

**DESIGN OF A WATER CURTAIN TO REDUCE ACCUMULATIONS OF FLOAT COAL DUST
IN LONGWALL RETURNS**

Clara E. Seaman¹*, Michael R. Shahan¹, Timothy W. Beck¹, Steven E. Mischler¹

¹*Pittsburgh Mining Research Division, NIOSH, Pittsburgh, PA*

*Corresponding author: CESeaman@cdc.gov

DESIGN OF A WATER CURTAIN TO REDUCE ACCUMULATIONS OF FLOAT COAL DUST IN LONGWALL RETURNS

ABSTRACT

Accumulation of float coal dust (FCD) in underground mines is an explosion hazard that affects all underground coal mine workers. While this hazard is addressed by the application of rock dust, inadequate rock dusting practices can leave miners exposed to an explosion risk. NIOSH has focused on developing a water curtain that removes FCD from the airstream, thereby reducing the buildup of FCD in mine airways. In this study, the number and spacing of the active sprays in the water curtain were varied to determine the optimal configuration to obtain peak knockdown efficiency (KE) while minimizing water consumption.

KEYWORDS

Float coal dust, Longwall, Water spray, Knockdown efficiency, Explosion prevention, Dust control

INTRODUCTION

Accumulation of float coal dust (FCD), with a diameter $\leq 74 \mu\text{m}$, poses an explosion hazard to all underground coal miners (Cashdollar, 1996; Hertzberg and Cashdollar, 1987). These explosions typically occur when methane gas ignites and the resulting pressure wave re-entrains coal dust that was liberated by mining activities and has settled out of the ventilating air onto the floor, roof, and ribs of the mine entries. While the occurrence of dust-fueled explosions is relatively low—three recent instances occurred in 2001, 2006, and 2010—these represented 31%, 36%, and 60% of the underground coal mining fatalities for their respective years (MSHA, 2016). Current federal regulation requires that mines apply rock dust to mine entries in order to maintain a total incombustible content of 80%, which inhibits explosion propagation (Maintenance of incombustible content of rock dust, 2011). In the case of longwall mines, it may be possible to reduce the amount of FCD that settles in the mine airways by developing strategies to limit the amount of dust that is able to leave the active mining face.

Historically, control of mining dust has been focused on reducing worker exposures to respirable dust, which is linked to coal workers' pneumoconiosis (CWP) and other chronic and acute health problems (NIOSH, 2011). Respirable dust controls are designed with the sole purpose of keeping mine workers in clean air, and a targeted control can achieve this by moving dust-laden air away from miners, typically by face ventilation and open-air water sprays. However, in order for FCD controls to be effective, they must remove dust from the airstream. There have been extensive studies focused on understanding the effects of specific factors, such as operating pressure, orientation, ventilating airflow, droplet size, and spray nozzle type, on the knockdown performance of sprays in the presence of respirable dust (Chander, et al. 1991; Cheng, 1973; Organiscak, et al., 2018; Ruggieri, et al., 1983; USBM, 1982; USBM, 1979). While these factors have been shown to directly control droplet size, droplet frequency, and velocity, which affect the collision efficiency of the system, these findings needed to be verified with respect to FCD particles.

To close this knowledge gap, NIOSH conducted an investigation aimed at evaluating the efficiency of methods at reducing float dust concentrations in the general airstream. This study found that the guidelines for spray operation established for respirable dust held true when operating a spray with the goal of removing FCD (Beck, et al. 2017). Additionally, it was shown that there is a relationship between coal particle size and spray effectiveness, with spray knockdown efficiency increasing with increasing diameter of FCD

(Seaman et al., 2018). This finding was used to select spray type and operating pressure for the development of a water curtain that can be mounted along a longwall, downwind of the shearer, to reduce the concentrations of airborne FCD, thus reducing the rate of FCD accumulations in the return. The current study uses real-time measurements to evaluate the knockdown efficiency (KE) of a water curtain in a simulated longwall environment. The spray interval and cross-directional spans of the curtain were varied to identify the effect on KE with respect to water consumption.

METHODS

Tests to determine the KE of the spray bar were conducted at a full-scale longwall test facility at the National Institute for Occupational Safety and Health (NIOSH) Pittsburgh Mining Research Division (Figure 1).

The simulated face is 38.1 m (125 ft) long and 2.29 m (7.5 ft) high from floor to roof. Nineteen mock 2.0-m (6.5-ft) longwall shields cover the length of the longwall face, with a panline spanning from shield 9 to the return. Brattice curtain was hung from the shields, spanning from shield 11 to the return, creating a tunnel 1.6 m (5.4 ft) high by 3.0 m (10 ft) wide (Figure 1).

The ventilation of the tunnel was set to 3.5 m/s (700 fpm).

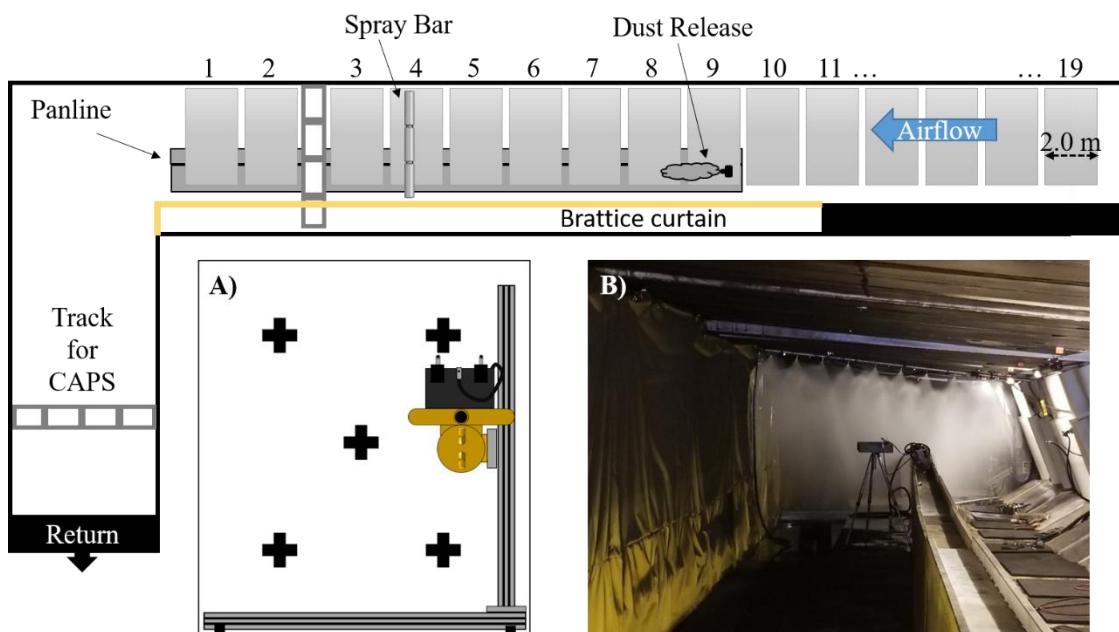


Figure 1. A schematic of the NIOSH longwall gallery. A) a cross-sectional view of the sampling area in the return with the plus marks indicating the locations where readings were taken during the test and B) a photo of the water curtain operating the gallery.

Float dust was introduced to the test section at the center of shield 9. The release point was directed such that dust was ejected halfway between the face and the panline, 0.51 m (20 in) from the underside of the shields. Dust was generated by using a screw-type feeder system with coal dust funneled into an eductor that used compressed air to carry the dust through hoses to the release point in the gallery. The dust supplied to the feeder (mean: 23.02 μm , standard deviation: 18.22 μm) was custom-milled to contain float-dust-sized particles. The screw feeder was adjusted until dust was provided to the gallery at an approximate rate of $50 \text{ g} \pm 2 \text{ g}$ per min. The dust concentration and distribution (

Figure 2) for this study were similar to the levels observed in the field (Kissel, et al., 1986; Rao, 1993; Shahan, et al., 2017).

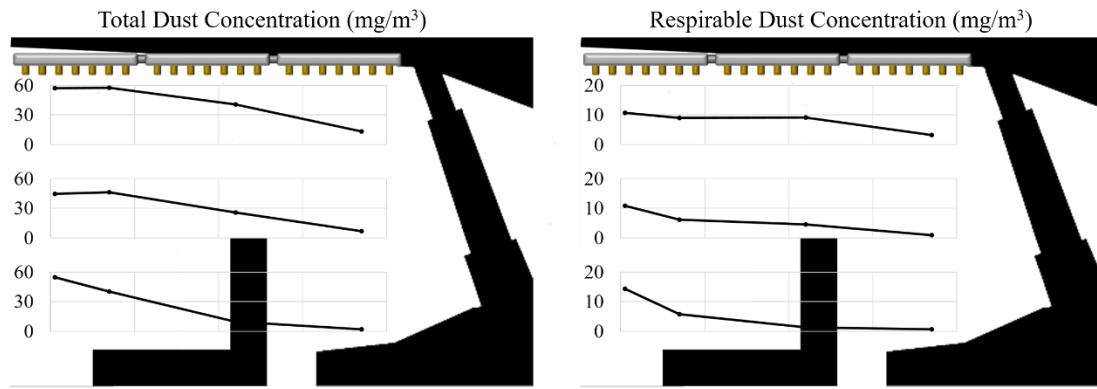


Figure 2. Graphs of the total (left) and respirable (right) dust concentrations across the gallery face between shields 2 and 3 at three different heights.

The water curtain tested in this study was constructed from three manifolds (Repair King, Shinnston, WV), each capable of holding a maximum of seven sprays spaced 0.15 m (0.5 ft) apart. Full cone sprays (SpiralJet Nozzle No. GG3, Spraying Systems Co., Wheaton, IL) were selected for use in this study because they provided maximum knockdown during single spray tests and also have no preferential orientation (Beck et al., 2017; Seaman et al., 2018). The operating pressure of the spray bar was maintained at 160 psi. Two sets of tests were conducted to first evaluate KE for varying spray intervals and then to evaluate KE for varying the cross-directional span of the spray curtain (Table 1).

Table 1. Table listing the spray configurations tested in the study

Test	Number of Sprays	Average Water Consumption (L/min)	Spray Configuration (Shaded = On)																		
			Face Gob	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Varied spray interval	21	66.8																			
	18	63.2																			
	9	34.4																			
	6	22.9																			
	5c*	19.0																			
	5w*	18.9																			
	3	13.3																			
Varied cross-directional span	21	66.8																			
	18	63.2																			
	15	43.6																			
	12	37.1																			
	9	32.5																			
	6	19.6																			
	3	10.2																			

*The “c” designation represents 5 sprays spaced closely (two off between operating sprays) compared to a wider spacing for a “w” designation (three off sprays between each operating spray).

Located in the return, 7.9 m (26 ft) downwind of the tailgate was the XY Planar Motion System. The system consists of two 2-m (80-in) linear actuators (Tolomatic, Hamel, MN), each with a 1.3-m (55-in) stroke with one actuator positioned horizontally with a sled carrying the second actuator mounted vertically to a length of 80-20 slotted aluminum framing. The instrumentation in this study was mounted to a sled on the vertical actuator. Both sleds were driven by NEMA 34 high-torque stepper motors (Applied Motion, Watsonville, CA) capable of achieving a 20,000 micro-step resolution and controlled using STAC6 stepper drives (Applied Motion Products, Watsonville, CA) using serial commands. A 10:1 ratio gear box was installed between each drive motor and actuator. A custom LabVIEW virtual instrument was created to automate the motion, allowing precise and repeatable positioning of the monitoring instruments (LabVIEW software, National Instruments).

Three instruments were used in this study. Respirable dust measurements were collected using the Personal Dust Monitor PDM3600 (Thermo-Fisher Scientific, Waltham, MA). Float dust measurements were taken using the continuous float dust monitor (CFDM). The CFDM allows a regular PDM3600 to measure total dust by bypassing the cyclone responsible for separating out the respirable fraction of dust. It consists of a housing with an isokinetic nozzle for the tapered element oscillating microbalance (TEOM) module of a regular PDM and an insert into the TEOM chamber on the PDM3600 for connecting the electronic and airflow controls. The Cloud Aerosol Spectrometer with Polarization, CAS-POL, (Droplet Measurement Technologies, Boulder, CO), is part of the Cloud, Aerosol, and Precipitation Spectrometer (CAPS), which is designed for *in-situ* atmospheric aerosol sampling and is capable of measuring real-time size distributions of atmospheric aerosols through forward light scattering (Baumgardner et al., 2001). The CAS-POL has been calibrated for use with coal dust and used previously by NIOSH to determine the knockdown efficiencies of water sprays on coal dust (Barone et al., 2017; Seaman et al., 2018). The CAS-POL was used in this study to examine the effect of water curtain configurations on the water droplet profiles. Face concentration measurements were taken at shield 5 using one PDM3600 and one CFDM. Return concentrations were measured using one PDM3600 and two CFDMs placed on the CAS-POL wing. Each sampling phase lasted 25 minutes, and each test condition was repeated three times. The KE of the control was calculated by comparing the return dust concentrations before and after the control was activated

RESULTS

Spray interval

The average performance of the water curtain for different intervals between sprays for both total and respirable dust are shown in

Figure 3. The 21-spray configuration had the highest KE for both float and respirable dust fractions and was significantly different ($p < 0.05$) from the 6, 5c, 5w, and 3-spray configurations for total dust and significantly different from all configurations except 18 sprays for respirable dust. The widest interval between spray configurations featured a single spray in the center of each manifold which had the lowest KE for both total and respirable dust. When water consumption was taken into account, the configurations with 5 sprays spaced closely (5c) had the highest total dust KE but was only significantly different from the 21 and 18 spray configurations.

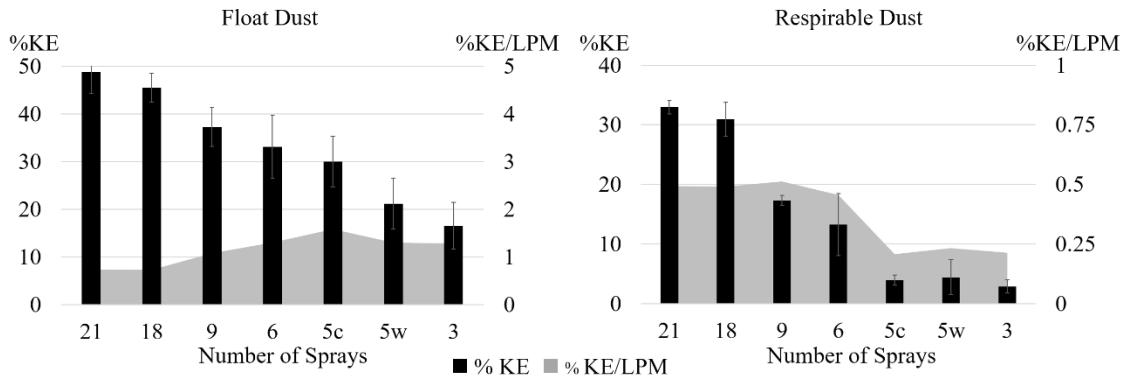


Figure 3. Average spray curtain performance for float dust (left) and respirable dust (right) for varying intervals of sprays.

Cross-directional span

The average performance of the water curtain for different intervals between sprays for both float and respirable dust are shown in

Figure 4. The 21-spray configuration had the highest KE for both float and respirable dust fractions, but was only significantly different ($p < 0.05$) from the narrowest (3-spray) configuration for float dust; there was no significant difference between any of the curtain spans for respirable dust. The narrowest configuration had the lowest KE for both float and respirable dust, but had the highest KE when water consumption was taken into account. While the KE per gallon for the 3-spray configuration was significantly different from all other curtain widths for float dust, it was not significantly different from any of the other configurations for respirable dust.

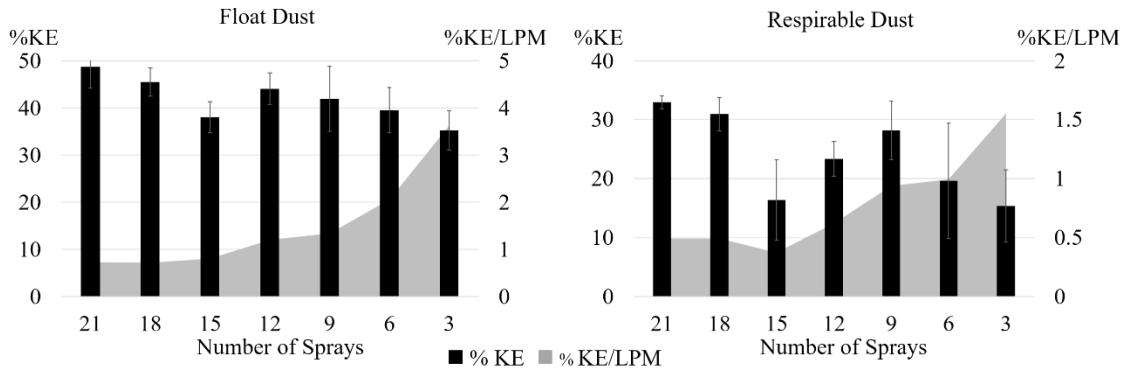


Figure 4. Average spray curtain performance for float dust (left) and respirable dust (right) for different cross-directional widths.

Water curtain droplet profiles

CAS-POL results examining the droplet diameters and count for a selection of the water curtain configurations are shown in

Figure 5. Curtain configurations in which sprays were operated with the minimum distance between all sprays (i.e. sprays from the cross-directional span experiments) are identified as solid configurations for this section. Curtain configurations that feature a nonoperational spray between operational sprays are identified as spaced configurations for this section. On average, the droplets produced by the solid configurations were 32% larger than the spaced configurations. There was not a strong trend observed between the number of sprays and the particle size for either the solid or spaced configurations. The solid configurations produced a higher particle count than their spaced counterparts. In general, the number of particles decreased with decreasing spray count for both configurations, except for the 21-spray configuration.

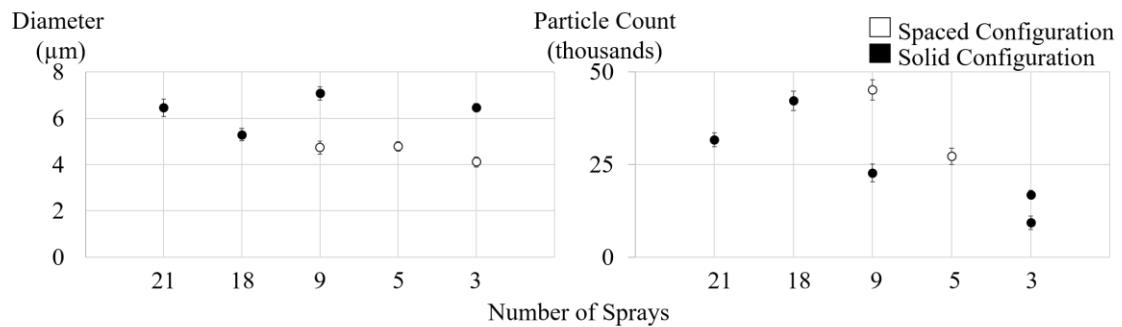


Figure 5. Water curtain droplet profiles.

DISCUSSION

The aim of the first set of experiments in this study was to determine the effect of spray interval on the performance of a water curtain to be used on a longwall section to reduce FCD accumulations in the return. It was found that, as spray spacing increased, the KE of the water curtain decreased in a linear fashion for both float and respirable dust fractions. When water consumption was taken into account, the spray curtain performance increased with increased spacing until the spacing exceeded 2 ft between sprays for float dust, after which it began to decrease. For the respirable dust, the fraction of KE per gallon of water stayed relatively constant until spray spacing exceeded 2 ft, at which point it also began to decrease.

An unanticipated result was that, while there was a general trend of decreasing KE with decreasing curtain width, the only significant differences were between the 21-spray and 3-spray configurations. The spray spacing was chosen as the first series of tests because it was expected that the dust-laden air could migrate around the sprays if the space was not well covered by the curtain. Previous research has shown that sprays are effective at moving air, but sometimes this movement is not beneficial to the dust control (Jayaraman et al., 1986). However, these results indicate that the spray curtain does not cause significant dust migration, therefore concentrating the sprays in areas of high dust concentrations increases the KE per unit of water consumed.

It was also unexpected to find that the 21-spray configuration produced fewer droplets than the 18-spray configuration. While the difference was moderate (approximately 24% less), this may have been due to the interactions between the sprays and airflow patterns that exist in the PMRD gallery. It was observed that, under the 21-spray configuration, a large unstable vortex formed in the spray curtain near the shield legs. This area of mixing could have potentially led to increased collisions by water droplets within the turbulent vortex causing them to drop out (Maxey, 1987; Pinsky et al., 1999). As sprays were removed from

the walkway, such as in the 18-spray configuration, the vortex in the curtain became less prominent, eventually disappearing as more sprays were removed.

The results of this study demonstrate that a spray curtain can be effective at removing FCD and, to a lesser extent, respirable dust. Additionally, these results show that understanding the distribution of dust in the area to be scrubbed can lead to a more efficient use of water by placing sprays where dust is the densest. Using the information in this study, future work will focus on understanding the interactions of multiple spray bars placed in series down the longwall face on the accumulation of float coal dust in the return.

DISCLAIMER

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. Mention of company names or products does not constitute endorsement by NIOSH.

ACKNOWLEDGEMENTS

The authors would like to thank the following people for their contributions to this work: Jason Driscoll, Andrew Mazzella, Jay Colinet, Larry Patts, and Jim Rider.

REFERENCES

Barone, T. L., Hesse, E., Seaman, C. E., Baran, A. T., Beck, T. W., Harris, M., ... Mischler, S. E. (2017). Real-time Sizing of Airborne Coarse Coal Dust. In J. Brune (Ed.), *16th Annual Mine Ventilation Symposium Proceedings* (p. 7:11–18). Golden, CO.

Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., & Newton, R. (2001). The cloud, aerosol and precipitation spectrometer: A new instrument for cloud investigations. *Atmospheric Research*, 59–60, 251–264. [https://doi.org/10.1016/S0169-8095\(01\)00119-3](https://doi.org/10.1016/S0169-8095(01)00119-3).

Beck, T. W., Seaman, C. E., Shahan, M. R., & Mischler, S. E. (2017). Open-air sprays for capturing and controlling airborne float coal dust on longwall faces. *Mining Engineering*, 70(1), 42–48.

Cashdollar, K. L. (1996). Coal dust explosibility. *Journal of Loss Prevention in the Process Industries*, 9(1), 65–76. [https://doi.org/http://dx.doi.org/10.1016/0950-4230\(95\)00050-X](https://doi.org/http://dx.doi.org/10.1016/0950-4230(95)00050-X).

Chander, S., Alaboyun, A. R., Aplan, F. F., & Section, M. P. (1991). On The Mechanism of Capture of Coal Dust Particles By Sprays. In R. Frantz & R. Ramani (Eds.), *Proceedings of the 3rd symposium on respirable dust in the mineral industries* (pp. 193–202). Littleton, CO: Society for Mining, Metallurgy, and Exploration, Inc.

Cheng, L. (1973). Collection of airborne dust by water sprays. *Industrial & Engineering Chemistry Process Design*, 12(3), 221–225.

Hertzberg, M., & Cashdollar, K. L. (1987). Introduction to dust explosions. In *Industrial Dust Explosions*. ASTM International.

Jayaraman, N., Schroeder, W., & Kissel, F. (1986). Studies of dust knockdown by water sprays using a full-scale model mine entry. *Transactions of Society of Mining Engineers*, 278, 1875–1882.

Kissel, F. N., Ruggieri, S. K., & A., J. R. (1986). How to Improve the Accuracy of Coal Mine Dust Sampling. *American Industrial Hygiene Association Journal*, 47(10), 602–606. <https://doi.org/10.1080/15298668691390313>

Maintenance of incombustible content of rock dust, 30 CFR Pub. L. No. Part 75.403, 561 (2011).

Maxey, M. (1987). The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. *Journal of Fluid Mechanics*, 174, 441–465.
<https://doi.org/10.1017/S0022112087000193>

MSHA, Mine Safety and Health Administration. (2016). Coal Fatalities for 1900 Through 2017. Retrieved January 30, 2017, from <http://arlweb.msha.gov/stats/centurystats/coalstats.asp>.

NIOSH. (2011). *Coal Mine Dust Exposures and Associated Health Outcomes: A Review of Information Published Since 1995*. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Current Intelligence Bulletin 64, DHHS (NIOSH) Publication No. 2011–172.

Organiscak, J. A., Klima, S. S., & Pollock, D. E. (2018). Empirical engineering models for airborne respirable dust capture from water sprays and wet scrubbers. *Mining Engineering*, 70(10), 50–57.

Pinsky, M. B., Khain, A., & Shapiro, M. (1999). Collisions of Small Drops in a Turbulent Flow. Part I: Collision Efficiency. Problem Formulation and Preliminary Results. *Journal of the Atmospheric Sciences*, 56(15), 2585–2600. [https://doi.org/10.1175/1520-0469\(1999\)056<2585:COSDIA>2.0.CO;2](https://doi.org/10.1175/1520-0469(1999)056<2585:COSDIA>2.0.CO;2).

Rao, B. S. (1993). Design and development of a multi-scrubber dust control system for longwall faces : experimental and modelling studies. University of Wollongong.

Ruggieri, S. K., Muldoon, T. L., Schroeder, W., Babbitt, C., & Rajan, S. (1983). Optimizing water sprays for dust control on longwall shearer faces.

Seaman, C. E., Shahan, M. R., Beck, T. W., Mischler, S. E., (2018). Comparison of the CAS-POL and IOM samplers for determining the knockdown efficiencies of water sprays on float coal dust efficiencies of water sprays on float coal dust. *Journal of Occupational and Environmental Hygiene*, 15(3), 214–225. <https://doi.org/10.1080/15459624.2017.1411597>.

Shahan, M. R., Seaman, C. E., Beck, T. W., Colinet, J. F., & Mischler, S. E. (2017). Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport. *Mining Engineering*, 69(9), 61–66. <https://doi.org/10.19150/me.7746>.

USBM. (1982). *Dust Knockdown Performance of Water*. Technology News. U.S. Department of the Interior, U.S. Bureau of Mines.

USBM. (1979). *Water Spray Systems for Control of Respirable Dust on a Longwall Plow Underground Investigation and Dust Tunnel Evaluation*. Monroeville, PA: Bituminous Coal Research, Inc. U.S. Department of the Interior, U.S. Bureau of Mines.