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In what follows, we describe the FIRE-pro methodology, algorithms, and features in more detail. 
Information regarding the protein behavior and sequence data analyzed in this work are available 
further  in  the  document.  The  complete  results  as  well  as  all  the  relevant  source  code  can  be 
downloaded at the FIRE-pro web site at http://tavazoielab.princeton.edu/FIRE-pro/.

Overview of the FIRE-pro algorithm

The motif discovery algorithm of FIRE-pro works in two stages: seed discovery and optimization. 
In the first stage, FIRE-pro enumerates the most frequent k-mers in the yeast proteome. K-mers are 
simple non-degenerate amino acid sequences (words) of size k that serve as initial candidate motifs. 
A binary profile of presence/absence is created for each  k-mer and the mutual information (MI) 
between this profile and the protein behavior profile is calculated. The k-mers are then sorted by MI 
value and tested for significance by repeatedly recalculating the measure upon random shuffling of 
the protein behavior profile. If the real MI value exceeds all random MI values, the k-mer is deemed 
as significant  and retained as  a  “seed”.  In the second stage,  the seeds are converted into more 
informative degenerate motifs using a greedy search procedure, in which sets of amino acids are 
tested at individual  positions of the motif  and changes that lead to more informative motifs are 
preserved. The optimization procedure is repeated until no further improvements can be made to 
the motif, i.e. no change can increase the mutual information. For each optimized motif, a z-score is 
calculated, indicating the distance in standard deviations of the motif’s information from the average 
random information as calculated from randomly shuffled protein behavior profiles 

Seed  discovery  and optimization  are  performed for  a  range of  k,  typically  k=3-5.  To discover 
bipartite or longer motifs, “gapped” motifs (e.g. RPxxVL, where ‘x’ can match any amino acid) with 
gap sizes between 1 and 3 are also explored. All optimized motifs from the various runs of the first 
two stages  (each  with  a  different  combination  of  k and  gap  size)  are  then  compiled  for  post-
processing and filtered for redundant motifs. The remaining motifs are subjected to an additional 
round of tests, which only retains motifs with highly robust information. Additionally, motifs likely 
due  to  amino  acid  composition  biases  are  eliminated  by  shuffling  the  protein  sequences,  and 
discarding  motifs  from the  initial  FIRE-pro  run  whose  profile  of  presence and absence in  the 
shuffled sequences is informative about the considered protein behavior. The end result is a list of 
motifs  with  significant  and  robust  mutual  information.  Following  motif  discovery,  FIRE-pro 
incorporates  a  number of  other  analyses to further  elucidate  the  biological  significance  of  each 
motif. 

Motif and protein behavior profiles

Motif definition

In  the  current  FIRE-pro  implementation,  motifs  are  defined  through  fixed-length  regular 
expressions,  using a degenerate code of amino acids. A position of a motif can consist of a single 
amino acid (e.g., K), or a subset of the 20 amino acids (e.g., [KRH]). Square brackets ([..]) denote 
degenerate groups, while ‘.’ or ‘x’ denotes any amino acid. In the current implementation, a set of 23 
standard degenerate characters  are tested and non-standard degenerate groups are explored in a 
systematic  fashion  (see  Motif  Optimization).  Motifs  represented  visually  as  sequence  logos  are 
created such that the height of the amino acid reflects the position weight matrix (i.e. amino acid 
frequencies) in all  putative instances of the motif.  Using regular expressions for defining motifs 
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allows for a highly efficient search through motif-space. In addition, determining whether a motif is 
present within a given sequence is straightforward and requires no arbitrary thresholds.

Motif profile

In the following, we assume that we examine N proteins where each one is associated with a single 
behavior measurement and the amino acid sequence for each of these proteins is known. Given a 
motif,  represented as  a  regular  expression,  the  motif  profile is  defined  as  a  binary  vector  with  N 
elements,  where  for  each  protein,  “1”  indicates  that  the  motif  is  present  in  the  corresponding 
sequence and “0” indicates that it is absent. A motif is considered present in a protein if the amino 
acid sequence contains at least one exact match to its regular expression. 

Protein behavior profiles 

The protein behavior profile is also defined as a vector with N elements. Each element corresponds to a 
protein and indicates an aspect of that protein’s behavior. The profile can be discrete or continuous. 
For example, a discrete behavior profile can be obtained using the following procedure: we cluster the 
N proteins based on protein-protein interaction data, associate an index to each cluster, and assign 
each protein to the index of the cluster it belongs to. A continuous behavior profile may consist of the 
results of a single large-scale proteomic experiment (e.g.,  quantitative mass spectroscopy),  where 
each protein is associated with a single quantitative value.

Quantizing continuous protein behavior profiles

The concept of mutual information is well defined, both for continuous and for discrete random 
variables  [1].  Nonetheless,  in practice,  estimating the information when continuous variables are 
involved requires quantizing their values. In this study, we quantized continuous behavior profiles 
into equally populated bins, as previously described [2]. In FIRE-pro the default number of bins, Ne, 
is determined using Ne∙Nm ≈ 175∙N, where Nm is the number of bins used in the motif profile, i.e., 
Nm=2, and N is the total number of proteins. This implies that the expected count within each entry 
of  the  joint-counts  table  created for  the  motif  and  the  behavior  profiles  is  approximately  175, 
allowing for a relatively reliable estimation of the mutual information.

Removal of homologous proteins

Recently  duplicated  members  of  protein  families  often  share  a  significant  amount  of  sequence 
identity.  As a result, conserved sequences may appear as highly correlated with protein behavior, 
leading to spurious motif predictions. To address this issue (which is in fact relevant for all motif-
finding  approaches),  FIRE-pro  applies,  by default,  a  simple  duplicate  removal  procedure,  which 
guarantees that within each behavior category/bin, no pair of proteins will have a BLAST [3] local 
alignment with E-value < 1e-50.
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Motif-protein behavior information

Estimating the mutual information

In FIRE-pro,  we seek to evaluate whether  a  candidate  motif  is  informative about the  behavior 
profile  at hand. Given a motif  profile  (with two possible values, corresponding to presence and 
absence) and the behavior profile (with  Ne possible values),  we first  generate a  joint-counts table, 
denoted as C, with 2 rows and Ne columns. C(1,j) indicates the number of sequences which contain 
the motif and are associated with the  jth category/bin;  C(2,j) indicates the  number of sequences 
which do not contain the motif and are associated with the jth category/bin. The empirical mutual 
information (MI) between the presence/absence of the motif in a sequence and the behavior of the 
corresponding protein, when averaging across all proteins, is given by 
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Evaluating the information significance via randomization tests

To estimate the statistical  significance  of  observed empirical  information values,  non-parametric 
randomization tests are applied. Specifically, let I denote the obtained empirical mutual information, 
e.g., between a given motif profile and the behavior profile. Next, we randomly shuffle the behavior 
profile and calculate the information value between the unchanged motif profile and the shuffled 
behavior profile. We repeat the same procedure Nr times to obtain Nr random information values, 
and consider the original empirical information, I, as statistically significant (with p < (1/Nr)), if and 
only if it is greater than all Nr random information values. As detailed below, different Nr values are 
used by default, depending on the context and on the number of hypotheses tested. In addition, a 
corresponding Z-score is reported, defined as  Z=(I-<Irandom>)/σrandom where  <Irandom> is the average 
random information value and σrandom is the corresponding standard deviation. This Z-score is often 
useful in comparing motifs that pass the randomization test,  as it  reflects how far the empirical 
information is, in number of standard deviations, from the average random information. However, 
we do not use Z-scores directly to determine the significance of mutual information values as the 
underlying distribution of random information values is not assumed to be normal. 

Evaluating the information robustness

Another important non-parametric statistical significance test incorporated in FIRE-pro is based on 
jack-knife  re-sampling  [4].  Specifically,  for  each  predicted  motif,  Nj jack-knife  trials  are  applied 
where in each trial a substantial fraction (one third by default) of the proteins is randomly removed 
from the data. An information value is recalculated based on the remaining data, and its statistical 
significance is evaluated using the randomization test described above (with Nr=10,000 repeats, by 
default). The robustness score of the motif indicates in how many of these jack-knife trials the motif 
information was found to be statistically significant. By default, we use Nj=10, hence the robustness 
scores range from 0/10 up to 10/10.

-5-

2

1 1

( , )
(motif;expression) ( , ) log

( ) ( )

eN

i j

P i j
I P i j

P i P j= =

= ∑∑



Discovering highly informative motifs

Detecting motif seeds

Finding  motifs  whose  profiles  are  highly  informative  about  a  given  behavior  profile  can  be 
approached through different search strategies. The two-step procedure currently implemented in 
FIRE-pro is reminiscent of procedures used by other motif finding techniques, e.g.,[5]. Nonetheless, 
it  is  used here to optimize  an entirely  different target  function,  namely  the  mutual  information 
between the predicted motifs and protein behavior. The first step amounts to scoring a list of simple 
motif definitions in the form of k-mers (non-degenerate sequences of k amino acids), resulting in a 
coarse-grained, yet near-exhaustive exploration of motif space. All  k-mers that occur less than  p 
times (default p = 6) in a given proteome are filtered out in order to reduce run-time and memory 
costs associated with k-mers that are unlikely to be predictive of any protein profiles. The k-mers are 
then sorted based on their information values and a simple and efficient algorithm is used to search 
for the first 10 consecutive k-mers whose information is not significant, within the sorted list. All k-
mers with MI scores above these 10 are retained for further analysis, and are henceforth termed 
motif seeds. Recall, that the information associated with a particular k-mer is considered significant if 
and only if it passes the randomization test, i.e., if it is greater than all Nr random information values 
obtained for this 7-mer profile over Nr randomly shuffled behavior profiles. To correct for multiple 
hypothesis testing, Nr is set by default to the number of k-mers initially examined.

Due to the various forms of protein motifs, motif-finding and optimization are performed for a 
range of  k,  typically  k=3-5.  Additionally,  “gapped” motifs—e.g.,  to  discover  bipartite  or  longer 
motifs— are explored by repeating the analysis with the inclusion of g central gaps into motifs with 
k specified positions, typically for g=0-3. In this study, motifs were found using the parameters k=3-
5, g=0-3.

Optimizing seeds into more informative motifs

It  is  well-known that functional  elements typically  encompass a number of slightly  distinct  sites 
rather than a specific sequence (e.g., the nuclear localization signal "K[KR].[KR]"). Therefore, motif 
definitions  that  can capture multiple  sites  simultaneously  are likely  to more accurately  represent 
functional  sites  for  these  proteins.  As  mentioned  above,  to  address  this  problem,  motifs  are 
represented in FIRE-pro using a degenerate code. The second search stage in FIRE-pro consists of 
an optimization process that gradually converts the seeds obtained at the previous stage into longer 
and potentially degenerate motifs that convey more information about the behavior profile. 

All  seeds  obtained  in  the  previous  stage  are  sorted based on their  information  values,  and are 
examined one after the other, starting with the most informative one. If a seed corresponds to a 
variant of a motif obtained from optimizing previous – more informative – seeds, it is discarded (see 
below). Otherwise, it is optimized using the following procedure. For each position in the seed, the 
algorithm replaces a specific character with degenerate characters, each time recalculating the MI and 
keeping the degenerate character that makes the motif maximally informative. The following set of 
23 standard degenerate characters are tested at each position containing one of its members: [KR], 
[RKH] (basic); [DE], [DNEQ] (acidic); [AG] (tiny); [FY], [FYW] (large, aromatic); [ILMV], [LVI] 
(large, aliphatic); [QN] (large, polar); [GAP] (small, non-polar); [CM] (sulfur-containing); [ST], [CST] 
(small, polar); [STA] (small, non-aromatic); and [HY] (aromatic). 
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Additionally,  a  novel  search  algorithm  is  used  to  systematically  explore  the  space  of  possible 
degenerate characters, testing for those that increase the mutual information. The algorithm uses a 
recursive “degenerate tree” data structure in which mutual information guides the traversal through 
the tree. It is easiest to illustrate the algorithm with an example. Let us assume that the third position 
of  a  particular  4-mer  (e.g.,  "KKQR")  is  currently  being  analyzed.  The algorithm first  seeks the 
degenerate character at position 3 that makes the motif optimal by changing the position to all 19 
combinations of two amino acids including the original amino acid (i.e., [QA], [QR], [QN]…) and 
recalculating the mutual information. For the degenerate character that most increases the mutual 
information, the program will then test all 18 combinations of three amino acids that include both 
amino acids in the previous character (e.g., [QAR], [QAP], [QAN]…). The search continues as long 
as the larger degenerate character results in a more informative motif than its predecessor does or 
until the degenerate character reaches a maximum size (3, by default). The degenerate character with 
the largest associated increase in mutual information is returned by the algorithm and incorporated 
into the motif undergoing optimization.

This procedure is repeated until convergence, namely, until no further improvements are possible, at 
all  positions.  Due  to its  greedy nature,  this  process  may converge  to  a  local  maximum of  the 
information. Thus, the entire optimization is repeated 10 times per motif, ending up with possibly 
10  (slightly)  different  motifs,  of  which  the  most  informative  one  is  retained.  The  output  of 
optimization consists of a list of degenerate motifs with increased mutual information relative to the 
input seeds. 

Avoiding redundant/degenerate output

To avoid  motif  redundancy,  each  seed  that  is  a  candidate  for  optimization  is  compared  to  all 
previously optimized motifs. The presence/absence profile of each new seed is compared to those 
of all previously optimized seeds, and the conditional mutual information is calculated to ensure that 
the candidate motif provides novel information about protein behavior as previously described in 
the  supplementary  material  [6] with  the  default  r=1.0.  Additionally,  the  set  of  amino  acids 
comprising  the  candidate  motif  is  compared  against  the  set  of  amino  acids  associated  with 
previously optimized motifs to ensure that each new candidate reflects a distinct motif. Candidate 
seeds  that  fail  both  of  these  two tests  (i.e.,  are  similar  to  a  previously  optimized  seed in  both 
sequence and profile) are not optimized.

Reporting only significant and robust motifs

After optimization, each degenerate motif is subjected to a randomization test with Nr=10,000 and 
motifs that do not pass this test are discarded. In addition, each motif is assigned a robustness score, 
calculated as explained above using Nj=10 and Nr=10,000. By default, FIRE-pro only reports motifs 
with a robustness score of at least 6/10.
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Post-processing: characterization of predicted motifs

Patterns of motif over- and under-representation 

Highly informative motifs are generally over- or under-represented in the sequences associated with 
certain behavior categories/bins. We quantify this using the binomial distribution. Specifically, let N 
be the total number of sequences (or proteins), n the total number of sequences in which the given 
motif is present,  K the number of sequences within a particular category/bin, and  x the overlap, 
namely the number of sequences in this category/bin in which the given motif is present. Then, the 
probability of observing  x proteins (or more) with the motif in that category/bin, under the null 
hypothesis that the motif is distributed across sequences independently of the behavior profile, is 
given by

where  f=n/N.  We  consider  that  the  motif  is  over-represented in  this  category/bin  if  and  only  if 
P(X≥x)<0.05/Ne,  where  Ne is  the number  of  categories/bins  in  the behavior  profile,  used as  a 
Bonferroni correction for multiple hypothesis testing. We consider that the motif is under-represented 
in that category/bin if and only if P(0≤X≤x)<0.05/Ne where P(0≤X≤x) is calculated using the same 
formula as above.  

In many of the tests described below, it is useful to distinguish motif occurrences that are more 
likely to represent functional  sites. To address that, we henceforth refer to motif occurrences in 
categories/bins in which the motif is over-represented as active, and to all other occurrences as non-
active.  Active  occurrences  of  a  motif  represent  putative  functional  instances,  whereas  non-active 
motif occurrences are more likely to be non-functional (e.g., due to being located in non-accessible 
regions, or a variety of other reasons).

Detecting position bias, functional interactions, and motif co-localization 

Following motif optimization, FIRE-pro analyzes a number of features of the predicted motifs. For 
each predicted motif, FIRE-pro examines the subset of sequences in which it is present in order to 
determine if the position of the motif is informative of the behavior profile. Position is measured as 
a percentage of the full sequence length (aa position / full length of protein),  but otherwise the 
procedure is as previously described [6]. 

Putative  functional  interactions  between  pairs  of  motifs  are  predicted  by  FIRE-pro  by  asking 
whether the presence of one motif in a sequence is informative about the presence of another motif. 
If  the interaction information between two predicted motifs is  found to be significant due to a 
positive correlation, FIRE-pro further examines whether these two motifs tend to co-localize when 
both are present within the same sequence. These procedures are as previously described [6]. 
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Gene Ontology analysis 

We define the target proteins of a predicted motif as all proteins whose sequence contain the motif 
and are associated with a category/bin where the motif is over-represented. In other words, these 
are the proteins whose sequences contain the “active” motif occurrences. For the species discussed 
in  this  article,  for  each  predicted  motif,  FIRE-pro  automatically  determines  whether  its  target 
proteins significantly overlap with any Gene Ontology (GO) category, as significant overlaps may 
hint at the biological role of this motif.  The overlap significance is determined using the hyper-
geometric distribution, and a motif is defined as enriched with a particular GO category if and only 
if the associated p-value is smaller than 0.05, after correcting for multiple hypothesis testing (using 
the  number  of  GO categories  tested  as  the  factor  for  Bonferroni  correction).  The  results  are 
reported  through  an  automatically  generated  table.  A  similar  analysis  is  performed  for  each 
category/bin of proteins within the behavior profile, and is reported on top of each column in the 
FIRE-pro p-value heat-map. 

Detecting motif-domain associations and positional overlap

In order to explore the relationship between short protein motifs and longer protein domains, we 
devised strategies to search for motif-domain associations. A domain table listing the start and end 
positions  of  protein  domains  was  created  for  each  species  with  Pfam  and  HMMER software 
(http://pfam.janelia.org/,  http://hmmer.janelia.org/).  To  find  motifs  that  are  associated  with 
domains, the set of proteins containing a motif is  compared to the set of proteins containing a 
known domain and the hyper-geometric distribution is used to assess the statistical significance of 
the overlap. If a motif is found to co-occur with a particular domain, further analysis is used to 
reveal if the motif is physically part of the domain or if the motif tends to be physically distinct. This 
analysis involves analyzing the extent to which instances of the motif overlap with instances of the 
associated domain. The actual number of proteins (nact) in which there is at least one overlapping 
instance of the motif and domain is compared to the distribution created from randomizing the 
positions of the motifs. An overlap score is calculated and defined as randrandact nn σ/)( ><− , where 
(<nrand>) and (σrand) are the average and standard deviation of 5,000 counts of randomized positional 
overlap.  Thus  large  positive  scores  indicate  “domain  signatures”,  i.e.,  motifs  that  recapitulate  a 
conserved element of a known domain,  whereas large negative scores indicate potential  domain 
regulatory motifs. This distinction facilitates improved biological interpretation of predicted motifs.

Filtering for motif redundancy

In  order  to  remove  redundant  motifs  during  post-processing  (e.g.,  "KRK"  and  "KR[KH]"), 
optimized motifs are compiled and sorted by decreasing mutual information. The top motif is kept 
and subsequent motifs are compared against those with greater mutual information. Using a Pearson 
correlation-based motif-comparison algorithm adapted from CompareACE [7], all motifs with lower 
MI values and a correlation >0.4 are discarded. 
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Comparing discovered motifs to previously identified protein motifs

Previously  identified (“known”)  motifs  were compiled  from the following databases:  Eukaryotic 
Linear Motif [8], Minimotif Miner [9], Human Protein Reference Database [10], and PROSITE [11]. 
Motifs were converted into simple, fixed-length regular expressions— the form of motifs discovered 
by FIRE-pro. Discovered motifs were compared to known motifs via a sliding Pearson correlation 
method  adopted  from  CompareACE  [7] as  well  as  the  web-based  motif-matching  program 
CompariMotif [12] using a cutoff of NormIC > 0.8.

iPAGE analysis of GO enrichment 

Gene  Ontology  (GO)  enrichments  for  protein  profiles  were  calculated  using  iPAGE  [13] 
(http://tavazoielab.princeton.edu/iPAGE/), a mutual information based algorithm similar to FIRE-
pro  that  discovers  GO  terms  that  are  informative  about  a  particular  protein  profile.  All  GO 
categories with greater than 500 annotated proteins were excluded from the analysis. 

Categorizing motifs as novel, known, semi-novel, and domain signatures

We manually  divided the motifs discovered by FIRE-pro into four categories.  “Known motifs” 
match previously identified motifs in both sequence and biological  context.  "Semi-novel  motifs" 
have a similar sequence to previously identified motifs but a distinct biological context (e.g., a motif 
"S.SD" found amongst interactors with a casein kinase that matches the motif "HSTSDD", listed as 
a BCKDC kinase motif in the PhosphoMotif Finder database). “Novel motifs” are defined as those 
that do not have sequence matches to any known motif in an existing motif database. “Domain 
signatures” match distinctive, conserved sequences within larger protein domains and are defined as 
motifs with domain overlap Z-scores greater than 2.0 unless otherwise noted. 

Automatically generated FIRE-pro figures

P-value heat-map

The FIRE-pro p-value heat-map is automatically generated and summarizes the most important results 
in a graphical concise manner. An example for yeast is given in Figure 1A. The rows in this heat-
map correspond to all predicted motifs while the columns correspond to behavior categories/bins 
(protein behavior classes in Figure 2A). By default, only categories/bins in which at least one motif 
was found to be over- or under-represented are shown. For each category/bin of proteins, the most 
highly enriched GO annotation is reported above the column. The yellow color-map indicates (in a 
log10  scale)  the  over-representation  p-value  (after  Bonferroni  correction)  of  a  motif  in  a 
category/bin  where  significant  events  (p<0.05)  are  marked  by  red  frames.  For  presentation 
purposes,  p-values smaller than 1e-30 are set to 1e-30. The blue color-map indicates (in a log10 
scale) under-representation p-values (after Bonferroni correction) and significant events (p<0.05) are 
marked by  blue  frames,  where  again p<1e-30 values  are  set  to  1e-30.  Motif  logos  are  used to 
represent  the  predicted  motifs  (after  regular  expressions  are  turned  into  weight  matrices,  as 
described above).  For each motif,  its  logo,  mutual  information,  z-score,  robustness,  and regular 
expression are indicated. 

-10-

http://tavazoielab.princeton.edu/iPAGE/


Enrichment analysis table and auto-generated web output

For every analysis,  an  enrichment  analysis table is  provided with additional  information about each 
motif  such  as  position  biases,  enriched  GO  terms,  and  enriched  protein  domains.  This  is 
automatically generated by the algorithm and displayed as an interactive webpage that includes links 
to supporting figures, GO term definitions, and protein domain databases. Examples of these tables 
can be found at the supplementary website: http://tavazoielab.princeton.edu/FIRE-pro/.

Motif interaction heat-map

The FIRE-pro motif interaction heat-map (e.g., Figure 2B) is automatically generated to highlight putative 
functional relations between predicted motifs. The light (yellow) color map indicates the interaction 
information  (in  bits)  between  each  pair  of  motifs  when  this  information  is  due  to  a  positive 
correlation. The dark (red) color-map indicates the interaction information between each pair of 
motifs when this information is due to a negative correlation (co-avoidance).  Putative functional 
modules are separated by black lines. Significant interactions that involve two motifs are marked by 
green frames. Significant co-localization events indicating two motifs whose positions are mutually 
informative are marked by “+”. 

Position histograms and motif maps

When  a  position  bias  is  observed  for  a  predicted  motif,  FIRE-pro  automatically  generates  a 
corresponding position histogram that highlights the nature of the observed bias (e.g., Figure 2D). This 
figure depicts two histograms, one created from the positions of the putative motif instances (i.e., 
motif  instances  in  proteins  in  positively  enriched  behavior  classes)  and one created from other 
occurrences of the motif.  Motif maps are also created for every motif indicating the position of a 
motif  in  every  protein,  sorted  by  behavioral  class,  in  descending  order  of  over-representation 
significance. Motif maps are also generated for pairs of motifs that show motif interactions.

FIRE-pro text report files

In addition to the above figures, FIRE-pro also generates by default text files that are aimed at 
facilitating  experimental  follow-ups.  In  particular,  all  occurrences  of  each  predicted  motif  are 
reported, along with the corresponding protein, sequence context, and position within the sequence.

Modular implementation and command lines

A modular implementation

The FIRE-pro software is implemented via several modules than can be used independently. For 
example, given proteomic data and a set of predicted motifs not obtained by FIRE-pro analysis, but 
rather from any other source (e.g., experimentally validated motifs), it is straightforward to generate 
figures  like  the  FIRE-pro  p-value  heat-map or  the  FIRE-pro  interaction  heat-map,  in  order  to 
highlight various aspects related to these motifs in the context of the available behavior data. See the 
FIRE-pro web site for more details.
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Executing FIRE-pro

For all the species discussed in this article, executing FIRE-pro with default parameters involves a 
simple command line: 

perl fire_aa.pl --species=<sp> --expfile=<inp> --exptype=<type> --runname=<dir/name> 
(--kmers=<range> --gaps=<range>)

where <sp> indicates the species, <inp> indicates the input protein behavior profile, and <type> 
indicates whether the behavior profile is discrete (e.g., cluster indices: 0, 1, 2, …) or continuous (e.g., 
protein  abundance  value:  -0.1,  0.05,  10.2,  …).  For  example,  the  following  command  line  will 
reproduce our results for the CDC28-interacting protein analysis (YBR160W.txt is available on our 
web site): 

perl fire_aa.pl --species=yeast --expfile=YBR160W.txt --exptype=discrete --kmers=3-5 
--gaps=0-2 --runname=out/YBR160W 

The FIRE-pro program, documentation and all results presented in this article can be downloaded 
from  http://tavazoielab.princeton.edu/FIRE-pro/.  A  web-interface  for  FIRE-pro  will  be  made 
available in the near future.
 
Implementation of FIRE-pro

FIRE-pro was written in C and Perl. Computationally intensive sub-methods were written in C, with 
most other scripts involved in pre- and post-processing written in Perl. FIRE-pro can be run on a 
single computer or on a multi-node cluster. On a small 5-node cluster, most single runs described in 
this paper were executed in under ~1 hour. 

Data set creation:

638 protein behavior profiles from the model organisms Saccharomyces cerevisiae and Schizosaccaromyces  
pombe were  created  and  analyzed  with  FIRE-pro.  Original  data  were  downloaded  from  the 
supplementary materials of published papers or from large-scale data repositories such as YFGdb 
(http://yfgdb.princeton.edu/). The data was then converted into the protein behavior profile format 
used as input to FIRE-pro. Descriptions of the data sets are as follows.
 
Gene Ontology profiles

The Gene Ontology (GO) provides a straightforward way to group proteins into those with similar 
biological process, function, or localization [14]. GO annotations for S. cerevisiae were downloaded in 
September, 2006. For each category with between 200 and 2,000 associated proteins, binary protein 
profiles were created such that every protein was assigned a “1” if annotated to the GO term and 
“0” otherwise. This resulted in 134 GO profiles.

Interaction profiles

BioGRID [15] provides a repository for interaction data, allowing for the analysis of motifs involved 
in protein-protein interaction (PPI). The  S. cerevisiae interaction dataset (BioGRID Release 2.0.38) 
was downloaded in March 2008.  After  separating genetic  interactions  (e.g.,  dosage rescue) from 
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physical protein-protein interactions (e.g., two-hybrid), binary PPI profiles were created for all hub 
proteins with over 40 known interaction partners. In each binary profile, proteins that interact with 
the hub protein were assigned a “1” and all other yeast proteins were assigned “0”. This resulted in 
475 binary PPI partner profiles.

The protein-protein interaction network was additionally clustered using the MCL algorithm [16], a 
Markov chain clustering algorithm that clusters real PPI networks into discrete clusters [reviewed in 
[17]]. The working principle of the algorithm is that a random walk that visits a dense cluster in a 
graph will likely not leave the cluster until many of its vertices have been visited [18]. MCL clustering 
of  the  PPI network resulted in  a  protein  profile  consisting  of  32 discrete  clusters.  The genetic 
interaction network and a network consisting of both genetic and physical interactions were also 
clustered and analyzed as controls.

Sub-cellular localization

In order to find protein motifs associated with protein localization, two sets of yeast localization 
data were analyzed. In the first data set, ~4000 protein in S. cerevisiae were classified into 22 distinct 
sub-cellular  localization categories  [19].  In the second, ~4500 proteins from the fission yeast  S. 
pombe were  classified  into  19  sub-cellular  localization  categories.  Each localization  category  was 
converted into a binary protein behavior profile, with the index representing whether the protein is 
localized to a particular sub-cellular component (e.g., 1 = nuclear localized, 0 = other). For both data 
sets,  a  matrix  was  created  (6000  proteins  x  ~20  localizations)  and  clustered  to  form discrete, 
multiclass profiles. The Huh  et al. data was clustered using  k-means clustering (17 clusters), MCL 
clustering (13 clusters), and manual curation (55 clusters). The Matsuyama et al. data was clustered 
using k-means clustering (15 clusters). All together, the binary and multiclass profiles from the two 
species comprise ~50 protein profiles that were analyzed to find motifs that are informative of sub-
cellular localization.

Protein half-life

Protein half-life data were analyzed to find motifs involved in protein degradation and protein-half 
life  [20].  This  data  set  consists  of  continuous  half-life  measurements  (in  minutes)  for  ~3,750 
proteins  in the  S. cerevisiae proteome after  inhibition of translation.  Continuous  protein behavior 
profiles  were  created  from both  the  raw  half-life  data  and  “corrected  half-life  data”  in  which 
proteins with negative half-lives were assigned an arbitrary value. The continuous half-life values 
were binned into 15 classes prior to analysis with FIRE-pro.

Ubiquitin conjugates

To discover protein motifs involving ubiquitination, a protein behavior profile was created out of 
1,075  ubiquitin-conjugating  yeast  proteins  identified  via  mass  spectrometry  [21].  These  1,075 
proteins were assigned a “1”, and the other proteins assigned “0”.
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Phosphorylation sites are prominent among known and novel motifs

In addition to finding many known substrate motifs in their proper biological context, we also find 
matches to known motifs in novel contexts, often associated with the interaction partners of an 
unrelated kinase. For example, in addition to their expected enrichment amongst the interaction 
partners of Tpk1, PKA-like motifs (i.e., “RR.S”) are found to be enriched 4-fold amongst interactors 
of Ptk2, a protein kinase involved in regulation of ion transport across the plasma membrane, and 8-
fold among interactors of the mitochondrial kinase Pkp2. While the PKA-like motif “RR.S” is the 
top motif found enriched amongst Ptk2 interactors, there are a number of other discovered motifs 
that may serve as the Ptk2 substrate motif including “STS” and the GSK3-like motif “S..P[ST]”, 
which are each found in over half of the 194 Ptk2-interactors. 

Together, 80% of Ptk2 interactors contain at least one of these three motifs with 25% containing all 
three, providing evidence for both individual and combinatorial regulatory roles. Analysis of Rad53-
interactors yields a number of candidate substrate motifs including the motif “[NIT]SNN”, found in 
50% of Rad53-interacting proteins while in only 10% of non-interacting proteins, and the “KR..S” 
motif, found in two-thirds of Rad53 interactors but in less than a quarter of non-interactors.

In addition to finding phosphorylation sites from the analysis of kinase targets, FIRE-pro discovered 
novel phosphorylation sites from the analysis of phosphatase targets (Table S1). For example, the 
motifs “[KS]K[SK]K” and “DD..SS” are each enriched over 3-fold among the interaction partners 
of the phosphatase Glc7, and the motif “[TIV][FH]SP” is found in over a quarter of proteins 
interacting with the mitosis-regulating phosphatase PPH22.

Analysis of protein domains reveals putative domain-regulatory motifs and conserved 
domain signatures

We devised  a  strategy  to  detect  whether  motifs  co-occur  and  overlap  significantly  with  known 
protein domains (see Supp. Methods). P-values were calculated to indicate the extent to which a 
domain  co-occurs  with  a  motif  in  the  same  set  of  proteins,  and  a  domain  overlap  score  was 
calculated to indicate the extent to which a motif is located within a co-occurring domain at a greater 
frequency than expected by chance (Supp. Methods). Positive domain overlap scores suggest that 
the motif is a domain signature whereas negative scores indicate that the motif lies separately from 
the domain and may be involved in regulating the function of the associated protein domain.

Domain signatures are found most often when analyzing sets of proteins associated with specialized 
molecular functions (e.g.,  phosphotransferase activity) and include well-known functional sites in 
protein kinase, nucleotide-binding, and protein complex assembly domains (Table S2). The detected 
signatures include the functional ATP binding motif “GxxGxGK”, which is found in a variety of 
ATPase domains [22], and the kinesin switch region “DLAGSE”[23], which is enriched in proteins 
localizing to microtubules. Unlike other motif-finding methods  [24,25], our approach finds motifs 
within domains in order to capture all motifs informative of protein behavior. Even so, our results 
show that less than a quarter of the discovered motifs are domain signatures, implying that the vast 
majority of our motifs do not merely reflect conserved sequences within domains.
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GO analysis reveals that many protein motifs associate with specific cellular processes 

Just  as  we examine  motifs  for  non-random positional  distributions,  we similarly  perform Gene 
Ontology (GO) analysis to find biological processes, molecular functions, and cellular components 
that are enriched amongst the set of proteins containing a predicted motif. We found that three-
quarters of motifs were enriched for at least one GO term with p<0.001. Thus, the vast majority of 
protein  motifs  are  found  in  sets  of  proteins  with  common  biological  roles,  providing  further 
confidence in their functionality and suggesting clues as to the role of these motifs.

Analysis of protein sub-cellular localization recovers known localization signals and 
reveals novel compartment-specific motifs

Due to  its  use  of  mutual  information,  the  FIRE-pro  framework  can  process  multiple  proteins 
groups  simultaneously.  In  a  multi-class  analysis,  each  protein  belongs  to one  of  many  possible 
groups,  with each group corresponding to a different behavior or characteristic;  FIRE-pro then 
seeks to discover motifs that are informative about the partition. As part of our global analysis, we 
applied FIRE-pro to a sub-cellular localization dataset obtained from ~4,000 GFP-tagged proteins 
in S. cerevisiae [19]. We grouped the 4,000 proteins into six distinct and non-overlapping localization 
patterns: nucleus, mitochondria, cytoplasm, nucleus & cytoplasm, endoplasmic reticulum (ER), and 
cell periphery/ambiguous (Figure S2). 

A  number  of  novel  motifs  informative  of  sub-cellular  localization  are  worthy  of  further 
investigation. The proline-rich motif "PP[PQN]" is over-represented in nucleus-only and cytoplasm-
only clusters, but is under-represented among other proteins. While the nuclear enrichment is likely 
due to the existence of proline stretches in transcription factors  [26], the cytoplasmic enrichment 
may represent a novel finding as it seems that cytoplasmic RNA binding proteins are enriched for 
the  motif  (p<1e-5)  as  are  cytoplasmic  kinases  (p<1e-6).  The  motif  significantly  co-occurs  with 
kinase domains and RNA recognition domains yet tends to be positioned outside of these domains, 
potentially implicating it in a regulatory role. Other interesting compartment-specific motifs include 
“T..[TL]T”, which is found in a third of proteins localized to the ER and the cell periphery, but only 
in a fifth of proteins localized to other compartments, and “I..S[ND]”, which is enriched amongst 
membrane and Golgi  proteins  involved in the establishment  of  cellular  localization and protein 
transport  (p<1e-11).  In addition  to performing the motif  analysis  for the  multiclass  localization 
dataset, each sub-cellular compartment was analyzed individually and the discovered motifs can be 
found in Data S1.

It is likely that not all compartment-specific motifs discovered by FIRE-pro represent localization 
signals: others may reflect sequences particular to an organelle for other reasons (Figure S3). For 
example, the poly-glutamine motif “Q.Q[QEL]”, which is enriched among proteins localized to the 
nuclear lumen (p<1e-14), also appears to be associated with transcription factors (p<1e-11). Indeed, 
stretches of homotypic amino acids have the capacity to modulate transcriptional activation  [26]. 
Lastly,  the  motif  “C..C”,  which  is  associated  with  nuclear  proteins  (p<e-4)  and  shows  a  slight 
position bias towards the N- and C- termini, represents the active site of zinc finger DNA-binding 
proteins [27]. Zinc finger transcription factors represent a large family of proteins that by definition 
must be localized to the nucleus to exert their transcriptional regulatory activity. Thus, it is likely that 
“C..C” is informative about nuclear localization but in an indirect way,  i.e., because transcription 
factor  activity  is  also  informative  about  nuclear  localization.  These  results  suggest  that  motifs 
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obtained  from  a  FIRE-pro  run  must  be  interpreted  carefully—  the  predicted  motifs  may  be 
informative of protein behavior yet this does not imply that they directly cause that behavior.

Discovery of motifs that correlate with protein half-life and abundance 

To  illustrate  FIRE-pro’s  ability  to  discover  protein  motifs  informative  of  quantitative  protein 
measurements,  we applied  our  approach to quantitative  half-life  measurements  of  ~3,750  yeast 
proteins [20]. In this dataset, FIRE-pro discovered four informative motifs; all of them tend to be 
over-represented in proteins with short half-lives and under-represented in proteins with long half-
lives  (Figure 4, S4).  The set of proteins that contains the most informative motif,  “R.[RS]S”,  is 
enriched  for  proteins  localized  to  the  bud  neck  (p<1e-7)  and  for  proteins  containing  a  non-
overlapping kinase domain (p<1e-4). The motif resembles several known motifs such as a 14-3-3 
binding  motif  “RxSS”  in  flies  [28] and  the  Clk2  (CDC-like  kinase  2)  phosphorylation  site, 
“RE[RH]SR[RD]L” [10]. The other three motifs found by FIRE-pro to be informative of half-life 
seem to reflect signature sequences in protein kinase domains, which are more frequently found 
amongst proteins with shorter half-lives. 

We applied FIRE-pro to a quantitative protein abundance data set from ~3,800 TAP-tagged yeast 
proteins [29]. FIRE-pro discovered eight informative protein motifs, seven of which are associated 
with low protein abundance and the remaining one with high protein abundance (Figure S6). The 
proteins  that  contain  motifs  associated  with  low-abundance  proteins  tend  to  be  DNA-binding 
proteins (p<1e-07), whereas the motif informative of high-abundance proteins is found in cytosolic 
proteins  involved  in  carboxylic  acid  metabolism  and the  proteasome (Figure  S5).  Experimental 
follow-up will be required to determine whether these motifs have a direct causal role in determining 
protein  abundance or are simply  associated with a  particular  level  of  protein abundance.  If  the 
former scenario holds true, these motifs may have interesting applications for genetic engineering 
and biotechnology, for example in optimizing genetic circuits or recombinant protein production. 
These  results  show  that  FIRE-pro  is  capable  of  discovering  protein  motifs  from  continuous 
variables such as protein abundance and stability. As mass spectrometry (MS) technology improves 
and enables increasingly accurate measurements of protein abundance  [30,31], we expect that out 
approach will be instrumental in revealing cell-type specific stability and degradation signals. 

Motif analysis of yeast protein-protein interaction maps

In what follows, we present results obtained when applying FIRE-pro to  an additional dataset of 
protein-protein interaction clusters in  S. cerevisiae. The ability to analyze such groups of proteins is 
important, as it is common practice to simply specify sets of proteins from quantitative proteomic 
data or some  discrete  criteria,  and to attempt to elucidate the protein motifs responsible for the 
behavior.

To further illustrate how FIRE-pro can be applied to multiclass datasets, we applied our approach to 
the  physical  protein-protein  interaction  network  in  S.  cerevisiae.  The  network  was  clustered  as 
described in Supp. Methods, and the resulting cluster partition—in which every protein was assigned 
to one of 33 cluster indices—was used as input to FIRE-pro.

FIRE-pro found ten motifs in the protein-interaction clusters (Figure S8). When we shuffled the 
labels of the clustering partition, we discovered 0 motifs, implying a low false discovery rate. As an 
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additional  negative  control,  we  clustered the  genetic  interaction  network  of  yeast  and used the 
resulting clustering partition as input to FIRE-pro, with the same parameters and thresholds. As 
expected, FIRE-pro did not return any significant motifs. 

Many  of  the  motifs  informative  about  the  protein-interaction  clusters  are  similar  to  motifs 
previously described in the literature. The motif “SP[STN]”-- which is found in 87% of a protein 
cluster involved in mitotic cell cycle but in only ~30% of all proteins (p<1e-20)-- is likely to be a 
phosphorylation site. It is reminiscent of many known motifs including the substrate motif of Cdc28 
“SP.[RK]”,  the human Erk1 MAP kinase motif  “SP”,  and of  the DNA-dependent kinase motif 
“P[ST]” [32,33]. Of the 61 proteins that contain the motif in the enriched cluster, 29 are involved in 
the  cell  cycle,  15 are known to regulate  transcription,  and 10 are localized  to the cytoskeleton, 
implying that the motif may be associated with one or all of these characteristics.
 
Similar to the sub-cellular localization analysis, a number of physical interaction motifs reflect the 
fact that eukaryotic protein-protein interaction modules occur in specific sub-cellular compartments. 
These include the nuclear motifs “KR[RK]” and “E.E[EDY]”, which are found in proteins involved 
in  DNA-  and  RNA-related  processes  such  as  rRNA  metabolism  (p<1e-35)  and  chromatin 
remodeling (p<1e-07). The hydrophobic motifs “L..I[LIF]” and “I.[ILF]F”, which were previously 
seen to be localized to the ER, are also over-represented in membrane proteins, which are known to 
be hydrophobic.

FIRE-pro also discovered several novel motifs associated with known pathways. For example, the 
motif “GGL[FTL][GEP]” might be involved in nuclear export and import, specifically small nuclear 
RNA (snRNA) and tRNA transport (p<1e-08). The motif “A...A[GFW]” is associated with proteins 
involved  in  the  exosome  RNA-degradation  complex  (p<1e-06)  and  has  a  significant  additional 
association  with  the  RNAse_PH  exoribonuclease  domain  (p<1e-04).  Interestingly,  the  motif 
“N..L[RKT]” is not significantly enriched in any of the clusters, but is strongly under-represented in 
clusters  enriched  in  proteins  associated  with  structural  constituents  of  the  ribosome  and  ER 
proteins. It is interesting too that the poly-glutamine motif “Q[QEI]Q” that was highly informative 
of protein localization also appears here, and seems to be associated with proteins that regulate RNA 
polymerase II activity (p<1e-13). 

Comparison to other algorithms

We  have  chosen  several  protein  motif  discovery  algorithms  against  which  to  benchmark  our 
approach (Table S4). FIRE-pro is currently the only framework for motif discovery able to analyze 
continuous and multi-class data sets, which will  become increasingly important with advances in 
large-scale,  quantitative proteomics. However, like other existing frameworks, FIRE-pro can also 
analyze binary (two-class) data sets, and it is with such data that we can compare the performance of 
FIRE-pro to other algorithms. Five biological  data sets were input to FIRE-pro and four other 
programs to determine each algorithm’s ability to recover known motifs amongst binary data sets of 
increasing size (Table S5). For each of the five data sets, two randomized versions of the data were 
created and tested, one containing shuffled versions of each protein sequence (“sequence-shuffled”) 
and the  other  containing  an equally  sized set  of  randomly  selected protein sequences  (“profile-
shuffled”). The results of the analysis are presented in Table S6.

FIRE-pro uses mutual information to find motifs that are informative about a particular protein 
behavior,  and  then  optimizes  these  motifs  through  a  greedy  exploration  of  motif-space.  The 
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algorithm could analyze all five data sets, ranging from ~40 to ~1,000 proteins, and finds the known 
motif  associated  with  each.  The  program consistently  returns  around  10  informative  motifs,  a 
manageable number for experimental follow-up. The algorithm finds few motifs given random sets 
of proteins-- finding six low-scoring motifs in the five profile-shuffled data sets as compared to 45 
motifs among the real data sets. The program still finds many motifs amongst sequence-shuffled 
data, though these motifs tend to be lower scoring than real motifs. Overall, FIRE-pro succeeds at 
analyzing  a  wide  variety of  proteomic  data sets,  and recovers  known motifs  that  are near-exact 
matches to motifs in the literature. 
 
Motif-x [33] is an iterative statistical method designed for the detection of phosphorylation motifs 
that finds overrepresented residues at positions surrounding a particular amino acid of interest (e.g., 
Ser-, Thr-, Tyr-). In order to find motifs centered around each amino acid, the program was run 
twenty times and the results merged. The program successfully recovered four out of five motifs-- 
finding the three phosphorylation motifs and the nuclear localization sequence (NLS), but not the 
mitochondrial cleavage signal (Table 3). Admirably, Motif-x can analyze all five data sets and finds 
no motifs amongst sets of random proteins. The program does however find a large-number of 
motifs in sequence-shuffled data and also finds a large number of motifs (~100) to be significant for 
the three largest datasets, which limits its specificity.

TEIRESIAS  [34]  is  a  two-stage  algorithm  that  implements  an  exhaustive  small  pattern  search 
(“scanning”) followed by joining small  patterns to form longer ones (“convolution”).  It  outputs 
motifs that frequently occur in a dataset, ranked by number of occurrences. The program was able 
to  analyze  four  of  the  five  datasets--  the  web  interface  crashes  on  the  largest  dataset--  and  it 
successfully recovered the known motif for three of the four. Although the known motif was never 
the top-ranked one, it was consistently among the top ten ranked motifs. 

The algorithm DiLiMot [24,28], which relies on TEIRESIAS to generate frequently found motifs, 
masks domain sequences and filters out homologous proteins in order to find short, linear motifs in 
non-homologous sequences. The algorithm successfully recovers motifs from the two smallest data 
sets but finds no motifs when analyzing the largest three data sets, implying that the largest data set 
it can analyze is somewhere between 90 and 240 proteins. The program finds many motifs to be 
significant given random sets of proteins-- though these random motifs have lower scores than real 
ones-- and also finds many high-scoring motifs when given shuffled sequences. As seen in Table 3, 
the algorithm successfully reorders TEIRESIAS’s motifs to place the known motif as the top-ranked 
one.

SLiMDisc  [25]  and  the  more  recent  SLiMFinder  [35] employ  a  similar  approach,  searching  for 
motifs in unrelated proteins and estimating the probability of returned motifs arising by chance. 
Benchmarking of the algorithm reveals that it is most successful analyzing datasets from ten to thirty 
proteins.  The  online  interface  for  SLiMFinder  has  a  1-hour  maximum  wall  time,  which  was 
insufficient to analyze the largest three datasets (>240 proteins). Of the remaining two datasets, the 
algorithm successfully returned the Pkp2 motif but not the Rim11 motif.

Protein disorder analysis

Prediction of regions of protein disorder was carried out by DisEMBL version 1.4 using the "hot 
loops"  definition  [36].  Disordered  regions  of  the  S.  cerevisiae proteome  were  determined  by 
DisEMBL,  putative  instances  of  motifs  or  k-mers  were  identified,  and  the  disorder  score  was 
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defined as the percentage of instances that lie in disordered regions. Rare motifs and k-mers, defined 
as those that occur less than five times in the S. cerevisiae proteome, are excluded from the analysis. 
The results (Figure S9) show that the FIRE-pro motifs are found more frequently in regions of 
protein disorder than all 3-mers or 4-mers (Kolmogorov-Smirnov test: p<1e-175; FIRE-pro motifs: 
N=6862; 3-mers: N=8,000; 4-mers: N=118,908). While 0.28 of all amino acids in S. cerevisiae were 
predicted to lie in disordered regions by the DisEMBL algorithm, the median disorder score for all 
FIRE-pro motifs was 0.36 as compared to 0.26 and 0.29 for 3-mers and 4-mers, respectively.

Discussion

The challenge of protein motif finding

A number of factors make it  difficult  to predict  short protein motifs and more difficult  still  to 
interpret those predictions. These factors include the large amino acid alphabet size, the non-linear 
structure of proteins, and the degeneracy and variability of short motifs. We have addressed each of 
these issues in our design and implementation of FIRE-pro, but there are certainly other challenges 
remaining. For example, the algorithm currently ignores motif complexity and will choose a more 
complex motif over a simpler one, if the former even marginally outperforms the latter.

One  challenge  that  we  attempted  to  address  in  our  design  is  the  notion  that  motif  finding  is 
complicated by significant amino acid composition biases inherent in groups of similarly behaving 
proteins. The sub-cellular localization of proteins in  S. cerevisiae provides perhaps the most drastic 
example of amino acid composition bias. ER proteins are enriched for hydrophobic and aromatic 
residues [VFL] and [YW], but severely depleted of the charged amino acids [DE] and [KR]. Nuclear 
proteins have the opposite composition: they are severely depleted of hydrophobic residues [LF], 
but highly enriched for [DE] and K. Interestingly, mitochondrial proteins are enriched for the basic 
residue K, but are strongly depleted of the acidic residues [DE], thus differentiating them from 
nuclear proteins. Another example of amino acid bias occurs in proteins with short half-lives, which 
seem to be enriched for the small amino acids [SN] but depleted of valine relative to proteins with 
longer half-lives. Such biases in amino acid composition complicate the motif-finding process by 
resulting in motifs comprised of enriched amino acids. Such motifs can be seen as false positives in 
the sense that they are unlikely to be regulatory elements, though they may still serve a particular 
function.  In FIRE-pro,  we have addressed the issue  of  amino acid  composition  bias  by  asking 
whether  motifs  discovered  from original  protein  sequences  are  also  informative  about  shuffled 
versions of the same protein sequences, and filtering out these motifs. Though this is one solution, it 
is by no means a perfect one, as some of these motifs may have a direct regulatory role. 

Future directions

One  of  the  most  promising  directions  for  further  research  involves  characterizing  the  motifs 
discovered by FIRE-pro in the context of protein secondary or tertiary structures. Certain features 
of our predicted motifs may be better understood in a structural context  [37],  and it may be of 
interest to analyze whether motifs occur in particular secondary or tertiary protein structures— such 
as  alpha-helices,  beta-strands,  binding  pockets,  and exposed surfaces— or in  regions  of  protein 
disorder [38]. Finally, it may be useful to use biologically relevant motif attributes such as position 
biases and co-occurrence with domains to predict functional instances of particular motifs. 
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A natural extension of our approach is to generate accurate predictions of functional protein motifs. 
Currently,  sequence specificity  of  most  motifs  is  actually  quite  poor:  only  a  small  subset  of  all 
matches to a particular motif constitute a functional instance of that motif—even for well-studied 
motifs such as the Cdc28 kinase substrate [39]. Prediction of functional instances of motifs has been 
attempted  by  incorporating  prior  knowledge  such  as  the  local  clustering  of  functional 
phosphorylation sites [39,40], but a more general and systematic method of prediction would be of 
great  use  to  the  scientific  community.  One  idea  would  be  to  use  biologically-relevant  motif 
attributes-- such as position biases, structural preferences, co-occurrence with particular domains or 
motifs,  sub-cellular  localization tendencies,  and GO enrichments--  as features in a classifier that 
would distinguish functional  from non-functional  motif  instances. For example,  high confidence 
predictions for functional Cdc28 target sites would tend to be those sites located at an N-terminal 
position, co-occurring with other enriched motifs, and found in a protein kinase or in a protein 
known to be involved in the cell cycle. Once there are accurate predictions of functional protein 
motifs,  it  may eventually  be  possible  to predict  specific  interactions  and even entire  interaction 
networks based on the presence and location of particular motifs. It is important for future work not 
only to discover amino acid sequence motifs, but also to reveal the biological context in which these 
motifs operate. Only then will it be possible to fully understand nature’s use of short protein motifs 
and to incorporate this knowledge into the fields of synthetic biology and bioengineering.
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