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Abstract

Background: Changing the fuel supply from petroleum based ultra-low sulfur diesel (ULSD) to biodiesel and its blends
is considered by many to be a viable option for controlling exposures to particulate material (PM). This is critical in the
mining industry where approximately 28,000 underground miners are potentially exposed to relatively high
concentrations of diesel particulate matter (DPM). This study was conducted to investigate the mutagenic potential of
diesel engine emissions (DEE) from neat (B100) and blended (B50) soy-based fatty acid methyl ester (FAME) biodiesel in
comparison with ULSD PM using different engine operating conditions and exhaust aftertreatment configurations.

Methods: The DPM samples were collected for engine equipped with either a standard muffler or a combination of the
mufller and diesel oxidation catalytic converter (DOC) that was operated at four different steady-state modes. Bacterial
gene mutation activity of DPM was tested on the organic solvent extracts using the Ames Salmonella assay.

Results: The results indicate that mutagenic activity of DPM was strongly affected by fuels, engine operating conditions,
and exhaust aftertreatment systems. The mutagenicity was increased with the fraction of biodiesel in the fuel. While the
mutagenic activity was observed in B50 and B100 samples collected from both light- and heavy-load operating
conditions, the ULSD samples were mutagenic only at light-load conditions. The presence of DOC in the exhaust system
resulted in the decreased mutagenicity when engine was fueled with B100 and B50 and operated at light-load conditions.
This was not the case when engine was fueled with ULSD. Heavy-load operating condition in the presence of DOC
resulted in a decrease of mutagenicity only when engine was fueled with B50, but not B100 or ULSD.

Conclusions: Therefore, the results indicate that DPM from neat or blended biodiesel has a higher mutagenic potency
than that one of ULSD. Further research is needed to investigate the health effect of biodiesel as well as efficiency of DOC

or other exhaust aftertreatment systems.

Keywords: Ames Salmonella/microsomal assay, mutagenic activity, biodiesel, diesel exhaust particulate matter, oxidation

catalytic converter

Background

Biodiesel is considered an attractive alternative to diesel
oil since it can be produced by domestic natural sources,
reducing dependence on petroleum-based fuels [1].
Biodiesel can be produced from different plant oils by
transesterification of triglycerides from vegetable oils with
ethanol [2,3]. The increasing production and consumption
of biodiesel has encouraged researchers to assess its hazard
and fate in the environment. Specifically, diesel combustion
engines are an important component of the industrial
and transportation sectors, including numerous mining,
agriculture and construction uses. There are concerns,
however, with exhaust emissions in regards to potential
adverse health effects associated with exposure to diesel
particulate matter (DPM). Diesel engine emissions are
highly complex mixtures of aerosols and gases. They consist
of a wide range of organic and inorganic compounds [4].
Most of the particles from diesel engine exhausts are of

nano-scale and therefore readily respirable. These particles
potentially have hundreds of chemicals absorbed onto
their surfaces, including known and suspected mutagens
and carcinogens, e.g. polycyclic hydrocarbons (PAH) and
nitrated PAH (nPAH) [5]. The formation of PAH depends
on the type of engine, fuel composition, the engine
operating conditions and the effectiveness of exhaust
aftertreatment [6]. Exposure to diesel engine emissions
and their atmospheric transformation products occur
often in both environmental and occupational settings.
Compared to their parent PAH, most of the resulting
compounds generated from the combustion system
are mutagens or have an enhanced mutagenic potency
[7-9]. A causal relationship of exposure to diesel engine
emissions and lung cancer was suggestive for occupational
settings but not for the general population [5]. According
to two large studies [10,11] conducted among the non-
metal miners, diesel exhaust increases the risk of death
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from lung cancer. The International Agency for Research
on Cancer [12], a part of the World Health Organization
(WHO), classified diesel engine exhaust as carcinogenic
to humans (Group 1) based on sufficient evidences to link
exposure to an increased risk of lung cancer.

During recent years, strong efforts have been made to
minimize diesel engine emission-related health hazards.
This includes improved combustion, use of exhaust
aftertreatment, the reduction of sulfur and aromatics
content in fuels and lubricating oil, and the introduction of
reformulated fuels [4,5]. Various diesel exhaust treatment
technologies, such as diesel particulate filter (DPF) systems,
disposable filters elements (DEDs), and diesel oxidation
catalysts (DOCs) have been implemented. In mining,
improvements of ventilation and the curtailment of diesel
particulate matter (DPM) and toxic gaseous emissions
from existing and new diesel powered equipment are
commonly perceived as the most promising tools to meet
Mine Safety and Health Administration (VSHA) regulations
[4]. The use of biodiesel results in a substantial reduction
of unburned hydrocarbons, carbon monoxide, and PM as
compared to diesel emissions [13]. The issue of exposure to
DPM and the use of biodiesel blends is particularly critical
in the mining industry where approximately 28,000 U.S.
underground miners are potentially exposed to relatively
high concentrations of DPM [4]. Mine operators are currently
using 25-100% biodiesel blends [14,15]. The concentrations
of biodiesel in the blends used in underground mining
are substantially higher than those used in other on- and
off-highway applications [4].

The effects of biodiesel on emissions were found to
vary widely, in particular with usage conditions, engine
type and age [16-18]. Mine studies showed potential of
neat biodiesel [18] and biodiesel blends [19-23] to reduce
exposure of underground miners to DPM. However, the
combustion of biodiesel in diesel engines typically results
in slight increase of nitrogen oxide emissions [24]. The
particle-bound volatile organic fractions of DPM [17,25]
were found to be higher for biodiesel than for petroleum
diesel fuels [17,25]. This may impact the biologic effects
and toxicity of biodiesel exhaust particles.

Previous studies have compared the mutagenicity of die-
sel and biodiesel exhausts using bacterial reverse mutation
assay [26,27]. This assay is suited as a screening tool for
hydrophobic mutagenic compounds or mixtures, such as
PAH from diesel engine emissions [5]. There is conflicting
and limited information available regarding the mutagenic
potential of biodiesel emissions specific to fuel category,
engine type, and operating conditions [28-39].

The purpose of our study is to investigate the effects of
soy-based fatty acid methyl ester (FAME) biodiesel, engine
operating conditions and exhaust aftertreatment on the
mutagenicity of diesel aerosol organic solvent extracts
in Salmonella typhimurium. The samples analyzed in this
study were collected directly in an underground mining
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Figure 1. Engine operating conditions.

Engine was operated at four steady-state modes. One

of the selected modes at each of the engine speeds

represented heavy engine load (M2 and M4 with an

engine speed of 2950 rpm and 2100 rpm, torque of 108.4

Nm and 138 Nm, and power 34.3 kW and 30.6 kW,

respectively), while the other was more representative of

light engine load (M1 and M3 with an engine speed of

2950 rpm and 2100 rpm, torque of 63.7 Nm and 73.2 Nm,
\_ and power 17.2 kW and 14.9 kW, respectively).

/

environment of the National Institute for Occupational
Safety and Health (NIOSH) Lake Lynn Experimental Mine
by using the NIOSH Diesel Laboratory.

Methods

Sample collection

The DPM samples were collected at the diesel laboratory
in the D-drift of the NIOSH Lake Lynn Experimental Mine.
This laboratory was designed to allow evaluation of control
technologies and strategies in an underground environment
[23,40]. The tests were executed using Isuzu C240 engine
rated at 41 kW, one of the most commonly used light-duty
engine in US underground coal mines [41]. The engine was
operated at four steady-state modes using eddy-current
dynamometer (Figure 1). These modes were selected to
cover a wide range of engine operating parameters. One
of the selected modes at each of the engine speeds was
representative of heavy engine loads (M2 and M4), while
the other two were representative of light or medium
engine loads (M1 and M3). Two exhaust configurations
(muffler and muffler plus DOC) were evaluated for M1 and
M2 modes. Soy-based FAME biodiesel (B100) was supplied
by Stepan Company (Stepansol SB-W, Bordentown, NJ).
ULSD supplied by Guttman Oil was used as baseline fuel.
The B50 blend was prepared at the site. The fractions of
biodiesel and ULSD were determined volumetrically. The
DPM samples were collected concurrently on 90 mm Teflon
coated glass fiber filters (Pall TX40HI20-WW). The nominal
sampling flow rate for each of the sampling stream was 91
I[pm. The sampling times were between 120 and 180 min
depending on the test. The flow rates were maintained
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Table 1. Mutagenicity induced by DPM samples

Exhaust Engine Revertants/plate? in concentration (pg/plate)
Ie . Fuel
onfiguration Mode 0.0° 13.3 40.0 120.0
Muffler M1 1844.5 2742.3 49+17.3 67+3.0°
Muffler M2 18+4.5 2345.0 30+0.8 53+7.9
Muffler M3 ULSD 18+4.5 24+3.4 40+5.9 71+4.3"
Muffler M4 18+1.0 23+2.0 22423 21+£3.3
Muffler+DOC Ml 18+1.2 26+1.6 42+4.4 80+11.7"
Muffler+DOC M2 1841.2 24+1.2 33+4.8 42+7.7
Muffler Ml 18+1.2 2242.0 50+3.9" 79+1.5"
Muffler M2 18+1.2 28+0.4 58+6.4" 71417
Muffler M3 B50 18+1.2 25+1.1 42+2.0 80+9.9"
Muffler M4 18+1.2 18+4.4 16+2.2 28+6.1
Muffler+DOC M1 1841.2 2945.1 40+3.5 73+2.8"
Muffler+DOC M2 18+1.2 29+0.6 37+5.3 60+6.2"
Muffler Ml 184+4.5 33£13.1 63+7.2" 128+6.8"
Muffler M2 23+0.6 55+0.6" 84+2.7" 148+25.7
Muffler M3 B100 23£0.6 2642.7 49+5.0 73433
Muffler M4 27+1.1 24+4.9 21+1.1 35+6.0
Muffler+DOC M1 18+4.5 19+6.1 26+2.1 40+15.2
Muffler+DOC M2 32£1.1 30+£1.1 87+3.8" 155+5.5"

@ Mean value of two plates + standard deviation.

b Solvent control was shared within each group of samples assayed simultaneously.

P
Positive response.

using rotary vane pumps (Gast, Model 1023) and controlled
with mass flow controllers (Sierra Instruments Inc., Model
840). The Teflon-coated aluminum cyclone (URG, Model
URG-2000-30EH) was used to remove aerosols with D,,
larger than 1 um. The properties of sampled aerosols are
published in [23]. Eighteen samples were collected for
mutagenicity analysis. Table 1 shows the information on
the fuel, the exhaust configuration and engine operating
modes pertinent to each of the samples.

Samples preparation

Each sample consisted of DPM collected concurrently on
two 90 mm filters. The DPM were extracted simultaneously
from both filters using 100 ml of acetone and sonicated
for 2 hours. The extract was reduced by evaporation in N,
environment and centrifuged at 4000 rpm for 40 minutes.
The supernatant was removed and filtered through 25 mm
sterile PTFE filter. The filtrate was transferred to a tared
sterile brown vial and evaporated to dryness under N..
Twelve milligrams of DPM extract per milliliter of dimethyl
sulfoxide (DMSO) was prepared as a stock solution. Samples
were diluted further with DMSO to obtain the required
concentration.

Ames salmonella assay
The mutagenicity of samples was determined using the

preincubation variant of the Ames Salmonella assay
system [42]. Results from the previous studies indicate
that Salmonella typhimurium strains TA98 and YG1024 gave
better mutagenic response than TA100 and YG1029 to DPM
tested, and S9 microsomal activation was not necessary for
examination of mutagenic activity in DPM [43-45]. Due to the
limited amounts of the samples available, only Salmonella
typhimurium TA 98 without S9 microsomal activation
was used in the study. The cell suspension of Salmonella
typhimurium TA98 was prepared by overnight incubation
of a small piece of frozen culture in 25ml nutrient broth.
The genotype of the bacteria was confirmed following the
recommendation by [42]. A sample solution of 10ul, along
with 65ul physiological saline, and 25ul of the TA98 cultures
were pre-incubated at 37°C for 30 min on a rotary drum
incubator before plating. The control was established using
DMSO in place of sample solution. After incubation, 2.5ml
of molten top agar were added to each sample tube, the
contents mixed, and poured onto a Vogel-Bonner minimal
media plate. The plates were incubated at 37°C for 48h prior
to counting. The conditions of the bacterial background
lawn were examined during every experiment in order to
know if cytotoxicity appeared in the high concentrations.
Three readings of the revertant colonies per plate were
scored by an automatic colony counter (Accucount 1000,
Biologics Inc., Gainsville, VA) after incubation. The average
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Figure 2 . Mutagenic activity of DPM samples collected for the engine fueled with ULSD, B50 or B100 and
equipped with muffler only at 4 steady-state modes.
ULSD, B50 or B100 samples (0, 13.3, 40 or 120 pg/plate) were incubated at 37° C with the Salmonella typhimurium
TA 98 without S9 microsomal activation. Clear columns - control samples (PBS exposure); light gray columns -
exposure with 13.3 pg/plate of DPM; Dark gray columns — exposure with 40 pg/plate of DPM; Black columns -
exposure with 120 pug/plate of DPM. Data represent mean values (+SEM) of the average number of revertant
colonies per sample. Each sample was tested twice in two separate experiments. *positive responses, as evidenced
\___ by the number of revertant colonies being at least two-fold greater than the respective control value. J

numbers of revertant colonies per each concentration were
calculated. An extract was considered mutagenic if the
number of revertants in any of the concentrations tested
was two-fold or greater than the control [27] and showed
a dose related response. All experiments were repeated
twice to confirm the results.

Statistical analysis

Results were compared by One Way ANOVA using the All
Pairwise Multiple Comparison Procedures (Holm-Sidak
method). All results are presented as mean + standars
error of the mean (SEM).

Results

Effects of B50 or B100 in comparison to ULSD

The mutagenic effects of B50 and B100 were compared
with those of the ULSD for all four tested engine conditions
(Table 1, Figure 2). When engine was equipped with muffler,
the concentration dependent mutagenic activity was
observed for all samples collected at light-load (M1 and
M3) and one of the heavy-load (M2) operating conditions.
The mutagenic activity was increased with fraction of
biodiesel in the fuel for all those 3 modes. B100 (120 pg/
plate) induce the strongest mutagenic effect at M1 and
M2 (91% and 179% over ULSD, respectively). At the same
conditions, B50 caused only 18% and 34% increase in
mutagenicity over ULSD, respectively. B50 and B100 did not
induce a significant increase (13% and 3%, respectively) in
mutagenic activity when engine was operated under M3
conditions, as compared to ULSD. No positive mutagenic

activity was detected for all samples collected at M4 (heavy-
load) operating conditions.

Effect of engine operating conditions on mutagenic

activity of DPM

The effects of the four engine operating conditions were

studied using the samples collected from engine equ-
ipped with a muffler (Table 1 and Figures 3,4 and 5). When

engine was fueled with ULSD, the mutagenic activity was

observed for the samples collected for light-load engine

operating conditions (M1 and M3), but not for heavy-
load engine operating conditions (M2 and M4), and only

for the highest studied concentration of 120 ug/plate

(Figure 3). When engine was fueled with B50 (Figure 4) and B100

(Figure 5), the mutagenic activity was detected at both

light-load (M1 and M3) and one of the heavy-load operating

conditions (M2 but not M4). Increase in mutagenic activity
was concentration dependent for all those 3 modes with

the positive response at two highest concentrations (40

and 120 pg/plate). At the lowest studied concentration of
13.3 pg/plate, the mutagenic activity was found only for
the engine fueled with B100 and operated at M2 condition

(Figure 5).

Effect of diesel oxidation catalyst (DOC) on mutagenic
activity of DPM

The effects of DOC on mutagenic activity of DPM were
studied using samples collected for all three fuels and the
engine operated at one light-load (M1) and one heavy-load
(M2) condition (Table 1, Figure 6). The strongest effects of
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Figure 3. Effect of engine operating conditions on
mutagenic activity of ULSD samples collected for the
engine fitted with muffler.
ULSD samples (0, 13.3, 40 or 120 pg/plate) were incubated
at 37° C with the Salmonella typhimurium TA 98 without
S9 microsomal activation. Clear columns — mode M1; light
gray columns — mode M2; Dark gray columns — mode M3;
Black columns - mode M4. Data represent mean values
(+SEM) of the average number of revertant colonies per
sample. Each sample was tested twice in two separate
experiments. *positive responses, as evidenced by the
number of revertant colonies being at least two-fold greater
\__than the respective control value.
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Figure 4. Effect of engine operating conditions on
mutagenic activity of B50 samples collected for the engine
fitted with muffler.
B50 samples (0, 13.3, 40 or 120 pg/plate) were incubated at
37° C with the Salmonella typhimurium TA 98 without S9
microsomal activation. Clear columns — mode M1; light gray
columns — mode M2; Dark gray columns - mode M3; Black
columns - mode M4. Data represent mean values (+SEM)
of the average number of revertant colonies per sample.
Each sample was tested twice in two separate experiments.
*positive responses, as evidenced by the number of revertant
colonies being at least two-fold greater than the respective
\__control value.
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Figure 5. Effect of engine operating conditions on
mutagenic activity of B100 samples collected for the
engine fitted with muffler.

B100 samples (0, 13.3, 40 or 120 ug/plate) were incubated
at 37° C with the Salmonella typhimurium TA 98 without
S9 microsomal activation. Clear columns — mode M1; light
gray columns - mode M2; Dark gray columns — mode M3;
Black columns — mode M4. Data represent mean values
(+SEM) of the average number of revertant colonies per
sample. Each sample was tested twice in two separate
experiments. *positive responses, as evidenced by the
number of revertant colonies being at least two-fold

\__ greater than the respective control value. J

DOC were observed when the engine was fueled with
B100 and operated at mode M1 (Figure 6A). The results for
two highest sample concentrations, 40 pug/plate and 120
pg/plate, showed that introduction of this specific DOC
in the exhaust system resulted in 59% and 69% decrease
in mutagenic activity, respectively. In the cases involving
B100 and lowest sample concentrations (13.3 pg/plate),
the samples collected for the engine equipped with DOC
and operated at M2 exhibited 45.5% lower mutagenic
activity than the corresponding sample obtained for the
muffler-only configuration (Figure 6B). When the engine
was fueled with B50, the effects of DOC were observed only
for M2 conditions, demonstrating 12% and 16% decrease in
mutagenic activity for two highest sample concentrations,
respectively (Figure 6B). No significant effects of DOC were
observed when the engine was fueled with ULSD.

Discussion
This study was conducted to investigate the mutagenic
effects of soy-based FAME biodiesel. The effects of B50
and B100 were compared to those of ULSD. These effects
were examined for four steady state engine operating
conditions and two exhaust aftertreatment configurations
using Salmonella typhimurium TA98 (frame-shift mutation)
assay without metabolic activation (S9).

This is well-known that emissions are influenced by both
the engine (and exhaust aftertreatment system) as well
as the fuel being combusted [46]. Accordingly, results of
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Figure 6. Effect of DOC on mutagenic activity of DPM
samples collected for the engine operated at 2 steady-
state modes M1 (A, light load) and M2 (B, heavy load).
ULSD, B50 or B100 samples (0, 13.3, 40 or 120 pg/plate)
were incubated at 37° C with the Salmonella typhimurium
TA 98 without S9. Clear columns - control samples (PBS
exposure); light gray columns - exposure with 13.3 ug/
plate of DPM; Dark gray columns - exposure with 40 pg/
plate of DPM; Black columns - exposure with 120 pg/
plate of DPM. Data represent mean values (+SEM) of the
average number of revertant colonies per sample. Each
sample was tested twice in two separate experiments.
\_ *p<0.05, vs the engine equipped with muffler only. J
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our study clearly indicate that mutagenic activity of DPM
was strongly affected by the fuel formulation, engine
operating conditions, and exhaust aftreatment. For the
engine fueled with ULSD, only the DPM samples collected
for light-load engine operating conditions were mutagenic.
These results are consistent with the previous studies [45,46]
and can possibly be explained by the lower brake thermal
efficiency of the engine, less completed combustion, and
consequently elevated emission of organic compounds at
the light-load in comparison with the high-load engine
operating conditions. In contrast, samples collected for
the engine fueled with B50 or B100, the mutagenic activity
was observed for both light-load and heavy-load engine
operating conditions. In our study, the increase in mutagenic
activity correlated with the increased level of the fraction
of organic carbon in these samples [23]. Samples with the
higher fraction of organic carbon also exhibited the higher
genotoxic activity for the strain TA98 without S9 microsomal
activation. For example, DPM samples obtained for M1 and
M2 operating conditions had respectively 64% and 168%
higher organic carbon content when B100 was used in place
of ULSD [23]. Consequently, the B100 samples exhibited 91%
and 179% higher mutagenic activity than corresponding

ULSD samples. The DPM generated at heavy-load engine
operating condition (M4) that was characterized with the
lowest fraction of organic carbon of all samples collected
[23] showed no positive mutagenic activity. The mutagenic
activity increased with fraction of biodiesel in the fuel for
three modes (M1-M3). Similarly, the results produced by
the other groups [30,31], indicate a strong dependency of
the number of revertants on the engine speed. In our study,
the strongest increases in mutagenicity were triggered by
B100 at the high-speed modes M1 and M2. In agreement
with other studies [17,25], carbon analysis of the primary
filter showed positive correlation between fraction of
organic carbon and fraction of biodiesel in the fuel [23].
It is well established that particulate matter produced
by combustion of petroleum diesel and biodiesel are a
complex mixture of different compounds [5,48]. Regardless
of the reduction in the total mass of particulate matter,
the soluble organic fraction of the emitted particles
is commonly found at a higher level in the exhaust of
diesel engines fueled with biodiesel. Many studies have
found that soluble organic fraction (SOF) of DPM contains
polynuclear aromatic hydrocarbons (PAH) and nitro-
PAH that are known to be genotoxic and probably are
strong contributors to induce gene mutation in bacteria
[9,49-52]. Some of the PAH measured in the DPM, like
benzo(a)pyrene, fluoranthene or benzo(ghi)perylene
(chemically reactive, non-volatile), emitted at the greater
levels in the biodiesel than diesel exhaust [53]. These PAHs
are known to be mutagenic and highly carcinogenic. The
positive results without metabolic activation confirm that
components like substituted PAH contribute significantly
to mutagenic effects of DPM. This effect of direct acting
mutagens is attributed to substituted PAH, such as nitro-
PAH [5,54-56]. Nitro-PAH could be formed by a reaction
with the NOx present in diesel engine emissions. These
substances display a strong direct mutagenicity while
there parent compounds exhibit no or less mutagenicity
[5,8,57,58]. The combustion of biodiesel in a diesel engine
usually increases the release of nitrogen oxides [59]. An
increase in NO, concentration in the B50 exhaust samples
[23] corresponded with the higher mutagenicity observed
for B50 samples as compared to ULSD. Furthermore, Biswas
et al., (2009) showed correlations between oxidative
potential and organic carbon from DPM [60]. In our study
we have an increased percentage of the organic carbon
fraction for biodiesel samples in comparison with diesel
exhaust. Higher concentrations of organic compounds and
transition metals (Co, Cu, Ni, Zn) in the biodiesel exhaust
than in diesel exhaust [61] might contribute to the higher
oxidative potential of biodiesel DPM and thus to its higher
in vitro mutagenicity. While the chemical characterization
of the fuel exhaust is not part of the current study, future
work focusing on deciphering the detailed compositions
of the organic extracts of biodiesel and diesel exhaust and
its effect on relation to the mutagenic activity, is highly
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prompted.

Benefits of using a DOC to control toxicity of DPM
generates at light-and heavy-load engine operating
conditions were investigated in our study. When the DOC
was used, a strong correlation between engine operating
conditions and observed changes in mutagenic activity
of DPM was detected. DOC significantly decreased the
mutagenic activity of DPM by 69% in the case of B100 and
light-load (M1) engine operating conditions. A decrease in
mutagenicity was also observed when engine equipped
with DOC was fueled with B50 and heavily loaded. The
decrease in mutagenicity can be explained by the fact that
DOC effectively removed hydrocarbons and the organic
carbon fraction of DPM [23]. Mutagenicity was slightly
increased by the B100 exhaust (120 mg/plate) at high load
mode M2 with a great increase in NO2 concentration [23],
which might be responsible for synthesizing even more
genotoxic materials, nitro-PAH, under these conditions.
Our results are similar to those from the different studies
showing that changes depended mainly on engine load
modes [34,62,63]. They suggested that high engine load
increases NOx in the exhaust and NOx cannot effectively
be reduced by a DOC, while high NOx levels lead to an
increased formation of nPAH.

Conclusions

In conclusion, the neat and blended soy-based FAME
biodiesel fuels demonstrated the potential to substantially
reduce the mine air concentrations of elemental carbon
(EC) and total DPM mass. However, the DPM generated by
diesel engine fueled with neat or blended biodiesel was
found to have higher mutagenic potency, as determined by
Salmonella assays than DPM generated by the same engine
fueled with ULSD. This increase in mutagenicity might be
attributed to the higher presence of organic carbon in
the biodiesel DPM. Since our results demonstrated that
the evaluated DOC was effective in controlling OC level
and mutagenic potential of DPM, we would recommend
using optimized DOCs on the diesel engines particularly
those fueled with biodiesel. Further research is needed to
investigate the health effect of biodiesel exhaust as well
as efficiency of the DOC and other exhaust aftertreatment
devices in removal of specific potentially toxic species.
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