

Geotechnical Considerations for Concurrent Pillar Recovery in Close-Distance Multiple Seams

Peter Zhang, Mining Engineer
 Ground Control Branch
 NIOSH, Pittsburgh Mining Research Division
 Pittsburgh, PA

ABSTRACT

Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground-fall fatalities in the underground coal mines of the United States. The risk of ground falls during pillar recovery increases in multiple-seam mining conditions. The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave. When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction. This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 70 ft of interburden under about 1,000 ft of depth of cover. The study finds that, for interburden thickness of 70 ft, the multiple seam mining influence zone in the lower seam is directly under the barrier pillar within about 100 ft from the gob edge of the upper seam. The peak stress in the interburden transfers down at an angle of approximately 20° away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat. The study also suggests that, for full pillar recovery in close distance multiple seam scenarios, it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars. If the entries and / or crosscuts in the lower seam are developed outside the gob line of the upper seam, additional roof and rib support needs to be considered to account for the elevated stress in the multiple seam influence zone.

INTRODUCTION

Room-and-pillar mining accounted for about 40% of underground coal production in the United States in 2016. Pillar recovery, practiced in about one-third of the room-and-pillar mines, represents about 10% of the coal mined underground, yet it has historically been associated with more than 25% of all ground fall fatalities (Mark, Chase, and Pappas, 2003). In some U.S. coal fields, particularly central Appalachia, many coal mines are operating under geological conditions with multiple coal seams. The risk of ground falls during pillar recovery increases under multiple-seam mining conditions. The hazards of pillar recovery associated with multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave (Mark and Tuchman, 2007; NIOSH, 2010b). Pillar retreating creates abutment pressure,

not only in the currently mined seam, but also in the overlying or underlying seams. Multiple-seam interactions become more pronounced as overburden depth increases and interburden thickness decreases. To safely recover the pillars in multiple seams, it is critical to properly plan the mining sequence and panel layout to minimize potential multiple-seam interaction.

The degree of multiple-seam interaction can be influenced by the sequencing of seams, pillar and entry design, and the layout of workings (Chekan and Listak, 1994). Seams can be mined by two basic seam sequences: in descending order with mining completed in the upper seams before any mining is initiated in the lower seams, or in ascending order with mining completed in the lower seams before any mining is initiated in the upper seams. A descending order of pillar recovery is considered the most preferable practice to minimize multiple-seam interactions. Seams mined in this order are influenced by the abutment stress transferred from the overlying pillars, gob-solid boundaries, and barrier pillars. Seams mined by ascending order can also experience interactions resulting from subsidence fractures if full pillar extraction is previously conducted in the lower seams. Multiple-seam interactions could become more complicated where mining is between previously-mined seams. Multiple-seam interaction can be minimized if the pillars in the lower and upper seams are designed concurrently to account for the stress transfer through the interburden. In planning the layout of workings in multiple seams, there are two basic approaches to laying out room-and-pillar panels in successive seams: superposition or offset of panels or workings. Superposition of panels is optimal when the upper seams are developed first and then pillared. The pillars developed under the upper seam gob can be designed for single seam conditions (Chekan and Listak, 1994). However, the outer entries in the lower seam are influenced by the load transferred from the overlying barrier.

Although mining sequence, panel layout, and pillar size are critical for the planning of concurrent pillar recovery in multiple seams, the size of leave blocks, stump size, and roof and rib support should also be carefully designed to minimize multiple-seam interaction during pillar recovery. This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 70 ft of interburden under about 1,000 ft depth of cover at the lower seam.

PANEL LAYOUT FOR PILLAR RECOVERY IN TWO COAL SEAMS

This study concerns concurrent pillar recovery of two adjacent panels in two coal seams. Figure 1 shows the overlay of the panel layout in both seams. The upper seam is the Peerless coal seam and the lower seam is the Powellton seam. Figure 2 shows a typical geologic column of the interburden strata. The interburden consists of shale, sandstone, and the 2-gas coal seam. The maximum overburden depth is 930 ft in the upper seam and 1,000 ft in the lower seam where the interburden between the two seams is about 70 ft.

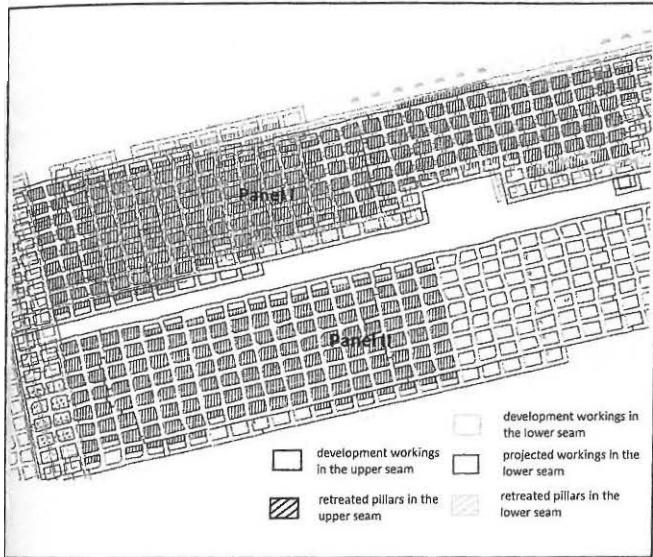


Figure 1. Overlay of panel layout in the upper and lower seams.

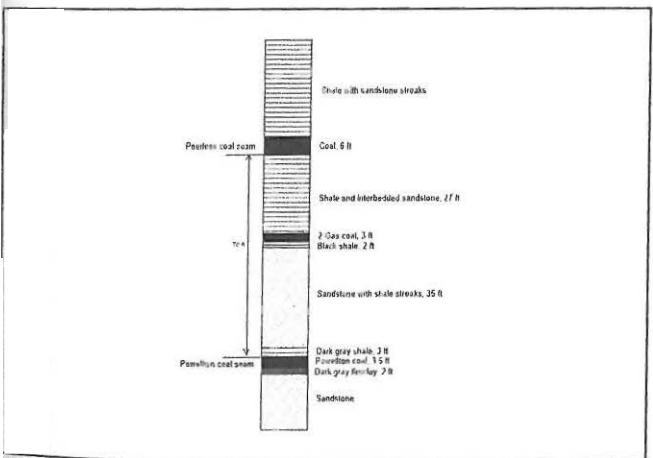


Figure 2. Geological column of the interburden strata.

The panels in the upper seam were developed with a 6–9 entry system and 70-ft by 90-ft center-to-center pillars. The overburden depth over the two panels ranges from 500 ft to 930 ft. The barrier pillar between the two panels is 90–140 ft center-to-center. The entry width is about 19–20 ft, and the entry height is about 6 ft. The immediate roof consists of shale and sandy shale. The roof is supported by four 5-ft, $\frac{3}{4}$ -in dia., fully-grouted resin bolts on 4-ft spacing for primary support and five 10-ft, 0.6-in cable bolts at intersections for supplementary support.

The panels in the lower seam were developed with a 9 entry system and 70-ft by 90-ft center-to-center pillars. A barrier pillar of 200 ft center-to-center was left between the two panels. The immediate roof is dark shale and sandstone, and the immediate floor is dark gray fireclay. The entry width is about 20 ft, and the mining height is 6 ft. The coal in the Powellton seam is about 4-ft thick, and about 2 ft of top rock is mined to make a mining height of 6 ft. The roof is supported by four 5-ft, $\frac{3}{4}$ -in dia., fully-grouted resin bolts on 4-ft spacing for primary support and five 12-ft, 0.6-in dia. cable bolts at intersections for supplementary support.

The panels in the two seams were developed with different numbers of entries, and the workings were offset 20–70 ft. Figure 3 shows the vertical layout of the entries in the upper and lower seams. Figure 4 shows the sequence of development and retreating in the upper and lower seams. The multiple-seam mining took place in the two coal seams in descending order. The first panel in the upper seam was developed and then retreated first. The concurrent mining took place in the second panel in the upper seam and in the first panel in the lower seam. The two panels were developed first and then retreated. The second panel in the lower seam was developed and retreated last.

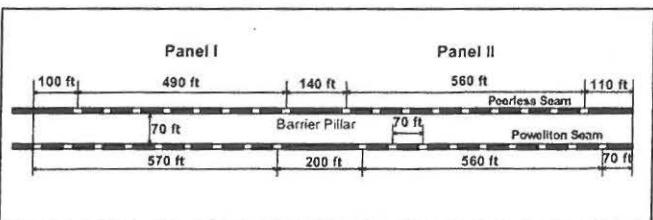


Figure 3. Entry layout in the upper and lower seams.

The pillars in the retreat panels were designed by the mine engineers using the NIOSH-developed software, Analysis of Retreat Mining Pillar Stability (ARMPS) (NIOSH, 2010a) and the numerical modeling software, LaModel (West Virginia University, 2011). LaModel was used to calculate the stability factor of the pillars over the area under maximum overburden depth of 1,000 ft in the lower seam. The pillar sizes in both seams in the study meet the stability factor requirements established in the ARMPS and LaModel software programs.

NUMERICAL MODELING OF MULTIPLE-SEAM INTERACTION

LaModel software was used to model the distribution of abutment pressure around the retreat panels. Figures 5 and 6 show the modeled area and dimensions of the models in the upper and lower seams. To make the model conservative, the highest overburden depths of 930 ft in the upper seam and 1,000 ft in the lower seam were used. To model the effect of retreat mining in the upper seam on stress change in the lower seam, the model was set up with both panels in the upper seam retreated, but with Panel I in the lower seam developed. The model used 10 ft element and symmetrical boundary conditions. The gob model was calibrated with lamination thickness and gob pressure. Lamination thickness of 50 ft and final gob modulus of 300,000 psi were set in the model as the resulting extent of abutment pressure in the upper seam as well as multiple seam stress transferred to the lower seam reasonably agrees with the field observations.

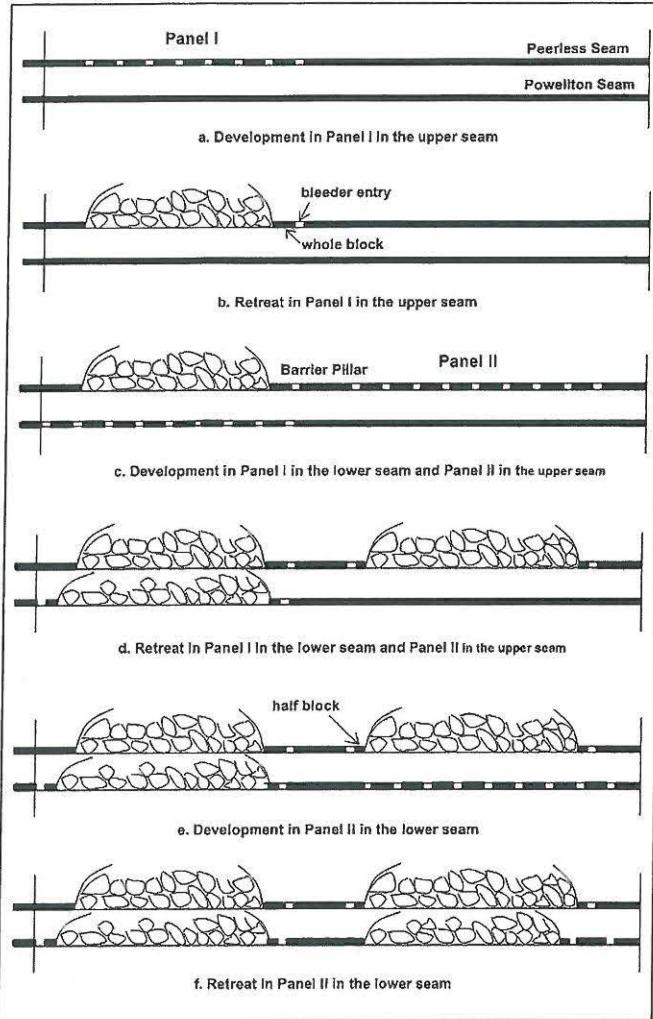


Figure 4. Sequence of development and retreating in the upper and lower seams.

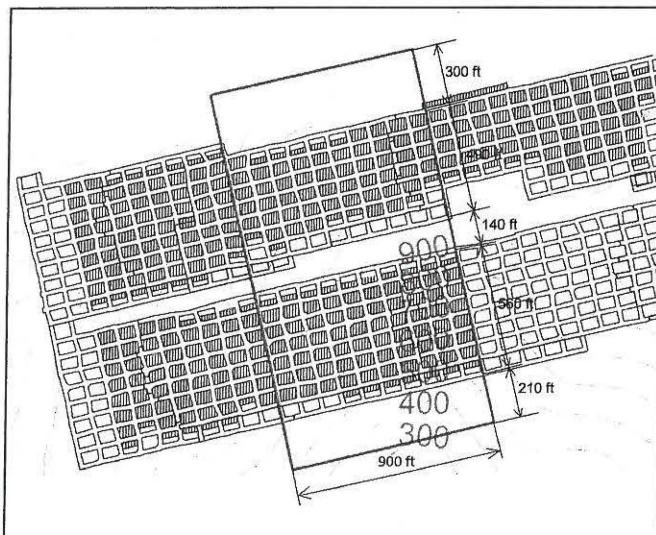


Figure 5. Modeled area in the upper seam.

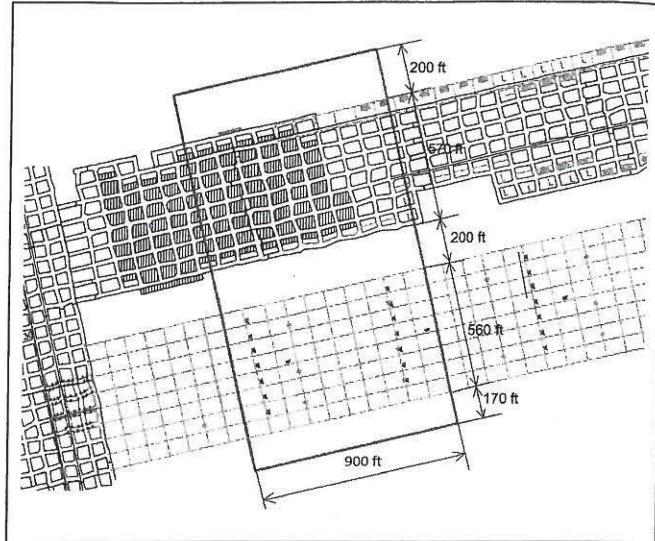


Figure 6. Modeled area in the lower seam.

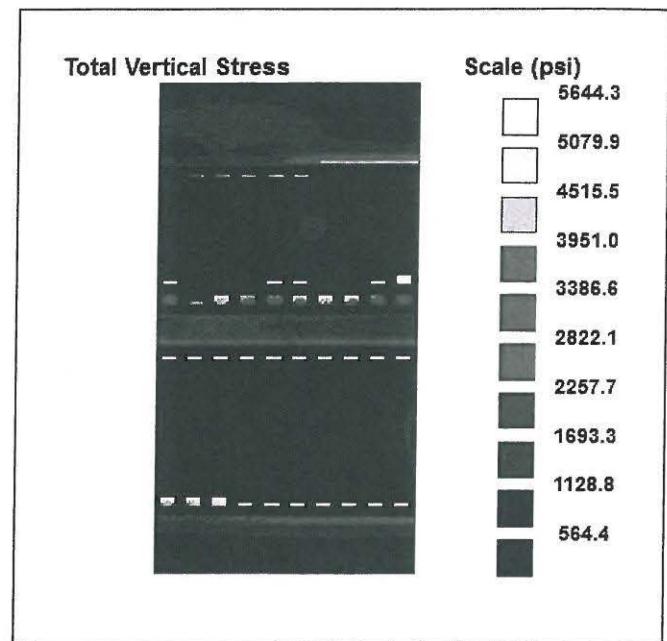


Figure 7. Vertical stress distribution over the retreat panels in the upper seam.

Figure 7 shows the vertical stress distribution over the two retreat panels in the upper seam. High stress can be seen over the barrier pillars and bleeder pillars adjacent to the barrier pillars. Figure 8 shows the vertical stress distribution across the two panels in the lower seam. This chart shows that the peak stress reaches about 4,000 psi over a solid barrier pillar and about 5,000 psi over the bleeder pillars adjacent to the barrier pillar. LaModel also predicts that pillar yielding is about 15–20 ft deep, and the abutment pressure extends for about 100 ft over the barrier pillar from the edge of the gob.

Figure 9 shows the vertical stress distribution in the pillars over the developed Panel I and in the projected Panel II in the lower seam. The peak stress is about 2,500 psi over Panel I and about 1,500 psi over the projected Panel II in the lower seam. The stress

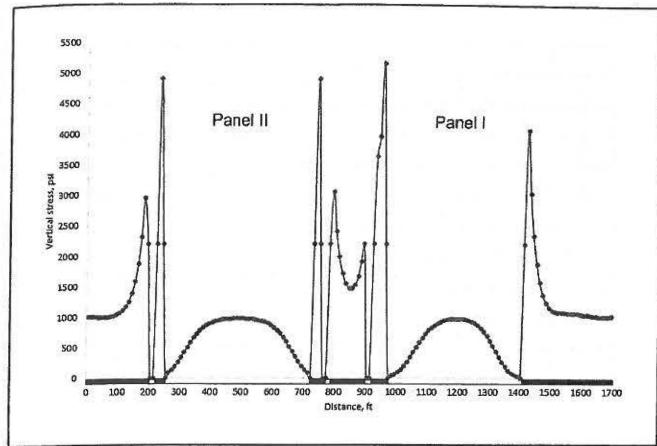


Figure 8. Vertical stress distribution across the panels in the upper seam.

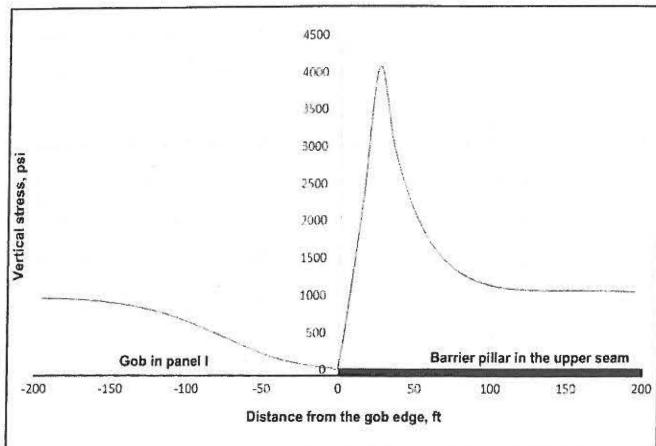


Figure 10. Vertical stress distribution over a barrier pillar in the upper seam.

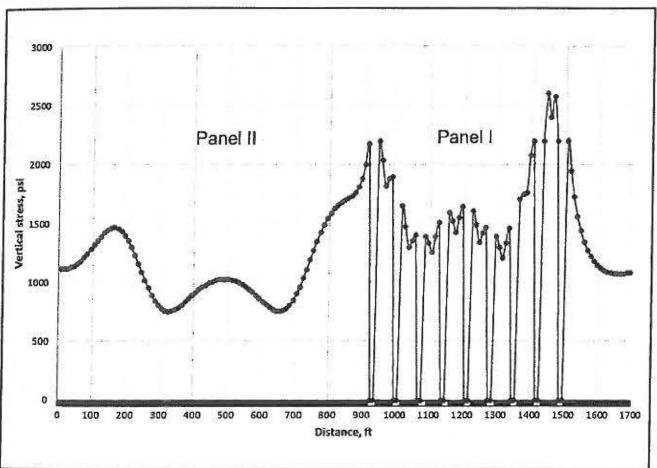


Figure 9. Vertical stress distribution across the panels in the lower seam.

is lower than the overburden stress under the middle of the upper seam gob in Panel II. LaModel predicted about a 400 psi increase of peak vertical stress under the edge of the upper seam barrier pillar, and about a 100–300 psi decrease of vertical stress under the middle of the upper seam gob before the panels are developed in the lower seam.

The retreat mining in the upper seam creates abutment pressure in the pillars adjacent to the gob, which transfers through the interburden to the pillars in the lower seam. The amount and extent of abutment pressure in the upper seam is related to the width of the gob, the gob material properties, and the overburden characteristics. The distribution of the abutment pressure over the barrier pillars, as well as the depth of yielding in the barrier pillar, largely determines the stress transferred into the interburden. Understanding how the abutment pressure transfers to the lower seam through the interburden is critical for optimal design of a multiple-seam mining layout.

This study also uses the FLAC3D numerical software (ITASCA, 2016) to model the stress transfer through the interburden under the abutment pressure created from pillar retreating in the upper seam. The model was set up based on the interburden geology shown in Figure 2. To simplify the modeling process, the FLAC3D model

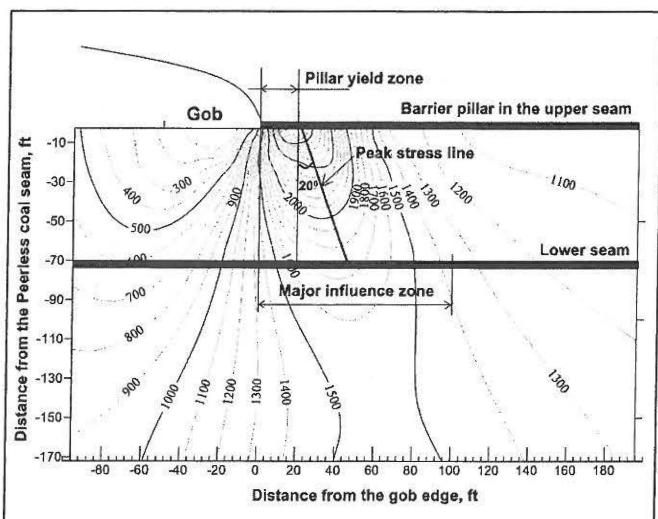


Figure 11. Vertical stress distribution in the interburden under a barrier pillar in the upper seam.

only consisted of the interburden, lower seam, and underlying floor. Table 1 shows the rock properties used in the FLAC3D model. The pressure on the interburden was simulated by applying the abutment pressure from LaModel onto the top of the interburden. The vertical stress distribution over a barrier pillar in Panel I in the upper seam, as shown in Figure 10, was used to apply the pressure on the top of the interburden.

Figure 11 shows the vertical stress distribution in the interburden under a barrier pillar in the upper seam. The vertical stress under the barrier pillar reduces with increasing distance from the upper seam. The peak stress in the barrier pillar concentrates at about 15 ft from the gob edge (at the edge of the yield zone) and transfers with reduction through the interburden along a line at an angle of 20° away from the gob. At the lower seam level, the peak stress decreased to about 1,700 psi and also shifted to about 40 ft from the gob edge of the upper seam. The influence zone in the lower seam is directly under the barrier pillar and mainly within about 100 ft from the gob edge of the upper seam. The vertical stress at the lower seam within 100 ft of the gob edge of the upper seam is 1,300–1,700 psi, which is about 1.18–1.54 times the overburden

Table 1. Rock properties used in the FLAC3D model.

Rock Type	Young's Modulus ($\times 10^6$ psi)	Poisson's Ratio	UCS from Lab (psi)	UCS in Model (psi)	Tensile Strength (psi)	Cohesion (psi)	Internal Friction Angle (degree)
Sandstone	2.0	0.20	12,000	6,000	720	1,732	30
Shale	2.0	0.20	6,000	3,000	480	866	30
Coal	0.30	0.30	3,600	900	40	270	28
Fireclay	2.0	0.30	3,000	1,500	180	450	28

stress at the lower seam level. This finding suggests that the entries and crosscuts developed into the influence zone are subjected to the elevated stress resulting from mining in the upper seam. They will be further subjected to the front abutment pressure from mining in the lower seam if the pillars in the influence zone are retreated.

OBSERVATIONS OF MULTIPLE-SEAM INTERACTIONS DURING PILLAR RECOVERY

Full pillar recovery was conducted in both seams during the study. Right and left lifts, called Christmas trees, were used for pillar recovery in both seams, and coal stumps were left to support the roof during pillar recovery. Two mobile roof supports (MRS) were used for roof support inby the pillar line, and 8 to 10 timbers were set up in the crosscuts as turn posts, as well as in the entries as breaking posts. The depth of cut for retreating was 32 ft in both seams. The conditions of the pillar, roof, and floor were carefully monitored during mining of both seams.

Figure 12 shows the observations of roof and pillar conditions during pillar recovery of panel II in the upper seam. The overburden depth in panel II ranges from 500 ft to 900 ft. Figure 13 shows the roof condition outby the pillar line in the upper seam. The condition of the immediate roof changed little in the active pillar line, and the scope holes at the intersections within one block from the gob line showed no separations. The pillar retreating was conducted from right to the left of the panel with one continuous miner. Figure 14 shows the pillar plan in the upper seam. Four lifts were made at each side of the pillar in the entries, and one lift was made in the crosscut. Coal stumps left for supporting the roof during retreating measured a minimum of 6 ft at the inby corners and 8 ft at the outby corners from the entries. The roof caved fully, inby the pillar line, although the caving delayed for about 3 blocks in the two entries adjacent to the outside bleeder entries. Generally, roof caving around the middle of the panel occurred within 20–40 ft inby the coal stumps by the pillar line, and the intersections and crosscuts at the pillar line remained open until each pillar at the next row was retreated. The coal stumps generally squeezed at the intersections by the pillar line and crushed further inby in the gob.

The coal rib in the upper seam has about 17 in of weak fireclay at the mid-height and a mudstone streak above the fireclay. The mudstone streak is very weak and becomes muddy after absorbing moisture. Rib sloughage was observed at the outby pillars within one block from the pillar line. The severity of rib sloughage varied with overburden depth. The rib sloughage was 12–24 in under 700–900 ft depth of cover, and 6–12 in under 600–700 ft depth of cover. Only minor rib sloughage occurred under less than 600 ft of cover in the active pillar line. Rib sloughage of 12–24

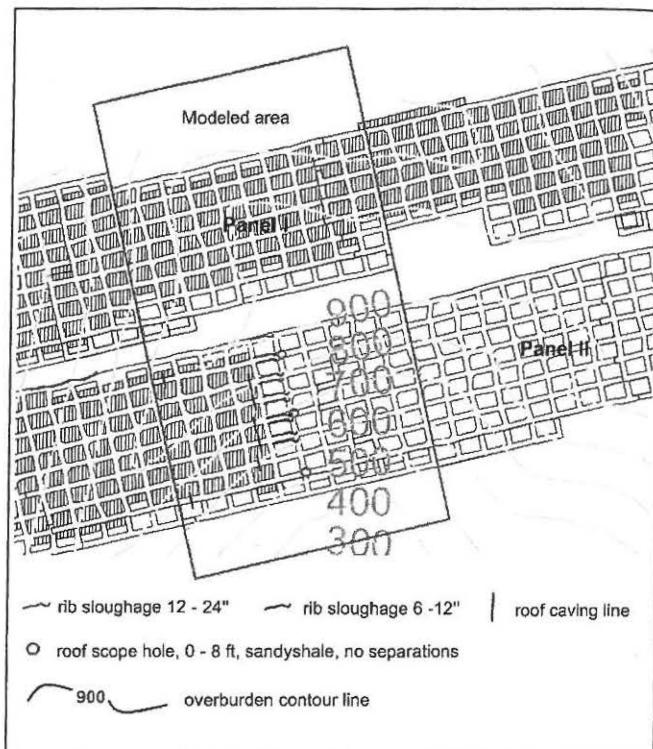


Figure 12. Observations during pillar recovery in the upper seam.

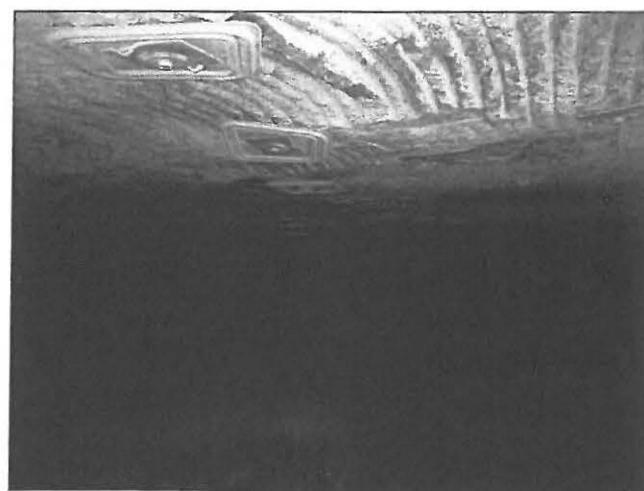


Figure 13. Roof condition outby the pillar area in the upper seam.

Figure 14. Pillaring plan in the upper seam.

Figure 15. Rib sloughage outby the pillar line during retreating in the upper seam.

in also occurred at the rib of the barrier pillar under overburden depth of 500–700 ft where the barrier width between the gob lines was about 100 ft. The rib failure mode is largely controlled by the weak fireclay and the mudstone streak above it. With sliding at the mudstone streak and breaking of the fireclay, the rib normally spalled below the fireclay. Figure 15 shows the rib sloughage outby the pillar line during retreating in the upper seam.

Figure 16 shows the observations of roof, pillar, and floor conditions during pillar recovery of panel I and panel II in the lower seam. The overburden depth over the two panels ranges from 600 ft to 1,000 ft. The immediate roof was sandyshale, and

no roof sagging was observed during development and retreating. The scope holes showed minor separations in the immediate roof. Figure 17 shows the roof and pillar conditions outby the pillar line in the lower seam. Figure 18 shows the pillar plan in the lower seam. Five lifts were made at each side of the pillar from the entries, and no lift was made in the crosscuts. Small coal stumps were left at the inby pillar corners, and a triangular coal stump was left by the outby crosscut. The roof caved well inby the triangular stumps around the middle of the panel, but the caving delayed for 2–3 blocks in the two outside entries adjacent to the outside bleeder entries in panel I. With half blocks left on each side of panel I, the two outside bleeder entries remained open for ventilation during retreating. The first caving occurred after 3 rows of pillars were retreated in panel I, and after 4 rows of pillars were retreated in panel II. Delayed roof caving in the lower seam is related to the lower pressure under the upper seam gob and the relatively large triangular stumps left behind. The intersections and the crosscuts at the pillar line remained open until each pillar at the next row was retreated.

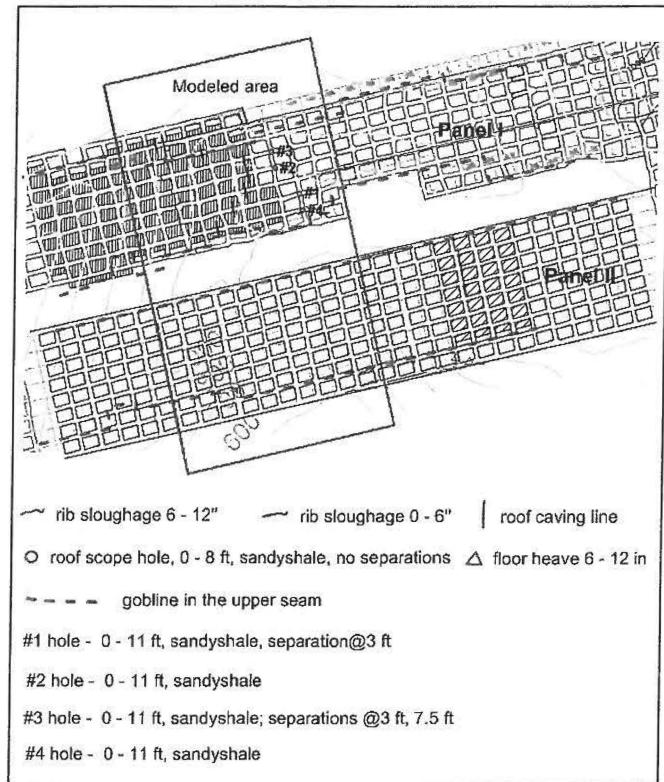


Figure 16. Observations during pillar recovery in the lower seam.

The right side of the panel I was extended by developing one block into the northern barrier pillar during retreating. The new pillars developed were under the barrier pillar of the upper seam and were retreated with half blocks where overburden depth was less than 900 ft. Significant rib sloughage was observed at those pillars outside the gob line of the upper seam, but no significant rib sloughage occurred within the gob line of the upper seam. One row of the pillars at the right side of panel II were also developed under the barrier pillar of the upper seam. Severe sloughage was observed at the pillar rib outside the gob line of the upper seam within two blocks of the pillar line in panel II under depth of

Figure 17. Conditions of roof and pillar in the lower seam before retreating.

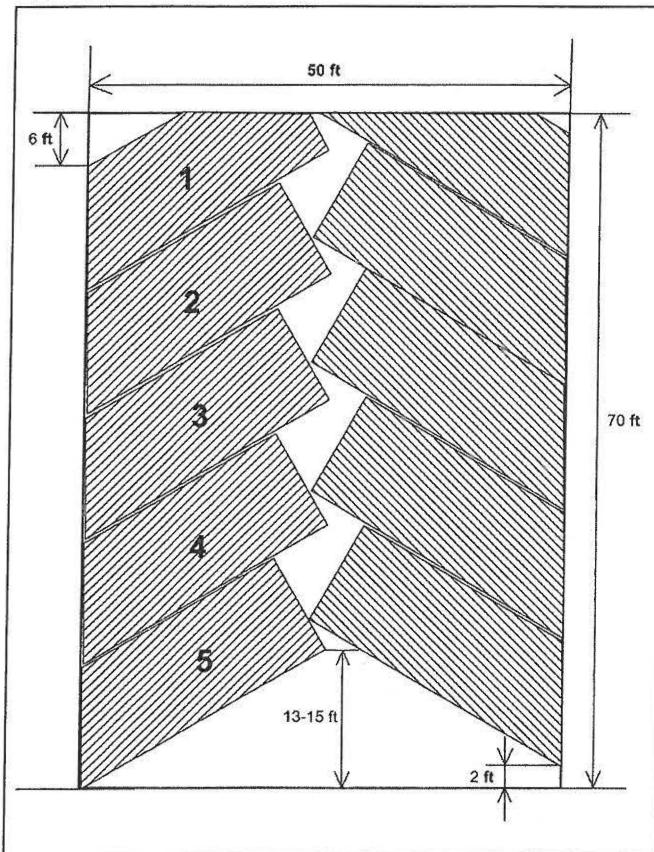
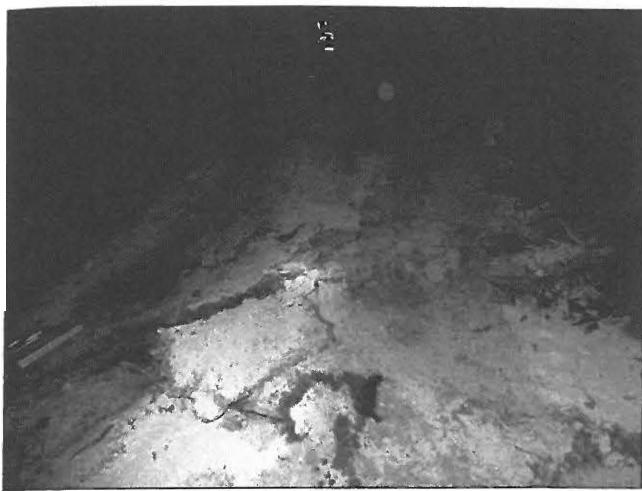


Figure 18. Pillaring plan in the lower seam.

cover of about 800 ft. Figures 19 and 20 show the rib sloughage at the panel side and the barrier side, respectively, in the bleeder entry outby the pillar line in panel II in the lower seam. The rib sloughage is more severe at the panel side than at the barrier side. The rib sloughage within the gob line of the upper seam was very insignificant. Floor heave of 6–12 in was also observed in the bleeder entry in panel II in the lower seam. Figure 21 shows the floor heave outby the pillar line in the bleeder entry in panel II in the lower seam. The observed rib sloughage and

floor heave in the bleeder entry were caused by the multiple-seam stress transferred from the upper seam, as well as the front abutment pressure from pillarizing of the current seam. The manifest of elevated pressure in the bleeder entries in the lower seam demonstrated that the multiple-seam influence zone is directly under the barrier pillar outside the gob line of the upper seam.

Figure 19. Rib sloughage at the panel side in the bleeder entry of panel II in the lower seam.


Figure 20. Rib sloughage at the barrier side in the bleeder entry of panel II in the lower seam.

GEOTECHNICAL CONSIDERATIONS FOR PILLAR RECOVERY IN CLOSE-DISTANCE MULTIPLE SEAMS

Pillar recovery can be conducted safely in close-distance multiple seams with proper planning and adequate ground support. Mining sequence, panel layout, and pillar sizing are primary considerations to minimize multiple-seam interactions, but depth of cut, stump size, leave blocks, and roof and rib support are also important in reducing the risk of ground falls during pillar recovery.

Mining sequence concerns the sequence of mining in seams and panels. For full pillar recovery in close-distance multiple seams, descending order from the upper seam to the lower seam is the optimal sequence as undermining greatly reduces multiple-seam interaction in comparison with over-mining. Mining sequence

in panels should be planned in such an order that pillar retreating between two gob can be avoided unless large barrier pillars are left.

Figure 21. Floor heave in the bleeder entry of panel II in the lower seam.

For panel layout in close-distance multiple seams, superposition of panels and columniation of pillars minimize multiple-seam interaction. If the interburden strata is fairly strong with sandstone and sandyshale comprising the majority of the strata, as in this studied case, columniation of pillars are not necessary. If the panels in the upper and lower seams are not the same size, it is important to superimpose the retreated gob, especially when the overburden is greater than 800-900 ft deep. Mining within the gob lines of the upper seam always puts the pillar and roof under the de-stressed gob zone, and can be practiced if adverse roof conditions are encountered in the lower seam. Based on this study, it is important to note that the highest stress under the barrier pillar of the upper seam is not directly under the edge of the upper seam gob but is at an angle of 20 degree away from the gob edge, considering a close-distance interburden of 50-100 ft. Any workings developed within about 100 ft outside the upper seam gob line are located in the multiple-seam influence zone. Depending on overburden depth and the strength of the roof and rib, development or pillar retreating in the influence zone may be possible, but potential rib sloughage, roof cutters, or floor heave should be anticipated. Retreat mining outside the upper seam gob line under deep cover also significantly increases the risk of coal outburst and, therefore, should be practiced with caution.

Pillar design for multiple-seam mining should consider development loading, abutment loading, and additional loading caused by multiple-seam mining. Generally, for mining in close-distance multiple seams, pillars should be designed based on the overburden depth in the lower seam. If the panels in the lower seam stay within the gob lines of the upper seam, ARMPs can be used for pillar design as the pillars in the lower seam are generally under de-stressed zone as a result of pillarizing in the upper seam. If the pillars in the lower seam are developed and/or retreated beyond the gob lines of the upper seam, the stability of the pillars within the multiple-seam influence zone can be evaluated by the NIOSH-developed software, Analysis of Multiple Seam Stability (AMSS) (NIOSH, 2013) or by numerical modeling.

With full pillar recovery, it is important to plan the slab cut into the barrier pillar to maximize extraction and the size of leave blocks, if necessary, to be left for bleeder ventilation. The barrier pillar and leave blocks define the gob line. The planned leave blocks in the retreat panel help support the roof in the bleeder entries. Either whole blocks or half blocks can be left at one or two sides of the panel, depending on the requirements for ventilation and the stability of the roof and remaining pillars. If the leave blocks in the lower seam are outside the gob line of the upper seam, whole blocks should be considered because those pillars will be subjected to elevated stress resulting from mining in both seams. To reduce the stress transferred from the upper seam, the size of the stumps left in the gob should be designed to facilitate caving. Excessive coal stumps left in the upper seam, if not squeezed or crushed in the gob, may behave as remnant pillars and create high stress in the lower seam. This situation may occur with strong roof in the upper seam under shallow cover. To eliminate multiple-seam interaction caused by the remnant pillars left within the gob in the upper seam, it is important to recover the projected retreat pillars in the upper seam as much as possible. If certain pillars in the upper seam have to be left without retreating due to local adverse roof condition, the pillars at the same area in the lower seam should be evaluated for their stability under additional stress.

If entries and crosscuts are developed outside the gob line of the upper seam, additional roof and rib support should be considered for those entries and crosscuts in the multiple-seam influence zone, depending on the overburden depth in the area and strength of the roof and rib.

CONCLUSIONS

Based on the case study described in this paper of concurrent pillar recovery in two close-distance multiple seams, the following conclusions are made:

- Pillar recovery can be conducted concurrently and safely in close-distance multiple-seams through proper planning and adequate ground support. Mining sequence, panel layout, and pillar size are the primary considerations to minimize multiple-seam interaction, but depth of cut, stump size, leave blocks, and roof and rib support are also important in reducing the risk of ground falls during pillar recovery.
- Interburden thickness and characteristics are the most important factor in determining the degree of multiple-seam interaction. The multiple-seam interaction also increases significantly with the increase of overburden depth.
- For full pillar recovery in close-distance multiple seams, it is optimal to superimpose the gob, but it is not necessary to superimpose the pillars depending on the thickness and strength of the interburden.
- For interburden thickness of 70 ft, the influence zone in the lower seam is directly under the barrier pillar and mainly within about 100 ft from the gob edge of the upper seam. The entries and crosscuts developed outside the gob line of the upper seam are subjected to elevated stress resulting from multiple-seam mining.
- If entries and crosscuts are developed in the lower seam outside the gob line of the upper seam, additional roof and rib support should be considered to accommodate the elevated stress in the multiple-seam influence zone.

REFERENCES

Chekan, G. J. and Listak J. M. (1994). "Design practice for multiple-seam room-and-pillar mines." *Technology News 443*. Bureau of Mines, United States Department of the Interior, pp. 2.

ITASCA. (2016). *Fast Lagrangian Analysis of Continua in 3 Dimensions*. FLAC3D software, version 5.0. ITASCA Consulting Group. <http://www.itascacg.com/software/flac3d>

Mark, C., Chase, F. E., and Pappas, D. M. (2003). "Reducing the risk of ground falls during pillar recovery." *SME Transactions 314*: 153–160.

Mark, C. and Tuchman, R. J. (2007). "New technology for ground control in multiple-seam mining." Pittsburgh, PA: National Institute of Occupational Safety and Health. Information Circular 9495, pp. 88.

NIOSH. (2010a). *Analysis of Retreat Mining Pillar Stability*. ARMPMS software, version 6.0.29. National Institute for Occupational Safety and Health. <https://www.cdc.gov/niosh/mining/works/coversheet1813.html>

NIOSH. (2010b). "Research report on the coal pillar recovery under deep cover." Response to FY 2008 Appropriation (Public Law 110–161). Pittsburgh, PA: National Institute of Occupational Safety and Health, pp. 79.

NIOSH. (2013). *Analysis of Multiple Seam Stability*. AMSS software, version 2.1.02. National Institute for Occupational Safety and Health. <https://www.cdc.gov/niosh/mining/works/coversheet1808.html>

West Virginia University. (2011). LaModel software, version 3.0.05.