

- www.iea.org/coal2018/ [accessed 30 April 2019]
4. Shell (2018) Shell Scenarios. Sky. Meeting the Goals of the Paris Agreement. An Overview. www.shell.com/skyscenario
 5. EIA (2018) www.eia.gov.todayinenergy/detail.php?id=35572, 30 March 2018
 6. Carlowitz, Hans Carl von (2000) [1713]. *Sylvicultura oeconomica. Anweisung zur wilden Baum-Zucht.* (Economia forestry. Instruction to wild tree breeding). Reprint. Leipzig: Braun, 1713 / ed. by Klaus Irmer and Angela Kießling. Freiberg: TU Bergakademie Freiberg and Akademische Buchhandlung, in German
 7. Kretschmann J (2014) Sustainable landmanagement in urban areas. The Ruhr Area as a role model
 8. Van de Loo L (2018) The Post-Mining Era – a new Research Programme also for Economics. In: Mining Report Glückauf 154 (2018), No. 3, pp. 245–260
 9. RVR (2018) [https://www.metropoleruhr.de/regional_verband-ruhr/regionalstatistik_arbeitund-soziales/arbeitsmarkt.html](http://www.metropoleruhr.de/regional_verband-ruhr/regionalstatistik_arbeitund-soziales/arbeitsmarkt.html) [accessed 9 July 2018], in German
 10. Statistik der Kohlenwirtschaft (2018) [https://www.kohlenstatistik.de/22-0-Aktualisierungen.html](http://www.kohlenstatistik.de/22-0-Aktualisierungen.html). Stand 02/2018 [accessed 1 July 2018], in German
 11. RVR 2018. [https://www.metropoleruhr.de/regional_verband-ruhr/regionalstatistik_arbeitund-soziales/arbeitsmarkt.html](http://www.metropoleruhr.de/regional_verband-ruhr/regionalstatistik_arbeitund-soziales/arbeitsmarkt.html) [accessed 9 July 2018], in German.
 12. Statistik der Kohlenwirtschaft, 2018. [https://www.kohlenstatistik.de/22-0-Aktualisierungen.html](http://www.kohlenstatistik.de/22-0-Aktualisierungen.html). Stand 02/2018 [accessed 1 July 2018], in German

Retrofitting and repowering as control strategies for the curtailment of exposure of underground miners to diesel aerosols

Aleksandar D. Bugarski*, Jon A. Hummer, Shawn Vanderslice and Teresa Barone

National Institute for Occupational Safety and Health, Pittsburgh Mining Research Division, Pittsburgh, PA, USA

*Corresponding author email: abugarski@cdc.gov

Full-text paper:

Mining, Metallurgy & Exploration, <https://doi.org/10.1007/s42461-019-00146-z>

Keywords: Diesel, Exhaust aftertreatment, Advanced engines, Underground mining

To read the full text of this paper (free for SME members), see the beginning of this section for step-by-step instructions.

Special Extended Abstract

Reducing the contribution of heavy- and light-duty diesel-powered equipment to concentrations of aerosols and gases is essential to industry's efforts to improve air quality in underground mining operations. The results of this study demonstrated a potential of control strategies based on retrofitting existing power packages with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) systems and repowering existing systems with advanced power packages to reduce contributions of diesel-powered vehicles to concentrations of diesel aerosols and criteria gases in underground mines. The implementation of viable exhaust aftertreatment systems and advanced diesel power packages could be instrumental in the underground mining industry securing a clean, economical and dependable source of power for mobile equipment.

Introduction

Because of the extensive use of diesel-powered equipment in the underground mining industry, some miners are exposed to elevated concentrations of diesel aerosols [1]. Exposures to diesel exhaust have been linked to various adverse acute and chronic health outcomes [2–5]. In 2012, the International Agency for Research on Cancer categorized diesel engine exhaust as a carcinogen to humans (Group 1) [6]. Exposures of underground miners to aerosols and gases emitted by diesel engines could be effectively controlled through the implementation of a variety of integrated, multifaceted control strategies — elimination, substitution, engineering controls, administrative controls and the use of personal protective equipment [7]. The rapid developments in engine combustion technologies [8], exhaust aftertreatment technologies [9] and alternative fuels [10] have had

profound effects on the levels of diesel emissions and the physical and chemical properties of aerosols emitted by diesel engines [11]. Those advancements could be instrumental to the underground mining industry's efforts to comply with personal exposure limits for DPM [12–13].

Methodology

The potential of selected diesel emissions control strategies based on retrofitting existing power packages with exhaust aftertreatment devices and repowering with advanced power packages were examined using the results of laboratory evaluations of two electronically controlled turbocharged diesel engines with similar power ratings, but from different generations.

The retrofit systems, a DOC system and a DPF system, were evaluated individually using a U.S. EPA Tier 2 engine. Both the DOC Model MinNoDOC from AirFlow Catalyst Systems, Rochester, NY, and full-flow DPF system Model Green Trap 1100 from NETT Technologies, Mississauga, ON, were optimized for use in underground environments by impregnating their washcoats with a catalyst formulation that was designed to suppress generation of secondary NO₂ emissions. The strategy of repowering with an advanced system was examined using a U.S. EPA Tier 4 final (Tier 4f) engine equipped with a cooled exhaust gas recirculation system and diesel exhaust fluid-based selective catalytic reduction system, but not with a DPF system. The emissions for both engines were assessed for four steady-state (SS) conditions and one transient cycle (TR). Throughout the study, both engines were fueled with ultralow sulfur diesel obtained from a single batch.

MME Technical-Paper Abstracts

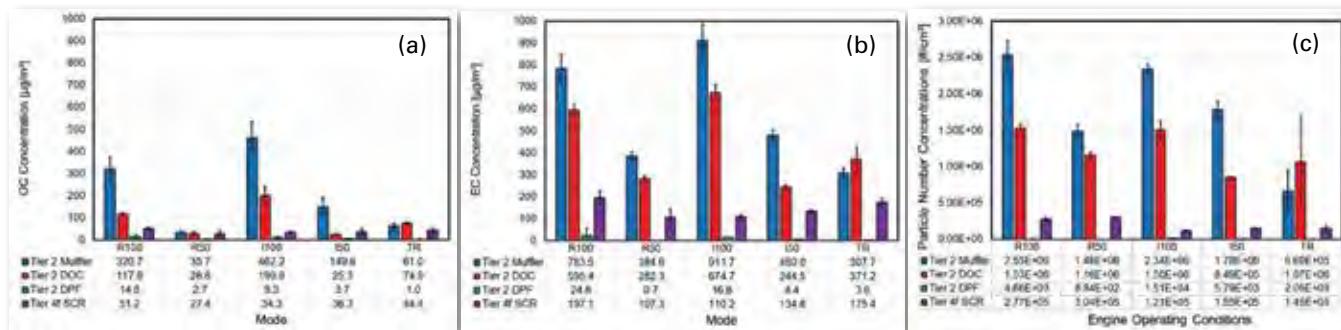
Aerosol measurements and filter samplings for aerosol characterizations were executed in exhaust diluted approximately 30 times using a two-stage partial dilution system (Dekati, Model FPS4000). The fast mobility particle sizer (FMPS, TSI Model 3091) spectrometer was used to measure the number concentrations and size distributions of aerosols. Triplicate filter samples were collected on quartz fiber filters and analyzed for organic carbon (OC) and elemental carbon (EC) using the thermal optical transmittance-evolve gas analysis (TOT-EGA) method following NIOSH Method 5040 [14]. The concentrations of CO, NO and NO₂ were measured in undiluted exhaust using a Fourier transform infrared (FTIR) spectrometer (Gasmet, DX-4000).

Key results

The results showed that, depending on the SS operating mode, the evaluated DOC reduced on average 20 to 83 percent of OC and 24 to 49 percent of EC mass concentrations in exhaust emitted by the Tier 2 engine (Figs. 1a and 1b). At TR conditions, the use of the DOC resulted in slight increases, within measurement error range, in average OC and EC mass concentrations. For the SS tests, the DOC reduced the average number concentrations of aerosols emitted by the Tier 2 engine by 22 to 52 percent (Fig. 1c). In the case of TR tests, the DOC on average increased number concentrations of aerosols emitted by the Tier 2 engine by 62 percent. When retrofitted with the DOC and operated at the SS modes, the Tier 2 engine emitted aerosols distributed in single accumulation mode with the count median diameters similar to those observed for the size distributions of aerosols emitted by the same engine operated without DOC. The peak concentrations emitted by the Tier 2 engine retrofitted with DOC were found to be somewhat lower than those of the agglomeration aerosols emitted by the same engine when operated without aftertreatment at SS modes. The increase in the average number concentrations observed after the Tier 2 engine was retrofitted with DOC and operated over TR conditions can be primarily attributed to the increase in concentrations of nucleation mode aerosols.

The evaluated DPF removed on average more than 92 percent of OC mass, 98 percent of EC mass and 99 percent of aerosols by number emitted by the Tier 2 engine at SS and TR conditions (Fig. 1). The aerosols in the DPF-treated exhaust of the Tier 2 engine were distributed between two or three modes. Nucleation mode aerosols with count median

diameters around 10 nm were found in the filtered exhaust for all SS and TR operating conditions. The concentrations of nucleation mode aerosols were comparable or less than those of accumulation mode aerosols. Both the DOC and DPF achieved reductions in the aerosol emissions without adversely affecting emissions of NO₂.


The Tier 4f engine emitted between 23 and 93 percent less OC and between 43 and 88 percent less EC than the Tier 2 engine without aftertreatment (Fig. 1). However, the average number concentrations of aerosols emitted by the Tier 4f engine were between 88 and 99 percent higher than the corresponding average concentrations in the exhaust of the DPF-filtered Tier 2 engine. The distributions of aerosols emitted by the Tier 4f engine were bimodal with the majority of aerosols in the accumulation mode, and the remaining aerosols distributed in less pronounced nucleation modes. It is important to note that the count median diameters of the agglomeration aerosol emitted by the Tier 4f engine were 10 to 25 nm smaller than those of the agglomeration aerosols emitted by the Tier 2 engine, when operated without aftertreatment and with DOC. At the corresponding engine operating conditions, the Tier 4f engine emitted on average between 59 and 99 percent less CO, between 70 and 93 percent less NO and between 30 and 97 percent less NO₂ than the Tier 2 engine operated without aftertreatment. ■

Disclaimer

The findings and conclusions in this paper are those of the authors and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. Mention of company names or products does not constitute endorsement by NIOSH.

References

1. MSHA (2019) The DPM personal sampling compliance data. <https://arlweb.msha.gov/OpenGovernmentData/OGIMSHA.asp>. Accessed December 2, 2019.
2. Attfield MD, Schleiff PL, Lubin JH, Blair A, Stewart PA, Vermeulen R, Coble JB, Silverman DT (2012) The Diesel Exhaust in Miners Study: A cohort mortality study with emphasis on lung cancer. *J Natl Cancer Inst* 104:869–883
3. Vermeulen R, Silverman DT, Garshick E, Vlaanderen J, Portengen L, Steenland K (2014) Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. *Environ Health Pers.* 122:172–177
4. Brook RD, Rajagopalan S, Pope, CA III, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Whitsel L, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. *Circulation* 121:2331–2378

Fig. 1 Effects of the evaluated engine/exhaust aftertreatment technologies on average concentrations of (a) OC, (b) EC and (c) number concentrations of aerosols in diluted exhaust (30 times).

5. Mills NL, Miller MR, Lucking AJ, Beveridge J, Flint L, Boere AJ, Fokkens PH, Boon NA, Sandstrom T, Blomberg, A, Duffin R, Donaldson K, Hadoke PW, Cassee FR, Newby DE (2011) Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation. *Eur Heart J* 32(21):2660-2671
6. IARC (2012) IARC Press Release No. 213, June 12. Diesel engine exhaust carcinogenic. International Agency for Research on Cancer, World Health Organization
7. BugarSKI AD, Janisko S, Cauda EG, Noll JD, Mischler SE (2012) Controlling exposure – diesel emissions in underground mines. Society for Mining, Metallurgy & Exploration. pp. 58–61
8. Lucachick G, Avenido, A, Watts W, Kittelson D, Nortrop W (2014) Efficacy of in-cylinder control of particulate emissions to meet current and future regulatory standards. SAE Technical Paper 2014-01-1597
9. Herner JD, Hu S, Robertson WH, Huai T, Chang M-CO, Rieger P, Ayala A (2011) Effect of advanced aftertreatment for PM and NOx reduction on heavy-duty diesel engine ultrafine particle emissions. *Environ Sci Technol* 45:2413–2419
10. BugarSKI AD, Hummer JA, Vanderslice SE (2017) Effects of FAME biodiesel and HVORD on emissions from an older technology diesel engine. *Min Eng* 69(12):43–49
11. Ruehl C, Herner JD, Yoon S, Collins JF, Misra C, Na K, Robertson WH, Biswas S, Chang M-CO, Ayala A (2015) Similarities and differences between “traditional” and “clean” diesel PM. *Emiss Control Sci Technol* 1:17–23
12. 70 FR 32996 (2005) 30 CFR 57.5060. Limit on Exposure to Diesel Particulate Matter. Safety and Health Standards—underground metal and nonmetal mines. Mine Safety and Health Administration. Code of Federal Regulations. Washington, DC: U.S. Government Printing Office, Office of the Federal Register
13. AIOH (2013) Diesel particulate matter & occupational health issues. Position Paper. Australian Institute of Occupational Hygienists (AIOH). AIOH Exposure Standards Committee. July.
14. NIOSH (2016) Monitoring diesel exhaust in the workplace. In: NIOSH Manual of Analytical Methods (NMAM), 5th Edition, Chapter DL, Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health DHHS (NIOSH) Publication No. 2014-151

The occurrence and concentration of rare earth elements in acid mine drainage and treatment byproducts. Part 2: Regional survey of northern and central Appalachian coal basins

Christopher R. Vass^{*,1}, Aaron Noble² and Paul F. Ziemkiewicz¹

¹West Virginia Water Research Institute, Morgantown, WV, USA

²Virginia Tech, Blacksburg, VA, USA

*Corresponding author email: Chris.vass@gmail.com

Full-text paper:

Mining, Metallurgy & Exploration (2019) 36:917–929, <https://doi.org/10.1007/s42461-019-00112-9>

Keywords: Acid mine drainage, Rare earth elements, Coal byproducts

To read the full text of this paper (free for SME members), see the beginning of this section for step-by-step instructions.

Special Extended Abstract

Many modern industries rely on rare earth elements (REEs) to produce products that are essential to both civil and defense applications. In a prior study (Vass et al., 2019), we showed that REE grades in acid mine drainage (AMD) and associated byproduct precipitates from AMD treatment (AMDp) warrant evaluation as a feedstock for REE production. The current work extends that effort through a broad survey of 141 AMD treatment sites in Northern and Central Appalachia. In this study, 185 raw AMD and 623 AMDp field samples were obtained and analyzed to assess the REE and major metal concentrations. Results show that an average of 282 µg/L and 724 g/t of REEs occur in AMD and AMDp, respectively. Additionally, both basins contained similar distributions of REEs, and these distributions tended to favor heavy and critical REEs when compared with traditional REE ore deposits.

Background

REEs are essential for many industrial processes and advanced-technology end-use applications, including catalysts, metallurgy, petroleum refining, catalytic converters, ceramics, glass additives, phosphors, magnets and electronics. In recent years, growing concerns over the REE supply chain as well as the risks associated with REE supply shortages have prompted many stakeholders to identify and evaluate

alternative and unconventional REE resources.

The presence of REEs in coal has long been established by many researchers, dating back to at least the 1960s and 1970s. The first paper in this series showed that this REE enrichment also extends to acid mine drainage, a deleterious byproduct generated through coal mining [1]. In that study, we suggested that the generation and treatment of AMD is analogous to a natural heap leach, and these processes provide an initial stage of REE concentration. A prospecting survey of nine AMD treatment sites showed that the AMD treatment byproducts (AMDp) had an REE concentration 7.8 times greater than that of U.S. coal and 2.5 times greater than the average crustal abundance. We also showed that the availability of REEs from AMD is likely to be between 771 and 3,400 t per year, based on two distinct estimation procedures.

Given the promising findings in the initial survey, we pursued a comprehensive sampling program to characterize the AMD-based REE resource in two important Eastern U.S. coalfields. The program included 141 AMD treatment sites in the Northern and Central Appalachian (NAPP and CAPP) coal basins. The sites were extensively sampled to determine regional production, storage and elemental distributions of REEs and critical minerals within the AMD-based resource.

Feature Articles

- 20 Human-systems integration for the safe implementation of automation in mining**
by Robin Burgess-Limerick
- 31 Critical minerals in New Mexico**
by Virginia T. McLemore
- 37 2019 SME Arizona Conference highlights regional issues**
by Margo Ellis
- 40 Space mining is the industry of the future... or maybe the present?**
by Jose Garcia del Real, George Barakos and Helmut Mischo

Technical Paper Abstracts from

Mining, Metallurgy & Exploration

(peer-reviewed and approved)

- 50 Rhenium in molybdenite: A database approach to identifying geochemical controls on the distribution of a critical element**
by Isabel F. Barton, Christian A. Rathkopf and Mark D. Barton
- 51 Sustainable change of coal-mining regions**
by Jürgen Kretschmann
- 53 Retrofitting and repowering as control strategies for the curtailment of exposure of underground miners to diesel aerosols**
by Aleksandar D. Bugarski, Jon A. Hummer, Shawn Vanderslice and Teresa Barone
- 55 The occurrence and concentration of rare earth elements in acid mine drainage and treatment byproducts. Part 2: Regional survey of northern and central Appalachian coal basins**
by Christopher R. Vass, Aaron Noble and Paul F. Ziemkiewicz
- 57 Mineralogical characteristics of the nickel laterite, southeast ophiolite belt, Sulawesi Island, Indonesia**
by Yingyi Zhang, Junmao Qie, XunFu Wang, Kun Cui, Tao Fu, Jie Wang and Yuanhong Qi
- 58 Fuzzy logic self-tuning PID controller design for ball mill grinding circuits using an improved disturbance observer**
by Hamed Khodadadi and Hamid Ghadiri

Copyright 2020 by the Society for Mining, Metallurgy & Exploration, Inc. All rights reserved.

MINING ENGINEERING (ISSN 0026-5187) is published monthly by the Society for Mining, Metallurgy, and Exploration, Inc., at 12999 E. Adam Aircraft Circle, Englewood, CO, 80112 USA. Phone 1-800-763-3132 or 1-303-948-4200. Fax: 1-303-973-3845 or email: sme@smenet.org. Website: www.smenet.org. Periodicals postage paid at Englewood, CO USA and additional mailing offices. Canadian post: publications mail agreement number 0689688.

POSTMASTER: Send changes of address to MINING ENGINEERING, 12999 E. Adam Aircraft Circle, Englewood, CO, 80112 USA.
Printed by Cummings Printing Co.