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Abstract

Background: The 2009 H1N1 outbreak provides an opportunity to learn about the strengths and weaknesses of current U.S.
public health surveillance systems and to identify implications for measuring public health emergency preparedness.

Methodology/Principal Findings: We adopted a ‘‘triangulation’’ approach in which multiple contemporary data sources,
each with different expected biases, are compared to identify time patterns that are likely to reflect biases versus those that
are more likely to be indicative of actual infection rates. This approach is grounded in the understanding that surveillance
data are the result of a series of decisions made by patients, health care providers, and public health professionals about
seeking and providing health care and about reporting cases to health authorities. Although limited by the lack of a gold
standard, this analysis suggests that children and young adults are over-represented in many pH1N1 surveillance systems,
especially in the spring wave. In addition, the nearly two-month delay between the Northeast and the South in the Fall peak
in some surveillance data seems to at least partially reflect regional differences in concerns about pH1N1rather than real
differences in pH1N1 infection rates.

Conclusions/Significance: Although the extent of the biases suggested by this analysis cannot be known precisely, the
analysis identifies underlying problems with surveillance systems – in particular their dependence on patient and provider
behavior, which is influenced by a changing information environment – that could limit situational awareness in future
public health emergencies. To improve situational awareness in future health emergencies, population-based surveillance
systems such as telephone surveys of representative population samples and seroprevalence surveys in well-defined
population cohorts are needed.
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Background and Objectives

In the Spring of 2009, a novel H1N1 influenza virus, now

denoted pH1N1, emerged in North America and spread to the rest

of the world in less than two months [1]. In the United States,

where some of the first cases emerged, one of the public health

challenges was to track the spread of the new virus and

characterize its epidemiologic properties in order to guide and

monitor the effects of response efforts. Existing public health

surveillance and laboratory systems rapidly developed a case

definition and new testing procedures, but public health labora-

tories soon became overloaded with samples to be tested, and

surveillance definitions and procedures were changed as necessary

to handle the load. Later in the year, as the epidemiological

characteristics of the new H1N1 subtype emerged, traditional

influenza surveillance systems were augmented with new systems

tailored to the emerging epidemiology [2]. Some of these new

systems could be described as syndromic surveillance approaches,

which by using pre-diagnostic data, were thought to have a distinct

advantage over the traditional surveillance method in terms of

timeliness [3].

The epidemiology of pH1N1 has been well described elsewhere

[4,5], and adding to this understanding is not the goal of this

paper. Rather, our purpose is to learn from the 2009 H1N1

experience about the strengths and weaknesses of current U.S.

public health surveillance systems and to identify implications for

measuring public health emergency preparedness. To do this we

focus on two critical issues. First, we address the widely-held

perception that children and young adults were at ‘‘higher risk.’’

Second, we assess the validity and utility of syndromic surveillance

systems that were promoted by the President’s Council of Advisors

on Science and Technology (PCAST) [3] and other authorities.

Both of these questions relate to the ability of public health

surveillance systems to provide ‘‘situational awareness,’’ critical

information needed to respond to disease outbreaks and other

public health emergencies. This includes numbers of cases and
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other traditional surveillance data as well as information on critical

response resources, medical care capacity, environmental threats,

and public awareness [6].

We begin with a discussion of the data and methods employed

in this paper, including indicators of the information environment

during 2009 and how that might have biased the available

surveillance data. We then review (1) the evidence regarding

differential age-specific risks associated with pH1N1 and (2)

surveillance systems’ ability to accurately monitor pH1N1 cases

over time. The discussion section addresses the limitations of this

study, the implications of this analysis regarding both the strengths

and weaknesses of current surveillance systems and alternatives

that should be considered for the future, and the implications of

this analysis for the measurement of public health preparedness.

Results

The information environment
By way of background for the subsequent analyses, Figure 1

Panel A represents trends in the number of U.S. Google searches

for ‘‘swine flu’’ between April and December of 2009 on a scale of

0 to 100. Both the number of general searches (labeled as ‘‘Activity

index’’) and news searches (‘‘News index’’) both grow rapidly from

0 in mid-April to 100 in the week ending May 2, 2009,

corresponding to a rapid set of announcements from the Centers

for Disease Control and Prevention (CDC) and the WHO about

the emergence of the pandemic. Both indices drop off by the end

of May. The general searches, but not the news searches, pick up

again at the end of August, reaching a peak of 13 on a scale of 0 to

100 at the end of October, and drop off to zero by the end of the

year.

Figure 1 Panel B presents the Google Insights Activity index for

the United States as well as for Massachusetts and Georgia,

populous and presumably typical states in CDC Regions 1

(Northeast) and 4 (the South) respectively. In the south, ‘‘swine flu’’

searches peaked at the end of August at 15 and again at 12 in mid-

October. In the Northeast, on the other hand, the activity index

peaked at 19 at the end of October, higher and a week later than

the United States as a whole.

Age-related risks of pH1N1
One of the most commonly held perceptions about pH1N1 is

that children and young adults are at especially ‘‘high risk.’’ For

instance, on May 17, 2009 in an article entitled ‘‘Age of Flu

Victims Has Big Implications,’’ the Washington Post reported that

‘‘perhaps the most worrisome features so far are the number and

severity of cases in teenagers and young adults. This was noticed

early, and the pattern has not changed much now that there are

5,000 laboratory-confirmed infections and probably more than

100,000 overall. The average age of the confirmed and probable

cases is 15 years. Two-thirds are younger than 18.’’ [7] Similarly,

an August 2009 PCAST report said that confirmed cases were

concentrated in younger age groups, up to age 24, almost all

severe cases were in people younger than age 65, and the

consequences of infection in this epidemic were already known to

be far more severe for children and young adults, and seemingly

milder for people over age 65 [3].

With seasonal influenza, serious illness requiring hospitalization

and death are uncommon in children (except for infants) and

young adults, so this pattern has important public health

implications. Indeed the fact that the first cases of pH1N1 that

came to light in southern California, Mexico, and in New York

City were in children and young adults was an important clue that

a new pandemic viral subtype had emerged [8]. The perception,

based on these reports, that children and young adults were ‘‘at

risk’’ also led to school closings in the Spring of 2009 [9,10], the

issuance of recommendations for schools, universities, and day

care centers [11], and recommendations that children and

adolescents be given priority for immunizations [12]. The same

assumption also influenced recommendations from the WHO

[13].

Regarding the other end of the age spectrum, on May 22, 2009

CDC reported the early results of an antibody study indicating

that children had no existing cross-reactive antibody to pH1N1,

while about one-third of adults older than 60 years of age had such

a reaction. These results were attributed to the possibility that

older people had been previously exposed, either through infection

or vaccination, to an influenza A(H1N1) virus that was more

closely related to pH1N1 than contemporary seasonal influenza

viruses [14].

Figure 1. Google ‘‘Swine Flu’’ indices for the Northeast, South and entire United States Panel A. Google Insights ‘‘Swine Flu’’ activity and
news indices, U.S., April 12, 2009–January 2, 2010. Panel B. Google Insights ‘‘Swine Flu’’ activity index, U.S., Georgia (GA), and Massachusetts (MA),
August 2, 2009–January 2, 2010. Source: Google Insights search for ‘‘swine flu’’ at http://www.google.com/insights/search/
#q = SWINE%20FLU&geo = US&date = 1%2F2009%2012m&cmpt = q.
doi:10.1371/journal.pone.0040984.g001
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Typical of the information available early in the pandemic, a

report from CDC published ahead of print by the New England

Journal of Medicine on May 7, 2009 noted that 60% of 642

confirmed cases were 18 years of age or younger [15]. Similarly, in

a report on 272 patients who were hospitalized with laboratory-

confirmed pH1N1 from April to mid-June 2009 found that 45%

were under the age of 18 and 5% were 65 years of age or older

[16]. Another early study, published in CDC’s Morbidity and

Mortality Weekly Report in late August, reported that the attack

rate was highest among children aged 5–14 years (147 per 100,000

population), 14 times higher than the rate for adults aged 60 and

older [17]. Shortly afterwards, a CDC pediatric deaths surveil-

lance study reported that children under 18 years of age

represented 36 of the 477 laboratory-confirmed pH1N1 deaths

through early August [18].

National, population-based hospitalization and mortality rates

did not become available until after CDC established AHDRA in

August 2009. Using data from the states reporting laboratory-

confirmed cases, CDC reported that the highest rates of

hospitalizations were observed among the 0–4-year-old age group,

which had rates 2- to 3-fold higher than those observed in the

other age groups (see Figure 2 Panel A). In addition, the majority

of hospitalizations (.70%) reported were in patients less than 50

years of age and fewer than 10% were in patients 65 years of age

or older [4]. Using data from AHDRA, CDC reported that ‘‘the

age distribution of laboratory-confirmed pH1N1 influenza–asso-

ciated death rate was markedly different from that seen in typical

influenza seasons. In contrast to typical influenza seasons, when

90% of deaths occur in the elderly population, 86% of pH1N1

deaths reported to AHDRA were in persons under 65 years of age,

with the highest rates found in persons aged 50–64 years’’ (Figure 2

Panel C) [4].

To properly understand the risks, one must first recognize that

there are two different risks in question: incidence (the risk that

someone becomes infected) and severity (the risk of suffering

consequences such as severe illness requiring hospitalization or

even death). Based on data from the CDC EIP program [19],

Figure 2 Panel B presents the attack rate as well as the population-

based hospitalization and death rates by age. The age-specific

attack rates, which reflect the percentage of the population

infected at some point during the pandemic, do bear out the

elevated risk to children (23.4% for children under age 18 and

17.5% for adults aged 18–64 vs. 14.2 percent for those aged 65

and older). The hospitalization rates show a similar pattern: 104.0

per 100,000 for children under age 18, 79.2 per 100,000 for adults

aged 18–64, and 65.4 per 100,000 for those aged 65 and older.

While the attack and hospitalization rates are higher for children

than for adults, the rates for children are less than twice that for

seniors, not quite as dramatic as some of the figures presented at

the beginning of this section. Death rates, on the other hand, are

substantially higher for adults aged 18–64 than for those under 18

(4.72 vs. 1.56 per 100,000), with the rate for 65 and older

population at an intermediate level of 3.88 per 100,000.

These rates, presented in Figure 2 Panels B, C, and D, however,

are all based on certain assumptions that must be examined. The

basis for the estimates is the number of influenza-associated

hospitalizations reported in CDC’s EIP program, which covers 62

counties in 10 states, not the number of pH1N1 cases,

hospitalizations, and deaths reported to state and local health

officials (individual case reporting was discontinued in May 2009

when laboratory capacity proved insufficient to handle the surge in

number of potential cases). Reed and colleagues estimate these

multipliers based on a variety of data relating to both seasonal and

pH1N1 influenza, but assume that they are the same for every age

group and constant over time (except that they account for the

change in testing recommendations on May 12) [20]. The number

of incident cases is estimated as a constant multiple of the number

of confirmed cases, which explains why the estimated age-specific

attack and hospitalization rates have similar patterns. The

multipliers are based on estimates of the fraction of influenza

cases in which health care is sought, specimens are tested, and the

tests are positive [20].

However, by mid-May, the number of clinical samples being

submitted to state labs for testing became overwhelming, and

CDC and state health departments recommended viral testing

only if it would affect their care, and states no longer reported

individual confirmed and probable cases to CDC [21]. Moreover,

as case counts grew, aggregate reporting replaced individual case

reports in most jurisdictions, and most symptomatic cases were not

tested, confirmed, or reported, and the proportion tested varied

geographically and over time [22]. Combined with the perceptions

that children were at higher risk and older adults less so, it is

possible that children and young adults with influenza-like illness

(ILI) would be more likely to seek care and to be tested, and older

adults less so. Population-based BRFSS data suggest that between

September, 2009 and March, 2010, health care was sought by

56% of children with self-reported ILI, compared to 40% of adults

[23], and it is possible that the differential was stronger earlier in

the outbreak, when fears about the risks for children were more

common.

Regarding the attack rate, BRFSS survey data suggest that

between September, 2009 and March, 2010, the average monthly

proportion of children under age 18 who reported having

experienced ILI in the preceding 30 days was 28.4%, compared

to 8.1% in adults [23]. These percentages vary by month, but at

their peak in November (referring to illness in October and

November) they were 35.9% for children and 20.4% for adults.

No national data are available for the spring wave, but a survey

conducted in New York City in mid-June found self-reported ILI

prevalence rates of 20% and 22% in children aged 0 to 4 and 5 to

17 respectively, vs. 10% and 6% in adults aged 18 to 64 and 65

and older respectively [24].

With respect to hospitalizations and deaths, the patterns in

Figure 2 Panel C based on EIP data are similar to those based on

the AHDRA surveillance system summarized in Panel A. In

reporting the AHDRA rates, Jhung and colleagues make the point

that the age distributions are markedly different than those for

seasonal influenza [4]. These CDC estimates do not, however,

show that children have a higher risk of dying than adults. Indeed,

if reckoned in terms of the case fatality rate, the proportion of cases

who die of the disease, the risks would be skewed even more

towards older groups since the denominator (the number infected)

is lower. Moreover, following the announcement of the CDC

antibody study suggesting that older adults has some residual

protection against H1N1 viruses, it is possible that seniors with ILI

might not have been tested and their subsequent pH1N1 related

death not classified as such. Correcting for such an effect, about

which there is no statistical evidence, would increase the pH1N1-

associated death rate in the 65 and older age group.

Given concerns about the perceived severity of pH1N1 for

children, parents might have been more likely to seek medical care

for their children than in previous years or compared to adults

with the same symptoms. McDonnell and colleagues find evidence

of this effect, at least for the spring wave, in an analysis of data

from an integrated hospital system operating 18 hospital EDs.

During the week beginning April 27, 2009, the number of

pediatric (18 years or younger) ED visits increased 19.7% from the

previous week, compared to 1.0 percent for adult patients. In

Effectiveness of Situational Awareness for H1N1

PLOS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e40984



addition, the proportion of pediatric ED patients admitted to the

hospital decreased 5.6 percentage points from 23.2% to 17.6%,

while the adult admission rates were decreased only 0.6 percentage

points from 13.3% to 12.7% [25]. In another study done by Dugas

and colleagues, the Google Flu Trends web search queries were

correlated with weekly visits at the pediatric ED but not the adult

ED during the three waves of pH1N1 peaks [54]. Since pH1N1

was very much in the news in this week but there were not likely to

be many actual cases in the hospital system’s population, these

findings suggest that the increase in pediatric ED cases represents

parent over-reaction.

A similar effect can be seen in ED utilization and hospital

admission rates in New York City [26]. As shown in Figure 3

Panel A, pediatric ED visits with ILI as a chief complaint peaked

in late April, following the news about pH1N1 cases in high school

students who had travelled to Mexico and their class mates, and

rose sharply around May 15, when the global pandemic was

prominent in the news. Figure 3 Panel B, however, indicates that

laboratory-confirmed hospital admissions did not peak until May

26, suggesting that some ED visits earlier in the month reflected

parental concern rather than pH1N1 infection.

A comparison of data from EIP coverage areas in New York

State with an alternative sentinel hospital program (SHP)

surveillance system established to monitor pH1N1, however,

shows the opposite effect. Analyzing data from October 1, 2009

through March 31, 2010, Noyes and colleagues note that the age

distribution of confirmed cases is very different in the two

surveillance systems: children comprise 59% of SHP admissions

but only 27% of EIP admissions [27]. These figures suggest that

children might be at a higher risk of pH1N1-related hospitalization

that the CDC EIP estimates suggest. However, the two

surveillance systems differ in a number of ways that might effect

this comparison: they cover different counties within the state, and

the SHP program includes only data from a single surveillance

hospital in a given area compared to the comprehensive coverage

of the EIP. Perhaps more importantly, according to the authors, is

the dependence on provider-driven testing practices. The EIP’s

nationally-defined protocol might have missed cases presenting

with atypical clinical presentations or whose rapid influenza test

(which is known to have a low sensitivity for pH1N1) was a false

negative. The SHP, on the other hand, tested all patients admitted

with ILI [27]. It is also possible that these factors differed between

children and adults. Another dimension is the time period covered.

The CDC EIP estimates refer to April 2009 through January 16,

2010, with most cases distributed in roughly equal parts between

the spring wave (April through July) and the fall wave (August

through November). The New York analysis, on the other hand,

covers October 1, 2009 through March 31, 2010, and finds that

Figure 2. pH1N1 infection, hospitalization, and death rates. Panel A. Aggregate hospitalization and death reporting activity (AHDRA)
hospitalization and death rates per 100,000 population by age group, laboratory-confirmed pH1N1 influenza infection—United States, August 2009–
February 2010. Source: Jhung, 2011. Panel B, C & D. 2009 H1N1-Related Deaths, Hospitalizations and Cases, U.S. April 2009–January 16, 2010. Author’s
calculations based on CDC EIP program estimates: Updated CDC estimates of 2009 H1N1 influenza cases, hospitalizations and deaths in the United
States, April 2009–April 10, 2010 Available from: http://www.cdc.gov/h1n1flu/estimates_2009_h1n1.htm.
doi:10.1371/journal.pone.0040984.g002
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the SHP data include a sustained number of ILI admissions in

December and January.

Thus, the picture about the age-specific risks of pH1N1 that

emerges from these analyses is mixed. With respect to the risk of

infection per se, it does appear that children were more likely than

adults to report ILI in population-based surveys, but these suggest

that the ratio is closer to 2 to 1 than 14 to 1 (to cite an extreme

example [17]). The age-specific rate of hospitalization for pH1N1

influenza also seems to be higher for children than adults, falling

from 104.0 per 100,000 for ages 0–17 years to 64.4 per 100,000

for ages 65 and older (see Figure 2). However, these estimates are

highly dependent on unverified assumptions and there are

indications that these rates are and may have varied substantially

during the pandemic, so the apparently higher rates in children,

less than a 2 to 1 ratio, are somewhat uncertain. Finally, with

respect to mortality rates, CDC’s estimate for the 18 to 64 age

group is more than 3 times as high as for children under age 18

(4.72 vs. 1.56 per 100,000). The population-based mortality rate

for age 65 and older is less than for age 18 to 64, but more than

twice that for children (3.88 vs. 1.56 per 100,000), and it is possible

that the 65 and older rate is an underestimate due to under-

reporting.

Monitoring pH1N1 cases over time
It is generally accepted that pH1N1 influenza activity in the

United States occurred in two distinct waves, the first peaking in

Figure 3. Influenza-related emergency department visits and hospitalizations. Panel A. Rate of ILI syndrome visits (based on chief
complaint) to New York City emergency departments by age group, April 1, 2009–July 6, 2009. Panel B. Laboratory-confirmed H1N1 hospital
admissions and emergency department (ED) Visits for ILI in New York City, April 1, 2009–July 6, 2009. Source: New York City Department of Health
and Mental Hygiene Health Alert #27: Pandemic (H1N1) 2009 influenza update, revised reporting requirements and testing procedures Available
from: http://www.nyc.gov/html/doh/downloads/pdf/cd/2009/09md27.pdf.
doi:10.1371/journal.pone.0040984.g003
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June 2009 and the second in October 2009 [2]. However, the

specific timing of these waves, and how the timing may have

varied in different regions of the country, is less certain. In

particular, trends and patterns in surveillance data may be related

to awareness – both by patients and healthcare providers – about

the risks of pH1N1.

To explore this hypothesis, we first consider surveillance reports

from the spring pandemic wave with data from two of the key near

real-time surveillance systems as they appeared at the end of June,

2009, about two months into the spring wave [28]. By convention,

the weeks are numbered starting at the beginning of January.

Figure 4 presents data from CDC’s ILINet system, reflecting the

proportion of outpatient visits for influenza-like illness. The

proportion of visits for ILI increased sharply in Week 17, which

ended on May 2, 2009, to 2.8%, a level that exceeds the national

baseline and is more characteristic of the winter months. Figure 5,

which displays the number and percentage of respiratory

specimens in the United States testing positive for influenza

reported by WHO/NREVSS collaborating laboratories, also

shows a dramatic increase in the number of positive specimens –

represented by the height of the bar – for Week 17. These peaks

correspond temporally to a rapid series of announcements, starting

on Tuesday April 21 of human-to-human transmission in

California of a new viral sub-type, of a major outbreak in Mexico,

of confirmed cases in New York City students who had travelled to

Mexico, confirmation of world-wide spread of the new virus

leading to an increase in the WHO’s pandemic alert level, and

closing of approximately 300 U.S. schools. Note that Figure 3

shows a similar peak at the end of April in New York City hospital

ED visits for ILI.

One possible explanation for these peaks is that they reflect the

rapid spread of ILI throughout the United States. It is also

possible, however, that they reflect increased concern about the

pandemic, leading people to seek health care for symptoms they

might otherwise treat themselves, and physicians to send clinical

samples in for testing. Indeed the Google Insights activity index, as

shown in Figure 1, grew from 0 to 100 during this time, and never

rose to more than 15 throughout the rest of 2009.

Moreover, a closer examination of Figure 5 shows that it is the

number of samples submitted, not the number positive, that

accounts for the sharp increase in Week 17. Of the 3911 samples

tested in Week 16, 7.1% were positive for influenza. In Week 17,

the number of samples submitted grew to 30,020, but only 12.3%

were positive for influenza. And excluding the specimens that were

determined to be influenza A but sub-typing was not done, at most

4.6% of the samples submitted in Week 17 were possibly pH1N1

(i.e. either determined to be novel H1N1 or unsubtypable

influenza A). As shown by the black line in Figure 5, the

proportion positive for influenza grows to about 40% in June, but

the maximum proportion of samples submitted that might be

pH1N1 never exceeds 35% (based on the author’s calculations and

not shown in the figure). Since the proportion of submitted

samples that can possibly be pH1N1 was so low in Weeks 17 and

18, it seems likely that the sharp increase depicted in Figure 5 does

not represent rapid spread of the pandemic virus in the U.S.

population but rather increased awareness on the part of patients

in seeking care and physicians in sending clinical samples for

testing.

The fall wave presents an opportunity to assess the ability of

surveillance systems to monitor regional trends pH1N1. In

particular, it was widely noted that the fall wave began earlier in

the South and later in the Northeast. This pattern can be seen

clearly in the ILINet data in Figure 6, and also in percent of

samples submitted to WHO/NREVSS that were positive for

Figure 4. Outpatient influenza-like illness surveillance. Percentage of visits for ILI Reported by the U.S. Outpatient Influenza-like Illness
Surveillance Network (ILINet), National Summary 2008–09 and Previous Two Seasons. Source: CDC Flu View, 2008–2009 Influenza Season Week 25
ending June 27, 2009. Available from: http://www.cdc.gov/flu/weekly/weeklyarchives2008-2009/weekly25.htm.
doi:10.1371/journal.pone.0040984.g004
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influenza (not shown). The patterns in Google Flu Trends data,

thought to be a proxy for the number of people with flu symptoms,

for the same period (but using Georgia and Massachusetts as

proxies for the regions, since the data are available for selected

states and not region) are remarkably similar. However,

DiSTRIBuTE project ED surveillance data from the same states

(which are only available starting in October) display a somewhat

different pattern. In both Georgia and Massachusetts, the

difference between the maximum and minimum is much less

than in either the ILINet or Google Flu Trends data. The Georgia

DiSTRIBuTE data drop throughout the entire period, as do the

ILINet or Google Flu Trends data. The Massachusetts DiSTRIB-

uTE data, on the other hand, peak shortly after either the ILINet

or Google Flu Trends data, and again in late December.

There are two possible explanations for the patterns seen in

Figure 6, both of which could be operating simultaneously. One

hypothesis is that the fall wave actually did peak earlier in the

South, and indeed the difference in timing has been related to

differences in school starting dates [29]. The Northeast peak lags

behind the South’s by about two months, however, much longer

than the difference in school start times. Moreover, it seems highly

unlikely that a pandemic virus capable of spreading around the

world in a matter of weeks would take two months to travel up the

east coast of the United States from the South to the Northeast.

The alternative hypothesis is that both the ILINet and Google Flu

Trends data both reflect regional concerns about pH1N1, based in

part on the local media. This hypothesis is supported by seeing the

same regional patterns in the Google Insights ‘‘Swine Flu’’ activity

index (Figure 1 Panel B), which is intended to reflect general

searches rather than searches based on one’s own symptoms.

Furthermore, a two-week delay between the ILINet peak in the

Northeast and the peaks in both Google data sources for

Massachusetts further suggests that the ILINet peak represents

people seeking care out of concern about pH1N1 rather than

symptoms alone. Thus, although there could be some real

differences in timing between the South and the Northeast, it

seems likely that ILINet and Google Flu Trends data at least

partially reflect regional differences in concerns about pH1N1.

Discussion

From a systems perspective, public health surveillance data are

the product of a series of decisions made by patients, health care

providers, and public health professionals about seeking and

providing health care and about reporting cases or otherwise

taking action that comes to the attention of health authorities. And

all of these decisions are potentially influenced by what these

people know and think. Outpatient, hospital-based, and ED

surveillance systems, for instance, all rely on individuals deciding

to present themselves to obtain health care, and these decisions are

based in part on their interpretations of their symptoms. Even the

number of Google searches and self-reports of ILI in the BRFSS

survey can be influenced by individuals’ interpretation of the

seriousness of their symptoms. Virologic surveillance and systems

based on laboratory confirmations depend on physicians deciding

to send specimens for testing. Every element of this decision-

making is potentially influenced by the informational and policy

environment (e.g. media coverage, current case definitions and

practice recommendations, implementation of active surveillance),

processing and reacting to the information on an individual level

Figure 5. Laboratory-confirmed influenza cases reported to CDC by U.S. WHO/NREVSS collaborating laboratories, national summary, 2008–
09. Source: CDC Flu View, 2008–2009 Influenza Season Week 25 ending June 27, 2009. Available from: http://www.cdc.gov/flu/weekly/
weeklyarchives2008-2009/weekly25.htm.
doi:10.1371/journal.pone.0040984.g005
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(e.g. health care seeker’s self-assessment of risk, incentives for

seeking medical attention and self-isolation; health care provider’s

ordering of laboratory tests), and technical barriers (e.g. commu-

nication infrastructure for data exchange, laboratory capacity).

Because all of these factors change over time, so did the biases in

the surveillance data, and as a result the U.S. public health system’

ability to characterize and track the pH1N1 was compromised.

Although this analysis is limited by the lack of a gold standard –

definitive knowledge of the actual number of pH1N1 cases and the

characteristics of the individuals who are affected – a triangulation

approach that compares multiple data systems, each with different

expected biases over time, strongly suggests that children and

young adults are over-represented in many pH1N1 surveillance

systems, especially in the spring wave. In other words, children and

young adults may not have been ‘‘at risk’’ to the extent that some

thought, but rather the perception that they were led to

surveillance results that supported this perception. And because

ILINet, ED surveillance data, and other syndromic surveillance

systems that depend on counts of people seeking care, especially

for children, are influenced by the information environment, some

apparent trends and geographic differences were, in part,

reflections of what people thought was happening rather than

actual numbers of cases. Comparing data from the spring and fall

wave of pH1N1 in Wales, Keramarou and colleagues find a

similar effect, with relatively more ILI visits in the Spring when

media activity was intense and fewer in the Fall when media

activity waned [30]. Chowell and colleagues also note that in

Mexico the median age of laboratory-confirmed ILI cases was 18

years overall in 2009, but increased to 31 years during the fall

wave. In France, ILI cases peaked in the first week of September

(week 36), but according to virologic and clinical data the

pandemic started in mid-October (week 44). Casalengo and

colleagues [31] note that many of the early ILI cases were actually

rhinovirus and other non-influenza viruses, and attribute the

September increase in pediatric ILI cases to massive media

coverage at the start of the school year and the general level of

anxiety at that time.

Of course, epidemiologists recognize these potential biases and

typically note them and present their analysis of the available data

with appropriate caveats. But especially when the crisis is acute

and need for information urgent, what seem like subtle method-

ological points to policymakers and the public can easily become

lost. Even straightforward points can be confused. For instance,

the dramatic increase in week 17 in the height of the colored bar in

Figure 5 seems consistent with the alarmist headlines at that time

and can easily be misinterpreted as a sudden increases in

pandemic cases. In fact, as the analysis (and even just a careful

reading of the graph) shows, this increase mainly reflects an

increase in the number of samples submitted for testing rather

than the percentage that are positive for pH1N1.

Confusion about whether children and young adults were more

‘‘at risk’’ for pH1N1 is compounded by different ideas about the

meaning of risk. This term can mean the probability that one is

infected, develop symptoms, requires hospitalization, or dies.

Furthermore, the risk of severe consequences can be figured in

terms of those who are infected or develop symptoms or in terms

of everyone in some demographic group. Careful analysis of the

data suggests that children and young adults do seem to have been

more likely than older people to have been infected with pH1N1.

On the other hand, the relative proportions of infected cases – or

of the population – who die or require hospitalization may be

higher for older adults. The pH1N1 surveillance literature uses

nearly all of the possible definitions of risk, often with little clarify

about which one is intended, and this further confuses public

understanding of the situation. Minor differences among surveil-

lance systems regarding standard age groupings, for instance, and

differences in standard data presentation formats also adds to

confusion.

The tendency to report cumulative case counts, especially in the

early days of the pandemic, also complicated the interpretation of

the data. By definition, cumulative case counts can only increase –

they are not reduced as people regain their health or die after a

course of illness – even if the incidence of new cases peaks.

Cumulative counts also increase as new cases that occurred before

Figure 6. Influenza-like illness surveillance for the Northeast, South and entire United States. Panel A. Percentage of visits for influenza-
like illness (ILINet), U.S. and South, July 31, 2009–January 8, 2010; Google Flu Trends index, U.S. and Georgia (GA), August 2, 2009–January 10, 2010;
scaled DiSTRIBuTE ILI trends, Georgia (GA), October 3, 2009–January 9, 2010. Panel B. Percentage of visits for influenza-like illness (ILINet), U.S. and
Northeast (NE), July 31, 2009–January 8, 2010; Google Flu Trends index, U.S. and Massachusetts (MA), August 2, 2009–January 10, 2010; scaled
DiSTRIBuTE ILI trends, Massachusetts (MA), October 3, 2009–January 9, 2010. Sources: author’s calculations based on CDC, Google, and DiSTRIBuTE
data available from: http://www.cdc.gov/h1n1flu/cdcresponse.htm, http://www.google.org/flutrends/, and http://isdsdistribute.org/moreinfo.php.
doi:10.1371/journal.pone.0040984.g006
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epidemiologists were aware of the outbreak are discovered.

Perhaps because case counts are a feature of other types of

disasters, policy makers expect them in disease outbreaks, but

presenting the data in this way can lead to misunderstandings.

This analysis benefits from hindsight, and is not intended as a

criticism of the epidemiologists who had the much more difficult

challenge of interpreting the data as the pandemic was emerging

and spreading through the population. Indeed, the goal is not to

question the epidemiology of pH1N1 but rather to learn from the

U.S. experience about the performance of critical surveillance

systems. In addition, this analysis adopts an outsiders’ perspective,

that is, we are not aware of all the information – or the pressures –

that epidemiologists faced during the pandemic. While in some

ways this is a limitation, in other respects it allows us to question

some of the assumptions that, in the press of time and events, the

public health officials dealing with pH1N1 may not have had the

luxury of doing.

Data and Methods

This analysis is a retrospective secondary analysis of a variety of

data sources that were used to track pH1N1 in the United States in

2009, some of which were developed especially for this purpose.

Many of these systems are operated by the CDC; these include

systems for virologic surveillance and for tracking outpatient

illness, influenza-associated hospitalizations, pneumonia- and

influenza-related mortality, and influenza-associated pediatric

deaths, and the geographic spread of influenza [2]. Other data

are provided by state and local health departments as well as

private sector organizations as described below.

The primary means for virologic surveillance is the WHO-

affiliated National Respiratory and Enteric Virus Surveillance

System (NREVSS), through which 140 public and private sector

collaborating laboratories submit weekly information on the total

number of respiratory specimens tested for influenza and the

number positive by influenza type, subtype, and age group [2].

Outpatient illness surveillance is conducted by CDC’s Influen-

za-Like Illness Surveillance Network (ILINet) system. ILINet

receives weekly reports from more than 3,300 health care

providers on the total number of patients seen for any reason

and the number of patients with ILI, by age group, defined as a

temperature of .37.8 C and cough and/or sore throat, in the

absence of a known cause other than influenza [2]. In addition,

since late 2009 CDC has partnered with the International Society

for Disease Surveillance (ISDS) through the DiSTRIBuTE project

(Distributed Surveillance Taskforce for Real-time Influenza

Burden Tracking and Evaluation) to gather and analyze aggregate

Emergency Department (ED) surveillance data from a number of

state and local jurisdictions, each using its own definition of ILI

[32]. Our analysis also utilizes ED data from an integrated health

system operating 18 hospitals in a western state [25].

CDC, in collaboration with state health departments and

academic centers in 10 states collects data on laboratory confirmed

influenza-associated hospitalizations in children and adults

through the Emerging Infections Program (EIP). This popula-

tion-based surveillance is conducted in 60 counties that represent

7% of the U.S. population [2]. In 2009, the New York State

Department of Health supplemented this system with its Sentinel

Hospital Program (SHP). This includes data from six large

hospitals serving parts of New York not included in the EIP that

reported the number of patients who were admitted with the chief

complaint of ILI and submit up to 20 respiratory specimens per

week for confirmatory pH1N1 testing by PCR. ILI was defined as

temperature of .37.8 C and cough and/or sore throat [27].

CDC collects timely, influenza-associated mortality data

through two different systems. The 122 Cities Mortality Reporting

System receives data from 122 cities throughout the U.S. on the

total number of death certificates received and the number of

those for which pneumonia or influenza was listed as the

underlying or contributing cause of death. The Influenza-

Associated Pediatric Mortality Surveillance System tracks labora-

tory-confirmed influenza-related deaths among children under 18

years of age based on reports submitted by state, local, and

territorial health departments [2]. In addition, starting in August

2009 CDC requested that states submit aggregate data on

hospitalizations and deaths due to influenza using either a

laboratory-confirmed or syndromic case definition through its

new Aggregate Hospitalizations and Deaths Reporting Activity

(AHDRA) reporting system.

Another innovation in 2009 was the development and

implementation of a module for CDC’s Behavioral Risk Factor

Surveillance System (BRFSS) to provide data on ILI in the

community. Between September 2009 and March 2010, more

than 250,000 adults and children responding to this ongoing state-

based population survey were asked about their own ILI, which

was defined as the presence of fever with cough or sore throat, in

the previous month [23].

The geographic distribution of influenza activity across the

United States is reported weekly by state and territorial

epidemiologists. States report influenza activity as no activity,

sporadic, local, regional, or widespread [2]. In addition, many of

the surveillance data systems described above provide regional or

state level data, which are available in CDC’s Weekly Influenza

Surveillance Report FluView.

The final data sources for our analysis come from Google.

Google Flu Trends is based on the number of queries using a

specific set of flu-related search terms that they have found to be

related, in the aggregate, to the number of people who have flu

symptoms [33]. Google Insights for Search is a more generic tool

for quantifying the relative number of Google searches on a

certain topic on a weekly basis [34]. For our analysis we used the

number of internet searches for ‘‘swine flu’’ (‘‘H1N1’’ was similar

during the Fall of 2009 but was uncommon in the Spring). We also

restricted the analysis to searches for swine flu news items. The

information environment, of course, is far more complex than

these indices can represent, but they provide an objective general

sense of public interest and concern.

Because there are no data that describe the actual rates of

pH1N1 infection in the United States, or its consequences, we

adopted a ‘‘triangulation’’ approach [35] in which multiple

contemporary data sources, each with different expected biases,

are compared to identify time patterns that are likely to reflect

biases versus those that are more likely to be indicative of actual

infection rates. This public health systems research approach is

grounded in the understanding that each of these surveillance

systems is a production process. From this perspective, surveillance

data are the result of a series of decisions made by patients, health

care providers, and public health professionals about seeking and

providing health care and about reporting cases to health

authorities. Outpatient, hospital-based, and ED surveillance

systems, for instance, all rely on individuals deciding to present

themselves to the health care system based on their interpretations

of their symptoms. Even the number of Google searches and self-

reports of ILI in the BRFSS survey can be influenced by their

interpretation of the seriousness of their symptoms. Virologic

surveillance and systems based on laboratory confirmations all

depend on physicians deciding to send samples for testing.

Moreover, every element of this decision-making is influenced

Effectiveness of Situational Awareness for H1N1

PLOS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e40984



by the informational environment (i.e. media coverage, imple-

mentation of active surveillance), processing and reacting to the

information on an individual level (i.e. the health care seeker’s self-

assessment of risk, incentives for seeking medical attention and

self-isolation, the health care provider’s ordering of laboratory

tests), and technical barriers (i.e. communication infrastructure for

data exchange, laboratory capacity), all of which change

constantly.

Conclusions
The U.S. public health surveillance response to pH1N1 offers

much to admire. Together with surveillance activities in Mexico,

and benefiting from advances in laboratory capacity and

notification systems introduced in the previous decade, epidemi-

ologists relatively quickly identified and characterized a new

pathogen, allowing the CDC and shortly afterwards the WHO to

issue alerts about the emergence of a new pandemic strain,

triggering a rapid global public health response to H1N1 [8].

These alerts triggered pandemic influenza plans that had been

prepared in recent years, which focused initially on surveillance

activities, including the development of a case definition and

testing procedures, and non-pharmaceutical control measures. A

variety of existing influenza surveillance systems were supple-

mented with newly developed ad hoc systems to provide timely

information to guide policy makers and monitor the public health

response [2].

However, although not definitive, our analysis of the of the

public health surveillance systems that provided situational

awareness in the United States calls into question two aspects of

the conventional wisdom about the 2009 H1N1 pandemic. In

particular, children and young adults might not have experienced

higher risks of suffering severe consequences as some thought.

Furthermore, apparent patterns in the timing and relative size of

the Spring and fall wave, and of geographical differences in timing

of the fall wave, seem to depend in large part on perceptions of

what was happening. Although the extent of the biases suggested

by this analysis cannot be known precisely, the analysis identifies

underlying problems with surveillance systems – in particular their

dependence on patient and provider behavior, which is influenced

by a changing information environment – that could limit

situational awareness in future public health emergencies.

These problems are particularly germane for syndromic

surveillance systems, which are highly dependent on individuals’

decisions to stay home from school, self-treat, or seek health care,

and thus on changes in the information environment. The earliest

appearance of the pandemic did not trigger a quantitative alert in

any of these systems, either in Mexico or in the United States [22].

Lipsitch and colleagues report both instances in which syndromic

surveillance was thought to be effective for situational awareness

and others in which it was misleading [22]. Our analysis of the

pH1N1 experience and another comparing syndromic surveillance

systems in the Fall of 2011 at two universities [36] do not support

the PCAST report’s enthusiastic endorsement of this approach for

situational awareness [3].

Similarly, this analysis has implications for the on-going

redesign of the CDC BioSense program, which was originally

mandated in the Public Health Security and Bioterrorism Preparedness Act

of 2002 to establish an integrated national public health

surveillance system for early detection and rapid assessment of

potential bioterrorism-related illness [37]. Current re-design efforts

focus on building a network of syndromic surveillance systems and

a community of surveillance practitioners who share data and

interpretations, including enhancements to the data acquisition

process to improve data quality and timeliness [38]. In this context

as in other information technology discussions, data quality and

timeliness refer to the transfer of information from the source to

the point of analysis, that is efforts to ensure that data from

hospitals or other health care providers is transmitted quickly and

without loss of fidelity to BioSense analysts. The proposed

enhancements do not address the biases identified in this paper,

which affect the quality of epidemiologic information – as opposed

to the data – that BioSense produces.

Our analysis is not intended as a criticism of the epidemiologists

charged with the immense challenge of tracking the impact of a

new pathogen. Rather, this analysis shows how fundamentally

difficult the surveillance challenge is, and sheds light on the

adequacy of existing surveillance systems for such efforts. As with

most novel pathogens, the emergence of pH1N1 was characterized

by uncertainty that took weeks to months to resolve. Epidemiol-

ogists familiar with the emergence of novel pathogens rightly

compare the rapidly evolving facts and scientific knowledge to the

‘‘fog of war,’’ [39], and the United Kingdom’s Pandemic Influenza

Preparedness Programme has shown how it should be factored

into public health preparedness planning [40]. Many emergency

preparedness professionals, however, still think in terms of single

cases triggering a response in hours or days, and this thinking is

reflected in such key public health preparedness documents as

CDC’s 2011 Public Health Preparedness Capabilities: National Standards

for State and Local Planning [41]. A more appropriate response would

be a plan to step up surveillance efforts early in the event to fill in

the uncertainties apparent in the original data.

Moreover, to the extent that future public health crises are

characterized by similar unknowns, this analysis of the 2009 H1N1

experience identified a root cause that is likely to be problematical

in the future: surveillance systems that depend on patients and

providers taking action – to seek care, to send samples for testing,

and so on. These actions depend, to some extent, on what people

hear in the media and official reports, creating an inherent

circularity that is difficult to disentangle. This problem is most

prominent in surveillance systems based on reported cases, but

also affects everything from syndromic surveillance systems that

monitor individuals’ decisions to seek health care to virologic

surveillance systems that depend on physicians submitting

specimens to be tested. This is yet another example of how case-

based surveillance systems can lead to biased statistical data [42].

Similarly, Lipsitch and colleagues [22,43] and Garske and

colleagues [44] both show how biased case ascertainment

especially early in the pH1N1 pandemic led to over-estimating

the case fatality rate.

The optimal solution is to develop population-based surveil-

lance systems that are less dependent on individuals’ and their

physicians’ decisions, and thus less sensitive to the circular effect of

the media environment. Lipsitch and colleagues, for instance, have

suggested identifying well-defined population cohorts at high risk

for pH1N1 infection and ensuring that everyone in that group is

tested to avoid biases due to physician decisions about who should

be tested [43]. Kok and Dywer review a number of possible

designs [45], and Lipsitch and colleagues [22] describe their

beneficial effects. Another possibility is to make more timely use of

on-going national population-based surveys such as CDC’S

Behavioral Risk Factor Surveillance System (BRFSS). This was

used in 2009 to provide monthly data on the proportion of the

population with influenza-like symptoms, but the results were not

published until long after the pandemic wave had passed [23].

New York City mounted a more limited but also more timely

telephone survey in May and June, 2009 [46]. With proper

planning and statistical techniques, the same survey could be used

to produce more timely data. Ultimately, a population-based

Effectiveness of Situational Awareness for H1N1

PLOS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e40984



seroprevalence survey, like those deployed in the United Kingdom

[47] and Hong Kong [48] would provide the least biased data on

who is at risk for infection as well as temporal and geographic

patterns. The benefits of such studies, however, are tempered by

practicalities of obtaining informed consent, the unavailability and

limitations of early serologic tests, as well as the costs, so Lipsitch

and colleagues conclude that a large-scale prepandemic invest-

ment would be needed to improve current influenza serologic

assay technology sufficiently so that valid serologic tests could be

developed quickly at the start of the next pandemic [22].

Other problems sprang from common difficulties in clearly

presenting scientific information to policymakers and the public.

Epidemiologists were aware of the distinction between the risk of

pH1N1 infection and its consequences, yet policymakers devel-

oped immunization strategies and priorities predicated on the

assumption that children were at high risk of its consequences.

Presumably this also reflects a general concern for and need to

protect children, but surely population perceptions about children

being ‘‘at risk’’ contributed to this. One might argue that

epidemiologists cannot control how their data are used, but the

standard definition of public health surveillance is the ‘‘ongoing,

systematic collection, analysis, and interpretation of health-related

data essential to the planning, implementation, and evaluation of

public health practice, closely integrated with the timely dissemination of

these data to those responsible for prevention and control’’ (emphasis added)

[49].

Beyond considerations of needed surveillance system improve-

ments, this analysis also has implications for how to measure

preparedness. For instance, CDC’s and the Trust for America’s

Health’s most recent state-by-statement assessments of public

health preparedness focus on ensuring that state and local public

health laboratories have the capacity to respond rapidly, identify or

rule out particular known biological agents, and increase the

workforce and laboratory throughput needed to process large

numbers of samples during an emergency [50,51]. None of these

measures would have ensured that public health surveillance

systems could have avoided the biases identified in this analysis

and accurately tracked who was at risk for pH1N1 and monitored

the development of the pandemic over time and in different

geographical areas. Nor did syndromic surveillance or other

approaches to harnessing the vast amounts of data in electronic

medical records avoid problems with bias in 2009 or could be

expected to do so in the future. Although these capacities are

clearly necessary, they are not sufficient. Rather, assessing the

nation’s level of preparedness requires measures of the systems

capability to accurately track an outbreak and characterize its risks,

and to communicate this information clearly to policy makers.

In addition to its substantive contributions, this analysis

illustrates the quality improvement (QI) approach called for in

the U.S. National Health Security Strategy (NHSS) [52].

Emphasizing processes (chains of events that produce specific

outcomes) and systems of people and information, the QI

approach refers to a range of specific practices including

procedures and system changes based on their effects on

measurable outcomes, reducing unnecessary variability in out-

comes while preserving system differences that are critical to the

specific environment, continuous improvement rather than

onetime initiatives, and critical event/failure mode analysis. In

general, our analysis is an example of an effort ‘‘to collect data on

performance measures from real incidents … analyze performance

data to identify gaps, [and] recommend and apply programs to

mitigate those gaps,’’ an approach called for in the NHSS

Implementation Guide [53].

Learning about public health systems’ emergency response

capabilities is challenging because actual events are unique, and

both the epidemiological facts and the context varies from one

community to another. In other words, there is no replication, a

centerpiece of the scientific method. In this context, to address the

lack of a gold standard to describe the actual trends in the rate of

pH1N1 infection and its consequences over time, we adopted a

‘‘triangulation’’ approach that compares multiple data sources,

each with different likely biases. We focus specifically on two time

periods, the month of May when the Spring peak occurred and the

fall wave, which started at the end of August and continued

through November. In the Fall, we also focus on the South and the

Northeast regions of the United States, which respectively had the

earliest and latest fall peaks. Statistical calculations were limited to

simple data transformations to ease comparability and graphical

analysis. This type of analysis is necessarily qualitative and

contextual; rather than serving as a recipe for doing this in other

settings, this analysis should be seen as an example that illustrates

the concept. Similar analyses of other events will require a

different approach.
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