the
patients who have attributes similar to those of the
inject. Certain attributes are not related to tularemia,
and therefore their presence or absence is inconsequen-
tial and for that reason these attributes will not be used

in the distance measure. An example of such an attri-
bute is Cardiac dysrhythmias because whether or not a
person has Cardiac dysrhythmias sub-syndrome, this
person may have symptoms similar to those of tularemia
and the treatment will also be similar.
The Euclidean distance operates on the following 23

attributes: Syndrome attributes - Fever, Gastrointestinal,
Rash, Respiratory; and Sub-syndrome attributes -
Abdominal pain, Alteration of consciousness, Chest
pain, Convulsions, Cough, Diarrhea, Dyspnea, Headache,
Hemoptysis, Hemorrhage, Influenza-like illness, Lym-
phadenopathy, Neoplasms, Malaise and fatigue, Nausea
and vomiting, Respiratory failure, Septicemia and bacter-
emia, Upper respiratory infections, Severe illness or
death.
The Euclidean distance, dist(I, P), between the inject

descriptor I, and existing Patient Care Descriptor P is
defined as:

dist I P w I Pi i i i,( ) = −( )=Σ 1
23 2 (1)

Where wi = 1 for 1 ≤ = i ≤ = 22, and w23 = 0.1; Ii and
Pi signify the value of a given attribute (from the attri-
butes specified in the previous paragraph) for the inject
descriptor and patient care descriptor, respectively. The
attribute for which the weight of 0.1 is used is Severe ill-
ness or death. One might ask why one of the attributes
used in the distance measure is neoplasms: neoplasms
have nothing to do with tularemia, so why use this sub-
syndrome in the distance measure? The fact that they
have nothing to do with tularemia is precisely why they
are needed. Before we included neoplasms in the dis-
tance measure, most of the closest patient care descrip-
tors retrieved for injects with malaise and fatigue had
neoplasms. We wanted to exclude patients with neo-
plasms because their care models are too different from
those with tularemia. Therefore, for all the injects, we
set the neoplasms attribute to 0, and using the distance
measure in Eq. (1), we were able to retrieve patient care
descriptors that had no neoplasms as diagnosis. Ten
nearest neighbors (in terms of the Euclidean distance),
from the same age group as the inject are retrieved.
These nearest neighbors are processed by the Specific
Disease Care Modifier (described in Section II.f).
For the Background Patient Generation, the procedure

described below is performed for every synthetic visit of
every synthetic patient. The goal is to find, for each syn-
thetic visit, a visit that is as similar as possible in the
real data. Figure 9 depicts how the closest analysis visit
descriptor to a synthetic visit descriptor is determined.
The basic characteristics of the synthetic patient, in the
form of information about synthetic visits for a given
patient, are produced by Patient Generation Model (see

Table 5 Patient Care Descriptor for Patient 127151

Patient Id 127151

Age Range 4-11 Years

Gender F

Race White

Ethnic Group Not Hispanic or Latino

Deceased Flag

Number AVisits 2

Number Laboratory Orders 1

Number Laboratory Results

Number Radiology Orders 1

Number Radiology Results 1

Number Rx Orders

Botulism Like

Fever 1

GI

Hemorrhagic Illness

Localized Cutaneous Lesion

Neurological

Rash

Respiratory 1

Severe Illness or Death

Specific Infection

Other

Abdominal pain

Abdominal cramps

...

Headache 1

...

Otitis media 1

...

Blood Culture

MRSA Culture

...

Strep Group A Culture 1

Urine Culture

DX Ankle

DX Chest

...

DX Sinus Paranasal 2

...

Buczak et al. BMC Medical Informatics and Decision Making 2010, 10:59
http://www.biomedcentral.com/1472-6947/10/59

Page 14 of 28



Figure 2). Each synthetic visit is characterized by final
diagnosis ICD-9 codes, syndromes, sub-syndromes, age,
gender, race and ethnic group of the synthetic patient.
A distance (the distance measure used is described
further in this section) is computed between a given
synthetic visit and all the analysis visit descriptors
resulting in a set of closest (i.e. minimum distance) ana-
lysis visit descriptors. All the information about that
visit is extracted from the corresponding Patient Care
Model.
We define a distance measure between a synthetic

visit and an Analysis Visit Descriptor that is a combina-
tion of weighted Euclidean distance and Jaccard distance
[52]. The Jaccard index (or similarity coefficient) mea-
sures similarity between two sets, and is defined as the
size of the intersection divided by the size of the union
of the sets:

J A B
A B

A B
( , ) =

∩
∪

(2)

The Jaccard index is a useful measure of similarity in
cases of sets with binary attributes because it takes into
account not only how many attributes agree but also
how many disagree. If two sets, A and B, have n attri-
butes each, then Jaccard index measures the attribute
overlap that A and B share. The Jaccard distance is then
defined as:

J A B J A B
A B A B

A Bdist( , ) ( , )= − =
∪ − ∩

∪
1 (3)

We defined and used the following distance measure
to identify the closest Analysis Visit Descriptor to a
given synthetic visit descriptor:

dist A S J A S
E A S

dist
dist( , ) ( , )

( , )= +
70

(4)

where A stands for Analysis Visit Descriptor, S - for
Synthetic Visit Descriptor, and Edist - for Euclidean dis-
tance. Jaccard distance is computed on all binary

Figure 7 Identification of Existing Patient Care Models and Patient Care Descriptors for Injected Victim Generation.
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attributes: truncated final diagnosis ICD-9 codes, syn-
dromes, and sub-syndromes; Euclidean distance is only
computed on a non-binary attribute (age). Jdist(A,S) has
a value between 0 and 1 (inclusive) and Edist(A,S) has a
value between 0 and 7 (inclusive). In order to make
both distances contribute the same to the final distance
measure, Edist(A,S) would have to be divided by 7.
When designing dist(A,S) we wanted the age attribute
to contribute only 1/10 as much as the Jdist(A,S). There-
fore, we need to divide the Euclidean distance by 70 in
Equation 4 above. Because it is most important to have
agreement on as many final diagnosis ICD-9 codes, syn-
dromes, and sub-syndromes as possible, the agreement
in age between Analysis Visit Descriptor and Synthetic
Visit Descriptor is secondary.
Next we examine the search methods and rationale

behind assignment of a specific care model to a syn-
thetic patient. These processes differed both in automa-
tion level and in specific procedures for the synthetic
tularemia victims and for the synthetic background
patients.

II.f Step Three: Adaptation of Patient Care Model
Care Model Assignment and Adaptation
The third step in the process (see Figure 1 and Figure 2)
is adapting the chosen care model to the specific syn-
thetic patient and actually writing the electronic medical
records. During the development of this project, the
methodology evolved significantly between the creation
of the injected tularemia victims and the creation of the
synthetic background records. We were able to auto-
mate nearly all of the steps for adaptation of care mod-
els for the synthetic background patients but there was
considerable non-automated effort in the adaptation of
the care models for the synthetic tularemia victims.
A medical expert inspected the closest care models

that were identified for the synthetic tularemia victims
and made recommendations for tests that either needed
to be deleted or added, with the assumption that the
attending physician might not realize the underlying ill-
ness were tularemia. We added either rapid strep tests
or influenza tests to some records, but adjusted any
results to reflect the absence of either strep or influenza.

Figure 8 Identification of Existing Patient Care Models and Patient Care Descriptors for Background Patient Generation.
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If respiratory or blood cultures were taken, we modified
results to indicate no growth, reflecting the fastidious
nature of tularemia in routine cultures. In some cases,
we added chest x-rays to the records of patients whose
care models did not include them to suggest a physi-
cian’s possible response to an unexplained severity or
persistence of respiratory symptoms. Chest x-ray results
were modified to include evidence of pathology that
would be common for pneumonic tularemia patients.
Because the care models had to be inspected and edited
individually and the patients assessed based on the
symptoms generated by the injection algorithm, little
automation was possible for this phase of the synthetic
tularemia injection method. This is the biggest drawback
of the methodology proposed.
In the case of Background Patient Generation, the dis-

tance measure used to find care models identified up to
ten care model candidates for each synthetic back-
ground patient. We automated the process of choosing
the most appropriate care model from those identified
by examining specific ICD-9 codes and exact syndromes
and sub-syndromes in the patient visit records and in
the care models. The hierarchy was first to try to match

all exact ICD-9 final diagnosis codes in the patient visit
record. If multiple care models still matched the patient
visit record, the algorithm chose by specific sub-syn-
drome and syndrome codes. If multiple care models still
matched after this step, a care model was chosen ran-
domly from the remaining candidates, with equal prob-
ability given to each.
The final part of Step Three of the methodology is the

adaptation of the entire EMR to the particular patient to
assure that there is no exact match between a synthetic
and a real patient. This procedure is described in the
next section.
Injection Algorithm
The injection algorithm unites the patient visit record
and the care model to produce a consistent EMR for a
synthetic patient so that the EMR has visit-linked entries
in the six tables - analysis visit, clinical activity, radiol-
ogy orders, radiology results, laboratory orders and
laboratory results. Because the Rx orders in the real data
set were incomplete and sporadic, we did not generate
the synthetic Rx orders table. The injection algorithm
time-stamps the entries subsequent to the visit date by
using the time intervals found in the care model with

Figure 9 Identification of closest analysis visit descriptor to a synthetic visit descriptor.
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randomly chosen (uniform) variation. Any radiology or
laboratory orders are assigned unique identification
numbers, and these numbers are carried through to the
radiology and laboratory results if present. The algo-
rithm also produces summaries of clinical activity and
sub-syndrome/syndrome information in the format
found in the model data and writes these in the analysis
visit record. All formats found in the original records
are duplicated by the injection algorithm. However,
patient zip code, health department identifier, and loca-
tion are not synthesized for the synthetic background
records. The algorithm writes the tables to comma-sepa-
rated-value (csv) files, preserving leading zeros on ICD-9
codes and producing SAS date formats as well as MS-
EXCEL-readable formats.

III. Results
III.a Tularemia Injects
The simulated tularemia outbreak resulted in 203 syn-
thetic victims. Of these victims, 19 individuals sought
care for prodrome symptoms but none of these syn-
thetic patients were admitted to a hospital at that time.
All 203 victims sought care for a severe respiratory ill-
ness after 18-22 days; there were 57 synthetic patient
admissions and 17 synthetic victim deaths.
As part of the validation process, a medical expert

reviewed all the synthetic records and determined that
42 records (i.e. 19% of the inject records) had content
problems or inconsistencies. The predominant problem
was a string of ICD-9 codes that did not match any of
the expected symptoms of tularemia. For example, a
patient would be assigned ICD-9 codes of “250.00 DMII
WO CMP NT ST UNCNTR”, “272.4 HYPERLIPIDE-
MIA NEC/NOS”, “410.71 SUBENDO INFARCT,
INITIAL” as well as the ICD-9 code of “486 PNEUMO-
NIA, NOS.” Because no cases of tularemia were found
in the real data, it was expected that some difficulty
would arise with matching the synthetic patient descrip-
tors to an appropriate care model. Of the 221 visit
records (for 203 patients), 36 were deemed unsuitable
for this reason. Other problems included incompatible
ICD-9 codes (2 records), for example, both “786.50
CHEST PAIN NOS” and “786.52 PAINFUL RESPIRA-
TION,” exact duplication of real EMR information (2
records), and odd or incorrect ICD-9 codes (2 records)
such as a diagnosis of “263.9 PROTEIN-CAL MAL-
NUTR NOS.” These 42 records were adjusted manually
by editing the fields that were deemed inconsistent, odd,
or erroneous. It was noted by the medical expert that
the presentation of tularemia in the remaining synthetic
records was as expected.
The synthesized electronic medical records included

syndrome and sub-syndrome classifications for the
injected patients. The severe respiratory illness imposed

on the victims was manifested in EMRs that included
multiple syndrome and sub-syndrome classifications. Of
the 221 visits for 203 victims, over 92% exhibited the
fever syndrome, nearly 80% exhibited the respiratory
syndrome, and 12% had severe illness or death. There
were also over 10% of patients with hemorrhagic illness
and over 12% with gastrointestinal syndrome. Sub-syn-
drome classifications for the injected patients included
over 44% with cough, nearly 40% with dyspnea, over
47% with fever, and 19% with pneumonia or lung
abscess. Many of the age 50+ patients also exhibited car-
diac dysrhythmias and mental disorders. There were
also more than 12% with respiratory failure and nearly
10% with shock (see Table 5 for syndromes and Table 6
for sub-syndromes).
Of the 203 patients, 107 had from 1 to 28 laboratory

orders. The most common test was a blood culture, for
nearly 40% of the laboratory tests. The next most com-
mon test was respiratory culture and smear at nearly
13% of the tests (see Table 7). There were also some
very specific tests for C. difficile toxin (11.33%) and
Strep Group A (2.63%). Laboratory results were forced
to be negative because of the fastidious nature of tulare-
mia [37]; any bacterial cultures were forced to either
exhibit the results “no growth” or normal flora.
Of the 112 synthetic patients who had radiology

orders, over 80% had chest x-rays (see Table 8). Radiol-
ogy results were imposed on the synthetic victims to
indicate evidence of bilateral peribronchial infiltrates
and multi-lobar opacities, bilateral pleural effusions,
bilateral sub-segmental infiltrates with foci of peribron-
chial consolidation, or miliary patterns of multiple ace-
nodular opacities 3-6 mm in diameter, all characteristic
of primary pneumonic tularemia (see Table 9).
For illustrative purposes, we will now follow two of

the synthetic tularemia patients through the various
records of the EMR, as seen in Table 10. The first
patient, patient ID 214973, analysis visit ID 536919,
sought care for prodrome symptoms. We see an analysis

Table 6 Syndromes assigned to synthetic tularemia
injects

Syndrome % of 221 visits with listed syndrome

Fever 92.76

Gastrointestinal 12.22

Hemorrhagic Illness 10.86

Localized Cutaneous Lesion .45

Lymphadenitis 1.81

Neurological 12.67

Rash 4.52

Respiratory 79.64

Severe Illness or Death 11.76

Specific Infection 7.24
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visit date of Aug 3 2006, at which the patient reported
fever and other flu-like symptoms. The syndromes
assigned were fever and respiratory, and the sub-
syndromes were fever and influenza-like illness. This

patient had one clinical activity record for the chief
complaint, no laboratory or radiology orders (or results)
and was discharged the same day. The second synthetic
tularemia patient, patient ID 210042, analysis visit ID

Table 7 Sub-syndromes assigned to synthetic tularemia injects

Sub-Syndrome % of 221 visits with listed Sub-
Syndrome

Sub-Syndrome % of 221 visits with listed Sub-
Syndrome

Abdominal Pain 8.14 Heart disease, ischemic 2.26

Alteration of Consciousness 12.67 Hempotysis 7.24

Anemia 10.86 Hypotension 1.81

Asthma 3.62 Influenza-like Illness 8.14

Bronchitis and Bronchiolitis 11.31 Intestinal infections, ill-
defined

.45

Cardiac dysrythmias 14.48 Lymphadenopathy 1.81

Chest pain 9.95 Malaise and fatigue .45

Coagulation defects .45 Mental disorders 10.86

Coma 8.14 Migraine .45

COPD 1.36 Nausea and vomiting 9.95

Cough 44.34 Pleurisy .45

Cyanosis and hypoxemia 2.71 Pneumonia and lung abscess 19.00

Death .45 Pupurae and petechiae 1.36

Dehydration 1.81 Rash 10.41

Diabetes mellitus 1.81 Respiratory failure 12.67

Diarrhea 8.60 Septicemia and bacteremia 4.52

Dizziness .45 Shock 9.95

Dyspnea 39.82 Skin infection .45

Edema 2.71 Syncope and collapse .45

Fever 47.51 Upper respiratory infections 2.26

Gastrointestinal
hemorrhage

2.71 Urinary tract infections 1.81

Headache .90 Viral infection, unspecified 11.31

Table 8 Laboratory Tests for Synthetic Tularemia Injects

Ordered Test Name Local (Laboratory
Test)

Percent of Tests
Ordered

Ordered Test Name Local (Laboratory
Test)

Percent of Tests
Ordered

ASO Titer(ASO) .66 Influenza Antigen(FLUAG) 3.45

Aerobic .16 Legionella Ag Urine Culture(LEGEIA) .82

Blood Culture (BLC) 39.90 Lyme IgG .66

Blood Culture Isolator(BLDC) .66 Mono Test (MONO) .16

C Difficile Toxin A 11.33 Ova and Parasite Exam (OVAP) 2.46

C Reactive Protein (CRP) 3.28 Prealbumin (PAB) 1.64

CMV AB IgG (CMVGAB) .66 Reproductive Culture .66

CMV AB IgM(CMVMAB) .66 Respiratory Culture and Smear(RTCS) 12.97

Chlamydia/GC by Amplified .66 Respiratory Viral Panel Acute(RVPA) .66

Probe(CGPT)

Enteric Pathogen Culture(ENPC) 2.46 Strep Group A Screen Rapid(RSTREP) 2.63

Epstein Barr Virus Antibody .66 Urine Culture (URC) 10.67

Screen (EBVSRN)

Gram Smear (GRAS) .16 Urine Culture and Smear (URCS) .16

Haptoglobin (HAPT) 1.15

Herpes Virus Six Culture(HHV6Q) .66

There were 609 tests ordered.
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536120, was an outpatient. This patient had a reason for
visit of coug (sic) and fever and was assigned syndromes
of respiratory and fever, sub-syndromes of cough and
fever. This patient had four clinical activity records: for
chief complaint, working diagnosis and final diagnosis.
The patient had one radiology order and three radiology
results records. This synthetic patient had a routine
discharge.

III.b. Background Patient Generation
We generated approximately 3000 synthetic background
patient EMRs for the 4-11 year age-group. These were
generated several times to insure that the algorithms
performed consistently. There were 295 different pri-
mary diagnosis ICD-9 codes for the group of synthetic
emergency patients and 294 different primary diagnosis
ICD-9 codes for the group of synthetic outpatients.
These ICD-9 codes included both illness and injury. In

fact, the most common primary diagnosis for the emer-
gency room patients in this age group was head lacera-
tion. To illustrate, we will follow the two synthetic
background patient EMRs described in Table 11. The
first (Patient ID 60343) is a 4-year old girl with chief
complaint of sore throat. The synthetic patient record
has a syndrome assignment of respiratory and sub-syn-
drome assignment of upper respiratory infections. The
clinical activity record has 3 entries - for chief com-
plaint, working diagnosis of pharyngitis, and final diag-
nosis of pharyngitis. There is one laboratory order and
it is for a rapid strep test. There are no laboratory
results for rapid strep tests in any of the synthetic
EMRs, reflecting the pattern found in the real EMRs.
There are no radiology orders or results for this syn-
thetic patient, who had a routine discharge.
The second synthetic patient is an 11-year old boy

with a chief complaint of clavicular pain. The analysis
visit record has sub-syndromes of falls and fractures and
dislocation. There are 4 clinical activity records: for

chief complaint, working diagnosis (chest pain) and final
diagnosis (closed clavicle fracture and fall from play-
ground equipment). This synthetic patient record has
one radiology order, for a clavicle x-ray, and 2 radiology
results, reflecting the diagnosis of clavicle fracture. This
synthetic patient had a routine discharge.
The descriptors for the synthetic background patients

were built from the truncated 3 or 4- digit ICD-9 codes.
Thus, we encountered an occasional mismatch between
the detailed ICD-9 codes of the synthetic patient and
the detailed ICD-9 codes of the closest care model for
that patient. These mismatched records accounted for
the majority of the errors that were present in the syn-
thetic EMRs before we corrected them. For example, a
synthetic patient’s final diagnosis ICD-9 for a dog bite
was matched to the care model for a non-venomous
insect bite. However, these errors were present in fewer
than 3% of the synthetic patient records (see Table 12).
The remaining 97% of the synthetic patient records
(including all tables relating to the patient: laboratory
orders and results, radiology orders and results, clinical
activity and visit records) exhibited expected care pat-
terns and visit timelines for the synthetic patients.
Overall, there were few errors in the synthetic back-

ground patients. As we see from Table 12, other than
the rarely mismatched care models, errors could occur
in the synthetic visit records themselves. There were
errors concerning ICD-9 codes that were either in the
wrong season (e.g. frostbite in the summer) or ICD-9
codes that should not appear together during the same
visit for the same patient (e.g. a code for nausea and
vomiting in addition to a code for vomiting alone).
There were some syndrome and sub-syndrome assign-
ments that seemed strange and for which examples
could not be found in the real data. There were also
occasional typographic or formatting errors that were
inserted by the algorithms rather than present in the
original text. However, overall, fewer than 3% of the
records exhibited either obvious or non-obvious errors
after inspection by a subject matter expert.
We discussed the reproduction of various statistical

and temporal patterns in the synthetic data in [49].
Overall, the synthetic records were able to mimic most
statistical attributes of the real data quite well. In addi-
tion, seasonal and day-of-week characteristics of the real
data were reproduced in the synthetic data. To illustrate,
consider Figures 10 and 11 showing the seasonal distri-
butions for Otitis Media in outpatient cases and Head
Lacerations in Emergency cases, respectively. In this age
group, Otitis Media cases accounted for over 7% of all
outpatient visits and head lacerations accounted for
more than 9% of emergency visits. We see from these
figures that the seasonal variation in both of these were
reproduced well in the synthetic data.

Table 9 Radiology Orders for synthetic tularemia injects

Ordered Test Name Local (Radiology
Order)

Percent of Tests
Ordered

DX Abdomen 2 View .64

DX Abdomen AP 13.74

DX Abdomen Acute .64

DX Chest 1 View AP 34.50

DX Chest 1 View NR 1.60

DX Chest 2 View 23.64

DX Chest Special Vi 32

DX Small Bowel Series .64

PX Abdomen Portable 2.88

PX Chest 1 V Portable 20.77

PX Cholangiogram In .64
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Table 10 Electronic medical records for two synthetic tularemia inject patients

A) Analysis Visit Table

Analysis Visit ID Patient ID Analysis Visit Date Analysis Visit End
Date

AVPatClass

536919 214973 03AUG2006:05:27:01 03AUG 2006:05:7:01 E

536120 210042 18AUG2006:07:49:21 27AUG2006:18:00:33 O

( Analysis Visit Table continued...)

AVBirthdate AVStandardAge AVAgeRange AVGender AVRaceCode AVRace

25AUG1981:00:00:00 25 20-49 Male 2106-3 White

03JUN1957:00:00:00 47 20-49 Female 2106-3 White

(Analysis Visit Table continued...)

AVEthnicGroupCode AVEthnicGroup AVDischarge Disp
Code

AVDischargeDisp

2186-5 Not Hispanic or Latino 1 Discharged to home or self care (routine discharge)

2186-5 Not Hispanic or Latino 1 Discharged to home or self care (routine discharge)

(Analysis Visit Table continued...)

AVDischargeDate AVPOC AVPOCDate AVDeceaseFlag AVAdmissionTypeCode

04AUG2006:05:37:50 ER 03AUG2006:05:27:01 E

20AUG2006:01:24:37 RA3 19AUG2006:02:41:11 E

(Analysis Visit Table continued...)

AVCASummary AVBucketSummary AVSubSynSummary AVSynSummary

FEVER,OTHER
FLULIKE
SYMPTOMS;

|Emergency - Chief Complaint| |Fever |Influenza-like
illness|

|Fever|Respiratory

780.6 FEVER; 786.2
COUGH;COUG AND
FEVER

|Outpatient - Final Diagnosis|
Outpatient - Reason for Visit|
Outpatient - Working Diagnosis

|Cough|Fever| |Respiratory|Fever|

B) Clinical Activity Table

AnalysisVisitID PatientID AnalysisVIsitDate PatientClass ActivityType ActivitySource

536919 214973 03AUG2006:05:27:01 E CC PV2

536120 210042 18AUG2006:07:49:21 O CC PV2

536120 210042 18AUG2006:07:49:21 O DX DG1

536120 210042 18AUG2006:07:49:21 O DX DG1

536120 210042 18AUG2006:07:49:21 O DX DG1

(Clinical Activity Table continued...)

ActivityCode ActivityText ActivityDate ActivityStatus SourceType

FEVER OTHER FLU LIKE SYMPTOMS 03AUG2006:05:27:01 Hospital

COUG AND FEVER 18AUG2006:07:49:21 Hospital

786.2 786.2 COUGH 18AUG2006:07:49:21 F Hospital

780.6 780.6 FEVER 18AUG2006:07:49:21 F Hospital

786.2 786.2 COUGH 18AUG2006:07:49:21 A Hospital

(Clinical Activity Table continued...)

CategoryType EffectiveBeginDate EffectiveEndDate AnalysisAge AnalysisAgeUnit

Chief Complaint 03AUG2006:06:18:51 03AUG2006:05:27:01 25 Year

Reason For Visit 18AUG2006:22:04:34 18AUG2006:07:49:23 47 Year

Final Diagnosis 27AUG2006:10:31:30 27AUG2006:03:32:34 47 Year

Final Diagnosis 27AUG2006:19:47:07 18AUG2006:07:49:21 47 Year

Final Diagnosis 27AUG2006:17:57:09 18AUG2006:07:49:21 47 Year

(Clinical Activity Table continued...)

AnalysisGender SubSynBitmapText SynBitmapText SubSynIncBitmapText

Male |Fever|Influenza-like Illness| |Fever|Respiratory| |Fever|Influenza-like Illness|

Female |Cough|Fever| |Respiratory|Fever| |Cough|Fever|
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The complete synthetic tularemia and background
data sets can be found on the public health grid [11]
once acceptable security controls are in place.

IV. Discussion and Conclusions
Due to privacy concerns, even sanitized and anonymized
EMRs cannot be shared among researchers developing
bio-surveillance algorithms, methods for improving the
quality of patients’ care or investigating adverse drug

effects. The work presented in this paper aims at remov-
ing this obstacle (i.e., the lack of non-identifiable EMR
data). These new areas of research can only thrive when
abundant, shareable and complete EMR data are avail-
able for use.
We have developed a data-driven method for generating

full synthetic EMRs of tularemia patients as well as of
background patients. The method has three major steps:
1) synthetic patient identity and basic information

Table 10 Electronic medical records for two synthetic tularemia inject patients (Continued)

Female |Cough| |Respiratory| |Cough||

Female |Fever| |Fever| |Fever|

Female |Respiratory| |Respiratory| |Cough|

(Clinical Activity Table continued...)

SubSynIncBitmapRules SynIncBitmapText SynIncBitmapRules

|566|4749| |Fever|Respiratory| |2324|3309|

|296|566| |Respiratory|Fever| |3298|2324|

|2165| |Respiratory| |2885|

C) There are no laboratory orders for these two patients.

D There are no laboratory results for these two patients.

E) Radiology Order Table

PatientID AnalysisVisitID OrderControl AnalysisVisitDate AVServicFacType

210042 536120 NW 18AUG2006:07:49:21 RT

(Radiology Orders continued...)

PatientClass Order Number DiagnosticService ReportDate Results Status

O 44404327 RAD 19AUG2006:03:01:01 P

(Radiology Orders continued...)

BeginDate OrderedTestCodeLocal Ordered
TestNameLocal

ReasonForTest

19AUG2006:03:01:01 15488699 DX Chest 2 View COUGH AND FEVER

F) Radiology Results Table

PatientID AnalysisVisitID RadResultKeyID ResultHeaderNumber AnalysisVisitDate

210042 536120 1 18AUG2006:07:49:21

210042 536120 1 18AUG2006:07:49:21

210042 536120 1 18AUG2006:07:49:21

(Radiology Results continued...)

AVServiceFacType PatientClass Order Number Diagnostic Service ReportDate Results Status

RT O 444004327 RAD 19AUG2006:06:06:32 P

RT O 444004327 RAD 19AUG2006:06:55:41 F

RT O 444004327 RAD 19AUG2006:08:59:32 F

(Radiology Results continued...)

ProcedureDate OrderedTestCodeLocal OrderedTestNameLocal ReasonForTest

18AUG2006:14:01:40 15488699 DX Chest 2 View COUGH AND FEVER

18AUG2006:10:32:15 15488699 DX Chest 2 View COUGH AND FEVER

18AUG2006:11:15:24 15488699 DX Chest 2 View COUGH AND FEVER

(RadiologyResults continued...)

Some fields have been omitted for clarity; most of the omitted fields are blank.

Impressions.

PA AND LATERAL VIEWS OF CHEST Findings: Multiple parenchymal infiltrates seen bilaterally. There are bilateral pleural effusions.
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Table 11 Electronic medical records for two synthetic background patients
A) Analysis Visit Table

AnalysisVisitID Patient ID Visit Count AVFirstVisitID AnalysisVisitDate

72835 60343 1 72835 15JUL2006:18:46:59

5326 62834 1 75326 23JUL2007:19:26:24

(Analysis Visit Table continued...)

AnalysisVisitEndDate AVPatClass AVBirthdate AVAge AVAgeRange

15JUL2006:21:05:04 E 23JUN2002:00:00:00 4 4-11 Years

23AUG2007:18:49:19 E 12SEP1995:00:00:00 11 4-11 Years

(Analysis Visit Table continued...)

AVGender AVRaceCode AVRace AVEthnicGroupCode AVEthnicGroup

F 2106-3 White 2186-5 Not Hispanic or Latino

M 2106-3 White 2186-5 Not Hispanic or Latino

(Analysis Visit Table continued...)

AVDischargeDispCode AVDischargeDisp AVAdmitDate AVDischargeDate

1 Discharged to home or self care (routine
discharge)

15JUL2006:20:14:07 15JUL2006:21:07:21

1 Discharged to home or self care (routine
discharge)

23AUG2007:16:57:59 23AUG2007:18:03:51

(Analysis Visit Table continued...)

AVDeceasedFlag AVDeceasedDate AVCASummary

SORE THROAT;|462 |462 LEFT CLAVICULAR PAIN;|810.02|E884.0|786.59

(Analysis Visit Table continued...)

AVBucketSummary AVSubSynSummary AVSynSummary

Emergency - Chief Complaint|Emergency - Final Diagnosis|
Emergency - Working Diagnosis

Upper_respiratory_infections Respiratory

Emergency-CheifComplaint|Emergency - Final Diagnosis| Emergency - Final Diagnosis|
Emergency - Working Diagnosis

Falls|Fractures_and_dislocation

B) Clinical Activity Table

AnalysisVisitID CAKeyID PatientID AnalysisVisitDate PatientClass

72835 32096443 60343 15JUL2006:18:46:5 E

72835 32096444 60343 15JUL2006:18:46:59 E

72835 32096445 60343 15JUL2006:18:46:59 E

75326 32106099 62834 23JUL2007:19:26:24 E

75326 32106100 62834 23JUL2007:19:26:24 E

75326 32106101 62834 23JUL2007:19:26:24 E

75326 32106102 62834 23JUL2007:19:26:24 E

(Clinical Activity Table continued...)

ActivityType ActivitySource ActivityCode Activity Text

CC PV2 SORE THROAT;

DX DG1 462 462 ACUTE PHARYNGITIS

DX DG1 462 462 ACUTE PHARYNGITIS

CC PV2 LEFT CLAVICULAR PAIN

DX DG1 810.02 810.02 FX CLAVICLE SHAFT-CLOSED

DX DG1 E884.0 E884.0 FALL FROM PLAYGROUND EQUIPMENT

DX DG1 786.59 786.59 CHEST PAIN NEC

(Clinical Activity Table continued...)

ActivityDate CategoryType AnalysisAge AnalysisAgeUnit AnalysisGender

16JUL2006:10:04:00 Chief Complaint 4 Year F

16JUL2006:15:24:31 Final Diagnosis 4 Year F

16JUL2006:02:34:42 Working Diagnosis 4 Year F

26JUL2007:08:09:45 Chief Complaint 11 Year M

26JUL2007:13:39:56 Final Diagnosis 11 Year M

26JUL2007:19:26:24 Final Diagnosis 11 Year M

26JUL2007:19:26:24 Working Diagnosis 11 Year M
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Table 11 Electronic medical records for two synthetic background patients (Continued)

C) Laboratory Orders Table

PatientID AnalysisVisitID LabOrderKeyID ResultHeaderNumber OrderControl

60343 72835 1 NW

(Laboratory Orders Table continued...)

ServiceFacID VisitID AnalysisVisitDate AVServiceFacType PatientClass

45 609251 15JUL2006:00:00 RT E

(Laboratory Orders Table continued...)

OrderNumber FillerOrderNumber DiagnosticService OrderDate BeginDate

440026009 MB 15JUL2006:21:50:03

(Laboratory Orders Table continued...)

OrderedTestCode OrderedTestName OrderedTestCodingSystem OrderedTestCodeLocal

STTH

(Laboratory Orders Table continued...)

OrderedTestNameLocal SpecimenTypeLocal

Strep Group A Culture (STTH) THT

D) No Laboratory Results for these patients

E) Radiology Orders Table

PatientID AnalysisVisitID RadOrderKeyID ResultHeaderNumber OrderControl

62834 75326 1 NW

(Radiology Orders Table continued...)

ServiceFaciD VisitID AnalysisVisitDate AVServiceFacType PatientClass

245 611742 25JUL2007:19:26:24 RT E

(Radiology Orders Table continued...)

Order Number RadiologyNumber DiagnosticService ReportDate ResultsStatus

440067632 RAD 26JUL2007:19:13:30 P

(Radiology Orders Table continued...)

OrderDate BeginDate OrderedTestNameLocal ReasonforTest

26JUL2007:21:05:29 DX Clavicle LEFT Trauma

F) Radiology Results Table

PatientiD AnalysisVisitID RadResultKeyID ResultHeaderNumb OrderControl

62834 75326 5887812 1 RE

62834 75326 5887812 1 RE

(Radiology Results Table continued...)

ServiceFacID VisitID AnalysisVisitDate AVServiceFacType PatientClass

245 611742 25JUL2007:19:26:24 RT E

245 611742 25JUL2007:19:26:24 RT E

(Radiology Results Table continued...)

OrderNumber RadiologyNumber DiagnosticService ReportDate ResultStatus

440067632 RAD 27JUL2007:05:42:35 F

440067632 RAD 26JUL2007:20:41:53 F

(Radiology Results Table continued...)

ProcedureDate OrderedTestCodeLocal OrderedTestNameLocal ReasonForTest

26JUL2007:19:41:37 15488740 DX Clavicle LEFT Trauma

26JUL2007:20:39:31 15488740 DX Clavicle LEFT Trauma

(Radiology Results Table continued...)

Some fields have been omitted for clarity; most of the omitted fields are blank.

Impressions.

CLINICAL HISTORY: Pain following trauma. Technique: Two views were obtained. Comparison: None. Findings: There is a superiorly apex angulated, nondisplaced
fracture of the mid clavicle. No pneumothorax is seen based on the view submitted. IMPRESSION: Nondisplaced fracture of the mid clavicle.
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generation; 2) identification of care patterns that the syn-
thetic patients would receive; and 3) adaptation of patient
care models. The techniques described herein s are data-
driven, meaning that these techniques mine the data in
existing real EMRs in order to extract information about
the patients’ patterns of care, the frequencies of ICD-9
codes, syndromes, and sub-syndromes. The synthetic
EMRs need to mimic rather than duplicate the real EMRs.
That is, no synthetic patient can match a real patient
exactly in age, gender, demographic variables and visit
information, although as a group the age, gender, demo-
graphic variables and diagnoses need to display the same
statistical distributions as the real EMRs.

In the case of tularemia inject generation, 203 syn-
thetic victim records were synthesized. 19 victims
sought care for the prodrome, and all the victims sought
care for the full blown illness. Examples of full EMRs of
two synthetic patients were described in detail. The
method developed lends itself to generating EMRs of
patients with illnesses other than tularemia. If such ill-
nesses are present in the data set, the methodology will
be the same as the one developed for the synthetic
background data. For illnesses not present in the data
set (e.g., those which are bioterrorism related), the ill-
ness needs to be studied using case reports and other
information found in the medical literature. Also, expert

Table 12 Validation of Synthetic background electronic medical records

Error Number of Errors found Percent of total Records

Care Model did not match ICD-9 80 2.4%

codes completely.

ICD-9 Codes contradictory 8 .24%

Gender or Age ICD-9 mismatch 6 .18%

Sub-syndrome or syndrome 4 .12%

assignment inconsistent with ICD-

9 or chief complaint

Typographical or formatting error 4 .12%

Total 91 2.8%

There were 3272 visit records.

Figure 10 Original and synthetic seasonal distribution for ICD-9 code 382 (Otitis Media) - outpatient cases. This ICD-9 accounted for
more than 7% of all outpatient visits.
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medical opinion needs to be taken into consideration
(similar to what we present here for tularemia) in order
to find patterns of care in the data that match the
sequence of symptoms that will be generated in the
course of modeling the illness’s progression in each syn-
thetic victim. For each new illness not present in the
data, this may be a time consuming process.
For the most part, patients 4-11 years old become sick

or injured, get treated, and get well. For this reason, the
4-11 age group was the least complicated with which to
develop the synthesis algorithms. Although there are
quite a few patients in this age group with chronic con-
ditions such as asthma, there were few with co-morbid
conditions that cause repeated visits and extended hos-
pital stays. Thus the visits are rarely related one to
another, which allowed us to develop a methodology
that performs matching on visits, instead of matching
on the full Patient Care Model.
The pilot synthetic background data set was a starting

point for the evolution of ideas; other methods will be
necessary to synthesize patients in other age groups. It
will be necessary to separate patients into categories of
one-time visits that concern one or a few transient ill-
nesses or injuries, and multiple related visits with
dependent causes and co-morbid conditions. The meth-
odology of matching Visit Care Models that we

developed for the pilot age group will be insufficient to
create reasonable synthetic records for the older groups
of patients (especially 50+). For these patients, Patient
Care Models will need to be used for matching instead
of Visit Care Models. Thus the methodology for the
older age groups will resemble the method developed
for synthetic injects in which the matching was done on
full Patient Care Models. We will need to develop care
models for coexistent illnesses (e.g., diabetes and hyper-
tension) that vary in manifestations of both or either
underlying illness. In this case, the publications based
on the Archimedes model [21] will be helpful in
describing possible manifestations of illnesses. These
can assist in the development of care patterns that are
consistent with the format and protocols present in the
particular real data that are used for a model.
We highlight the usefulness of this method with

regard to the injection of electronic medical records of
victims of bioterrorism or naturally occurring outbreaks
of infectious disease. Our three-step method of produ-
cing visit records of the synthetic victims, matching
them to the closest model of care, and adapting the clo-
sest model of care to the specific disease (or injury) can
be used to test and develop many classes of algorithms
and monitoring systems that operate on the entire elec-
tronic medical record.

Figure 11 Original and synthetic seasonal distribution for ICD-9 code 873 (head laceration) - emergency cases. This ICD-9 accounted
for more than 9% of all emergency visits.
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