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Comparison of Magnetic Field Distribution Models
for a Magnetic Proximity Detection System

Jingcheng Li, Christopher C. Jobes, and Jacob L. Carr

Abstract—Magnetic proximity detection technology is rapidly
advancing as a promising method of protecting underground mine
workers from striking and pinning hazards associated with mobile
mining machines. A magnetic proximity detection system requires
a magnetic distribution model to estimate the proximity of the
sensor to the generators. This paper presents a comparative anal-
ysis of magnetic flux density distribution models in three different
field distribution design patterns. The accuracy of these models
is determined with a laboratory magnetic proximity detection
system. These field distribution design patterns are spherical, ellip-
soidal, and sphere-cosine, respectively. The analyses show that the
sphere-cosine model is the most accurate model for the proximity
system followed by the ellipsoidal and spherical models.

Index Terms—Collision avoidance, electromagnetic modeling,
error analysis, ferrite device, magnetic fields, magnetic flux den-
sity, magnetic sensors, mining equipment, optimization.

[. INTRODUCTION

proximity detection system must determine the proximity

of workers near a piece of mobile machinery and au-
tomatically act to prevent accidents. Low accuracy in such a
safety system could result in a false alarm, or worse, a failure to
alarm. Therefore, the accuracy of proximity detection systems,
to a large extent, determines their safety value. These systems
require an accurate magnetic flux density distribution model to
precisely determine the proximity of a magnetic sensor to the
system’s magnetic generators. A magnetic flux density model
provides a function that relates the magnetic flux density of a
generator to the distance from that generator. Several possible
model design patterns result in varying proximity detection

| system accuracies. Researchers at the National Institute for

Occupational Safety and Health (NIOSH) have recently inves-
tigated the effect of using differing magnetic field distribution
design patterns on the accuracy ot a laboratory-based mag-
netic proximity detection system. Three ditferent mode) design
patterns or shapes were used in this investigation: the spherical
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Fig. . Proximity detection system components: ferrite-cored generator and
magnetic flux density sensor.

model, the ellipsoidal model, and the sphere-cosine or NIOSH
model.

A. Background

Data from the Mine Safety and Health Administration show
that, from 1999 to 2006, there were, on average, 254 accidents
per year during routine mining and maintenance activities in-
volving remote-control continuous mining machines (CMMs)
in the United States. Since 1984, there have been 37 fatalities,
in which a miner was crushed by a remote-control CMM. To
reduce the accident and fatality rates involving CMMs and other
types ot equipment, some mining companies have begun to use
magnetic proximity detection systems to protect workers. When
workers enter an area where they could be struck by moving
parts of the machine, these systems issue visual or auditory
warnings and/or stop machine movement. It is not uncommon
to find a worker within 1 or 2 m from a CMM in a mine entry.
In such a situation, only a system with a degree of accuracy on
the order of tens of centimeters will be able to provide effective
protection for the worker.

A magnetic proximity detection system uses one or more
magnetic generators to create a magnetic field around a ma-
chine. A magnetic sensor worn by a worker detects the mag-
netic field and estimates the proximity of the sensor to the
generator based on a measured magnetic flux density. Fig. 1
shows the basic components of the systems in a 2-D overhead
view, where 7 is the distance from the generator to the sensor in
a direction determined by the angle ¢, and B is the magnetic
flux density reading at the sensor. A magnetic flux density
mode] is used to determine this distance based on the magnetic
flux density reading. The accuracy of the calculated distance is
governed by the magnetic flux density model used.

0093-9994/$31.00 © 2013 [EEE
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All points around a magnetic field generator that have the
same magnetic flux density reading form what is known as
a shell. The shape of a shell is determined by the magnetic
flux density of the generated field and the distance from the
magnetic field generator.

B. Magnetic Flux Density Models

A number of shell-based field distribution patterns can be
used to model a magnetic field around a generator. A spherical
shape is often used to approximate the field far away (far-field)
from a generator. An ellipsoidal shape is frequently used in
websites, presentations, and brochures by magnetic proxim-
ity detection system manufacturers to illustrate the magnetic
field geometry near a generator. The sphere-cosine shape (see
the Appendix) has been recently developed by researchers at
NIOSH to approximate the field near to or far from a generator
[1]. To evaluate these 3-D models for ferrite-cored generators,
researchers at the NIOSH Office of Mine Safety and Health
Research performed these evaluations in their 2-D forms for
simplicity and clarity. Because of the axially symmetric na-
ture of the magnetic field, the 2-D evaluation results should
apply generally to the 3-D models. The circular-shelled model
(circular model) is the 2-D form for the sphere-shelled model,
the ellipse-shelled model (elliptical model) is the 2-D form for
the ellipsoid-shelled model, and the circle-cosine-shelled model
(NIOSH model) is the 2-D form for the sphere-cosine-shelled
model.

Equation (1) is a general expression of the circular model for
a single generator, with the symbols and the coordinate system
shown in Fig. 1. Equation (2) defines the elliptical model.
Equation (3) defines the NIOSH model. In these equations,
L is the length of the generator; ¢ and d in (lc); ¢q, da, Cb,
and d; in (2b) and (2¢); and ¢,, dg, ¢, and dp in (3d) and
(3e) are constants for a given steady magnetic field that can
be determined through flux density measurements [1]. With
these constants determined, the corresponding magnetic shell
function can be generated for any arbitrary B from each of
these models. Equations (la) and (1b) are the shell function
for the circular model in Cartesian coordinates and (lc) in
polar coordinates. Equation (2a) is the shell function for the
elliptical model. Equations (3a) and (3b) are the shell function
for the NIOSH model in Cartesian coordinates and (3c) in polar
coordinates.

The radius for the circular model, i.e., 7, can be obtained for a
measured B from the polar circular shell function (1c), and the
(z,y) values of the points on the shell can then be found from
the Cartesian shell functions (1a) and (1b). The values of the
semimajor axis a and semiminor axis b for the elliptical model
can be obtained for a measured B from (2b) and (2c). All the
points on the ellipse-shell will satisfy the shell function (2a).
Shell parameters a and b for the NIOSH model can be obtained
for a measured B from (3d) and (3e). The magnitude of the
distance, i.e., p, to a point on the shell can be calculated from
the polar shell function (3c) by varying the angle «, and the
(z,y) values of the points on the shell can then be calculated
from Cartesian shell functions (3a) and (3b) in the same way.
All shells in the circular and elliptical models look similar
regardless of the shell sizes. However, any two shells may have
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Fig. 3. Actual measured points for two shells.

very different shapes for the NIOSH model, as illustrated in
Fig. 2. As shown in (3d) and (3e), the B reading determines not
only the size of a shell but also its shape

z = rcos(a) (la)
shell.(z, y|B) } ) y=rsin(a) (1b) 0
shell.(r,a|B) | 0<a<2rm

r=cB¢ (lc)

(z/a)? + (y/b)* =1 (a)

Shell.(z,y|B) = { a = c B % (2by (2)

b=c,B~% (2¢)

x = pcos(a) (3a)

y = psin(a) (3b)

Shelly (z, 3| B) p=acos(2r) +b (3¢)

Shelly (p, | B) } = 0sas2n 3
a=c,B ™% (3d)
b=cyB ™% (3e)

a+b>1L/2.

1I. MODEL COMPARISON

The plots shown in Fig. 3 are two of many sets of actual |

magnetic flux density measurements from a proximity detection
system. Each of the sets contains measurements for an indi-
vidual shell, i.e., constant B. These two sets of measurements
will be used to build the shells for the circular, elliptical,
and NIOSH models for an evaluation of these models in this
section. The generator used in the system has a 25 x 25 x
304.8 mm Mn-Zn ceramic core of type MN60-2573-970-07.
An IDR-200 Gauss meter is used to measure magnetic flux
density B in units of milligauss (mG).

The optimal shell functions for the circular, elliptical, and
NIOSH models were constructed using procedures similar to
those introduced in [1] from each of the individual data sets.
The shell data shown in Fig. 3 were processed and yielded (4)
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Fig. 4. Plots of the shell models generated from actual measurements.

for B = 170.0 mG and (5) for B = 25.0 mG, where (4a), (4¢),
(5a), and, (5¢) are in polar coordinates and (4b) and (5b) in
Cartesian coordinates for convenience. The plots of these func-
tions along with the actual measurements are shown in Fig. 4.
Clearly, the NIOSH model fits the actual measurements best

Circle : 7 = 269.31 (4a)

Ellipse : (z/309.04)% + (y/201.71)2 =1 (4b) @

NIOSH : p = 65.03 cos(2cx) + 248.21 (4¢) )
0<a<2n

Circle : r = 422.74 (5a)

Ellipse : (z/510.21)% + (y/368.97)2 =1 (5b) 5)

NIOSH : p = 69.04 cos(2c) + 422.71 (5¢)

0<a<22n.

The standard deviations of the modeling errors, and both
absolute and relative maximum modeling errors, are shown in
Fig. 5(a) and (b) for these shells. As shown in the figures, the
maximum relative modeling error for the elliptical model is
4.6 times as great as the NIOSH model for B = 170 mG and
2.5 times for B = 25.0 mG; the maximum relative error for the
circular model is 20.7 times as great as the NIOSH model for
B =170 mG and 8.9 times for B = 25.0 mG.

As shown in Fig. 5(a) and (b), the difference of the relative
maximum modeling errors (2.29% and 2.51%) for the NIOSH
model for B = 170.0 mG and B = 25.0 mG is very small.
This indicates that the major contributions to those errors are
the resolution and accuracy limitations of the proximity system
and the inevitable ambient magnetic noise, implying that these
errors are local, and should be independent of location and
distance to the generator. In contrast, the ditference of the
relative maximum modeling errors (10.46% and 6.31%) for
the elliptical mode!l for B = 170.0 mG and B = 25.0 mG is
far greater than those for the NIOSH model. This indicates
that, in addition to the resolution and accuracy limitation of the
system and the ambient noise, a model pattern design error is
introduced by the elliptical model, meaning that the elliptical
shape never fits an actual magnetic shell, although 1t might
approach it at greater distances. The same analysis applies to the
circular model, but it is even less favorable. The relative errors
for both the elliptical and circular models are clearly dependent
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on location and distance, implying the global and nonuniform
distribution nature of these errors.

UI. POSITIONING ACCURACY COMPARISON
FOR DIFFERENT MODELS

As demonstrated in [3], the position of a sensor can be
determined as the intersection of two or more magnetic shells
in a multigenerator system. To determine the impact of these
models on positioning accuracy, an experiment was conducted,
in which two generators were used to determine position. The
intersection of two magnetic shells from the generators was
used as the calculated position for the sensor in a plane, as
illustrated in Fig. 6. {The intersection of two half-shells was
used in the actual implementation.) In this experiment, two
similar generators with a size of 254 x 254 x 304.8 mm
were laid 1 m apart on a wooden platform and were alternately
running.

Prior to the positioning test, 18 sets of measurement data
similar to those shown in Fig. 3 with B readings from 5.0 to
297.0 mG were collected from the generators. Each data set
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contained the measurements of 25 points for an individual shell.
From these data, the models were constructed and given in (6)
for the circular model, (7) for the elliptical model, and (8) for
the NIOSH model, in their local generator coordinate systems.
Procedures similar to those given in [1] were used to equally
and optimally determine the models’ constants to establish a
fair comparison base [refer to ¢ and d in (1c¢), ¢, and d, in (2b)
and (3d), and ¢, and d. in (2¢) and (3e)] for these models, as
shown n Fig. 7(a)—(e).

To make a statistical evaluation of the calculated positions
possible, 40 actual points were selected'in the global coordinate
system, as shown in Fig. 8. The measurements at these points
were denoted by (x;,y; , Bi1, Bi2), 1 = 1,2,3,...,40, where
z; and y; were coordinates at the ith point, and B;; and B9
were magnetic flux density readings from generators 1 and
2, respectively, at the ith point. B;; and B, were used to
generate the two corresponding shells. The intersection of these
two shells was taken as the calculated position of the sensor.
Fig. 9 shows the plots of these calculated positions from the
three different models against the actual points. As shown in
Fig. 9, the calculated positions with the NIOSH model are
closest to the actual points; those using the elliptical model
come in second; those using the circular model show the largest
differences from the actual points. Fig. 10 shows the error
statistics of the calculated positions for each of the different
models. The relative maximum positioning error is 3.26 times
for the elliptical model and 10.83 times for the circular model
over that of the NIOSH model, as shown in Fig. 11.

As shown in Figs. 9 and 10, the calculated positions with
the NIOSH model show not only the smallest statistical error
in every category but also uniform accuracy over the entire
space. This indicates that the major contributions to the errors
are the local measurements and magnetic noise. In contrast,
the calculated positions with the elliptical and circular models
show not only greater errors than with the NIOSH model in
every category but also a nonuniform distribution of the errors
in the area. The apparent dependence on location and distance
of the positioning accuracy indicates that the model pattern
design errors are inherent and that they propagate through the
system positioning calculations. Although the model pattern
errors from two generators might cancel each other at some
calculated points resulting in a slight positioning error, this is
not a reliable technique to systematically compensate for the
model pattern design errors. Thus

z = 7 cos(c) (6a)
shell.(z,y|B) } _J y =rsin(a) (6b) ©6)
shell.(r,a|B) | — 0<a<2nr

r = 18521870323  (6¢)

(z/a)? + (y/b)> =1 (Ta)

Shell.(z,y|B) = < a =2047.8B79305  (7b) (7)
b= 1783.5B7034  (7¢)
= pcos(a) (8a)
y = psin(a) (8b)
Shelly (z, y| B) p = acos(2e) 4 b (®)
Shelly (p, | B) } = 0<a<2r ®
’ a = 165.04 B 0186 (8d)
b = 1846.7B~0-324 (8e)

a+b>152.4 mm
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IV. DISCUSSION

-The comparative analysis in this presentation suggests that
the NIOSH model accurately characterizes the intrinsic mag-
netic flux density distribution of ferrite-cored generators used in
mediums with relatively uniform permeability. Many additional
error-inducing factors, such as various metal parts of a machine,

advantageous in isolating and evaluating those additional error-
inducing factors. Such a model should produce slight error to
impede the investigation of the error contributions from those
factors.

V. CONCLUSION

Three magnetic flux density distribution modeling patterns
in their 2-D forms (circle, ellipse, and circle-cosine or NIOSH)
have been used to model the magnetic fields generated by a
magnetic proximity detection system. Among them, the NIOSH
model exhibits the best match to the actual magnetic flux distri-
bution shapes over the extended space around a generator. The
elliptical and circular models both show noticeable modeling
errors due to their mismatches with the actual magnetic field
shape. The modeling errors are nonuniformly distributed, and
the maximum errors with these two models can be many times
greater than those from the NIOSH model. Because of the
propagation of these modeling errors, proportional positioning
errors are also seen. The positioning errors also exhibit in a
nonuniformly distributed manner and are dependent on distance
and location for the elliptical and circular models. These errors
hughlight not only the high positioning accuracy but also the
uniformly distributed accuracy of the NIOSH model.

APPENDIX

The original NIOSH sphere-cosine magnetic flux density
model for the ferrite-cored generator of magnetic proximity
detection systems [1] is shown in (9), with the symbols and the
coordinate system shown in Fig. 12, where (9a) and (9b) are
the shell functions in Cartesian and direction cosine systems,
respectively, and a and b are shell parameters, which can
be determined from (9¢) and (9d), respectively, with a given
magnetic flux reading B. Parameters ¢, and d, in (9¢) and ¢
and d,, in (9d) are constants for a given steady magnetic field.
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Fig. 13.  Plots of three magnetic shells.

Fig. 13 shows what the magnetic shells look like. These shell
functions are determined from actual measurements [1]. Thus

Shell{z, y, z| B) or Shell(p, &, 3,7|B)

($2+y2+z2)1/2:a<x%—l—-2;y:zz—22> +b (9a)
p = alcos? o — cos? B — cos? ) + b (9b)
== 0<ao,B,y<m (9)
a=cy,B % (9¢)
b=C,B ™% (9d)
a+b>L/2
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