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ABSTRACT 

The exposure of mine workers to diesel particulate matter (DPM) and gases is an 
issue of great concern to the underground mining community in the United States. 
Approximately 30 000 underground miners are potentially exposed to high 
concentrations of DPM. In January 2001, the U.S. Mine Safety and Health 
Administration (MSHA) promulgated rules setting compliance standards for both 
underground coal and metal! nonmetal mine workers. As industry works to achieve 
compliance wi th these standards, mine operators are looking for feasible methods for 
reducing DPM concentrations in their mines. In addition, the industry needs methods 
to accurately measure DPM to ensure that the control strategies they adopt are 
working successfully. 

The Pittsburgh Research Laboratory (PRL) of the National Institute for Occupational 
Safety and Health (NIOSH) conducts research to evaluate control technologies and 
monitoring instrumentation that can be used to reduce the diesel particulate maUer 
(DPM) exposure of mine workers. An overview bf the strategies being utili7.ed in 
underground US mines to reduce OPM concentrations will be presen!ed. Also, 
updates on the development of diesel monitoring inSlrumen!S such as the continuous 
elemental carbon monitor or the Personal Dust Monitor for DPM measuremem will 
be provided. 

KEYWORDS; Diesel particulate matter; control technology; monitoring; gas 
measurements; milling 

1. INTRODUCTION 

The use of diesel-powered equipment by the undergmnnrl mining community has 
continuously increased over the laSI several decades. In the United States for example, 
approximately 150 pieces of diesel equipment were being operated in underground 
coal mines in 1974 and by 1995 that number approached 3000 units (MSHA 2001 a). 
A similar trend is seen in underground metal/nonmetal mines (M!NM). where the use 
of diesel equipment first star led in 1936 and by 200 1 there were over 4000 units 
operating in underground M/NM mines in the United States (MSHA, 2001b). This 
extensive utilization of diesel-powered equipment generates the potential for exposure 
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or underground miners to particulate matter and gaseous emissions rrom this 
equipment and creates an important challenge ror the mining industry in the U.S. and 
worldwide to controlthesc emissions. In recent years, studies have shown that long­
term exposure to combustion-related fine particulate pollution, including diesel 
particulate matter (OPM), is an important risk factor for cardiopulmonary and lung 
cancer mortality (Pope, 2002). Therefore, health issues associated with exposure to 
DPM are receiving substantial attention from the public, government agencies, and 
academia. 

In January of 200t, the U.S. Mine Safety and Health Administration (MSHA) 
promulgated rutes setti ng compliance standards for both underground coal and M/NM 
mineworkers. The underground coal rule (30 CFR 72.520) controls the exposure of 
the miners by limiting the emission rale from newly introduced and existing diesel­
powered equipment. Engine emission rates are calculated using the emission fate 
determined through MSHA engine certification and the MSHA-accepted PM 
reduction factor for the emission control technology being implemented. An 
engine/control system must be verified to meet an emission rate of 2.5 g1hr for. 
pennissible and heavy-duty or < 5 gIhr for outby light-duty equipment. MSHA 
detclmined that due to the absence of an accurate method for sampling DPM in 
underground coal mines, a performance rule was not feasible, thus air sampling, to 
measure DPM in the workplace is not required under this rule. 

The underground metallnonmetal rule (30 CFR 57.5060) requires the mine operators 
to limit a miner's personal exposure to DPM to an average eight-hour equivalent 
concentration of 160 uglm3 total carbon, as measured by NIOSH Analytical Method 
5040 (N IOSH 1999). This limit went into effect on May 20, 2008. As industry works 
to achieve com pliance with these regulatory limits, mine operators are looking for 
feasible methods for reducing DPM concentrations in their mines. In addition, the 
industry needs methods to accurately measure DPM to ensure that the control 
measures they adopt are working successfull y. 

NIQS H-PRL has promoted an integrated approach to controlling DPM. This 
imegrated approach adopts a holistic strategy of integrating all departments of a mine 
including management, production, maintenance, and safety. This paper will present 
an overview of the imegrated approach and review the strategies being used by US 
mines to reduce the concentrations of DPM emitted from the tailpipe, as well as 
present results from research evaluating these strategies. It will nOi discuss, in detail, 
control strategies such as ventilation or enclosed cabs, which have been shown 10 

successfully reduce DPM concentrations but are outside the scope of this paper. 
Finally, this paper will present information on two monitors being developed to 
enable the real-time measurement of DPM. 

2. INTEGRA TED APPROACH TO CONTROLLING DIESEL 
PARTICULATE MATTER EMISSIONS 

The integrated approach to DPM control is a strategy, promoted by NIOSH in 
collaboration with our stakeholders, which systematicall y resolves issues associated 
with diesel emissions by integrating solutions, from each of the independent 
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departmenls, throughout the mine as a whole. NIOSH has found thm DPM exposure 
control is complicated but manageable when the proper people and proper system are 
put into place and allowed to succeed. With this ·approach.mines learn how to 
properly understand the issues to be solved, tackle each issue systematically and 
thoroughly, research and try several differenl solutions, and finally implement the 
solutions that are most feasible for that mine. The integrated approach can be 
separated into five basic steps shown below: 

I) Find a management supported leader or DPM champion 

2) Get control over engine-out emissions (replace older/dirty engines, establish an 
emission's based maintenance program) 

3) Look for administrative controls and gain an understanding of eq uipment 
inventory and usage, 

4) Ensure adequate ventilation, 

S) Examine additional control options including aftertreatment systems and 
alternative fuels. 

Finally, at each step in the process il is necessary to have a DPM measurement 
program that allows for documentation of the efficacy of each step in reducing the 
DPM concentration in the mine. The remainder of this paper will address the steps in 
more detail and end with a discussion of instrumentation which can be used to 
measure DPM. 

2.1 Management Supported Leader 

The management supported leader under the integrated approach serves as the focal 
point for the program and NIOSH has labeled this person the DPM champion. 
Successful management of worker exposure to diesel exhaust requires that the DPM 
champion has adequate expertise, the authority 10 manage and coordinate efforts 
within and throughout various mine organizational structures, and the respect and 
cooperation of the workers. The DPM champion must have the expertise to explain 
thc intricacies of lhe diesel regulations as well as an understanding of the many 
control options to be used. Although many mines attempt to place a mechanic in this 
role, since they have {he greatest knowledge on the workings of the diesel equipment, 
NIOSH has found that often a mechanic does not have the authority to institute all the 
necessary changes required in the integrated approach. Because it is the DPM 
champion's responsibility to bring together all persons whose actions can influence 
the emissions of DPM, NIOSH has found that a person currently holding authority in 
the organization is the best choice. The DPM champion must have the ability to 
assemble all the people with influence over the departments affecting DPM 
enLi::;::;ivns, k:au the w::;cussioll VII the:: DPM problems and thei .. potential solutions, and 
work cooperatively wilh each department to reach solutions to address the ultimate 
goal of controlling DPM in the most cost-effective and reliable manner. 

2.2 Control over Engine-O ut Emissions 

Gaining control over the engine-out DPM emissions is the important starting point for 
the integratcd approach. A reduction in the amount of DPM emitted by the engine is a 
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reduction in the amount of DPM which must be otherwise controlled using alternative 
control strategies. In many instances, reducing these engine-out emissions may be the 
only step necessary to meet DPM compliance standards. The two main approaches 
that can be used to reduce engine-out emissions are maintenance and administrative 
controls. 

2.2./ Maintena llce: Since !.he introduction of diesels into underground mining, the 
need for a good maintenance program has always been recognized. However, mis 
recognition has not always resulted in the adoption and disciplined implememation of 
proper maintenance practices being applied to every diesel engine or vehicle in 
operation in underground mines. Nevertheless, it is extremely important to realize that 
the very first step on the path to reducing worker exposures to DPM is to implement 
an effective diesel vehicle/engine maintenance protocol and apply it to every diesel 
unit that operates underground. The early work in this area was performed by the U.S. 
Bureau o f Mines (Waytulonis, 1987). The University of Minnesota's Center for 
Diesel Research (Spears, 1997) developed procedures for using tailpipe gas 
measurements as a diagnostic for engine maintenance. A comprehensive study on the 
relationship between diesel engine maintenance and tailpipe emissions was completed 
by McGinn (2000) under a research effort by the Diesel Emissions Evaluation 
Program (DEEP). McGinn developed a maintenance auditing procedure (McGinn el 

at., 2000) and guidelines (McGin n, 1999), which were implemented in a hardrock 
mine with demonstrable results. The guidelines and training of the mine personnel 
involved participation by mine management, machine operators, mechanics, and most 
importantly the engine and vehicle manufacturers' service representatives. Dramatic 
reductions in exhaust PM and CO emissions were observed in some cases when good 
maintenance practice was applied. These documents can be found on the DEEP 
website at www.deep.orglresearch.html. 

There are several important reasons to provide the best possible engine maintenance 
when considering or implememing control technology. The first reason is that the 
lowest emi ssions resulting from the application of any control technology are 
obtained when starting with the lowest possible engine-out emissions. The second 
reason is that ventilation requirements and PM emission rates determined through 
MSHA's engine certification process were obtained using a properly tuned, well­
maintained (new) engine. It is important that the engines in the field have emission 
characteristics no worse than those of the certified engine so that calculations that use 
the MSHA ventilation and PM emission rates to ensure safe levels of toxic gases, to 
estimate workplace diesel particulate levels, or to compare particulate emission rates 
among engines are valid. In addition, excessive emissions from poorly mainlained 
engines may jeopardize the performance of aftenreatmenl technologies. For example. 
excessive emissions of the ash caused by burning crankcac;e oil might result in 
cloggi ng and premature failure of a diesel particulate filter (OPF). In sum mary, the 
very first step in applying control technology to reduce workplace exposures to diesel 
exhaust is to implement an effective mainlenance program and closely monitor its 
effectiveness. 

2.2.2 Administrative controls: Effective administration of equipment usage can 
greatly assist in reducing the DPM concentrations in underground mines and is an 
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important step in the integrated approach. To begin this process it is first necessary to 
evaluate the equipment inventory and equipment usage. Under this process the 
followi ng steps are useful: 

I) List every piece of eijUipmenl being used, engine model. MSHA Particulate 
Index (PI) and venti lation number 

2) Know how and where each is used and its per shi ft fue l consumption (tied to total 
emissions) 

3) Be concerned with engines/equipment with high fuel consumption and high 
Pllhorsepower (hp) ratio; consider replacing such engines/equipment 

4) Question the equipments necessity and see if it is possible to reduce the number 
of the fleet. In certain instances it may be possible to reduce the number of 
vehicles in a work area or reduce the size of the diesel engine bei ng used, both 
instances may result in a reduction in DPM concentration in the work area. 

Once the equipment usage has been optimized there are several other administrati ve 
controls that may reduce em issions and DPM concentrations and these include 
(i) minimize engine idling, (ii) avoid lugging engi nes (low RPM high load) and 
(iii) maintain clean fuel and lube oil. Finally traffic control has been shown to be 
effective in reducing the DPM concentrations in work areas. This type of control 
would entail routing traffic away from a miners work area, routing haul trucks in 
return air especially when ascending ramps while loaded and limiting horsepower in a 
work area based on available ventilation. 

When considering adminisuative comrols it is important for each mine to attempt 
different approaches and discover which administrative controls are most feasible for 
their circumstances. 

2.3 Ventilation 

Ventilation is the most widely used method for DPM control and the reduction is 
directly proportional to the increase in airflow. A doubling of the airflow into a 
working face will result in a 50% reduction in the DPM concentration at that face. As 
a guideline for estimating the amount of ventilation to control DPM, MSHA publishes 
a particulate index (PI) for each approved engine. This information can be found at 
http://www.msha.gov/01-995Jdieselpart.HTM. The PI establishes the ai rflow quantity 
required to dilute DPM emlssions to 1000 }lgJml. The measurement of carbon dioxide 
is also a helpful tool in assessing the effectiveness of ventilation. The area CO2 
concentration (increase over that in the incoming air) is a measure of the amount of 
ventilation air relative to the amount of tOlal fuel being burned in the area (work being 
done andlor number of diesel powered vehicles) and is a very good measure of the 
adeijuacy of ventilation 10 dilute diesel exhaust. A n increase in the CO2 
concentrations in a work area can be an indication that the number of vehicles 
operating in that area is too high for Ihe ventilation rate. 
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2.4 Aftcrtrcatmcnt Technologies 

Aftertreatment technologies including diesel oxidation catalysts (DOCs), diesel 
particulate filters (OPF' s) and disposable filter elements (DFE's) are very effective in 
removing DPM from the exhaust of diesel-powered equipment (Johnson 2008). 
These afiertreatment systems are placed in the exhaust system j ust after the 
combustion chambers and are gradually becoming more utilized for underground 
mining applications (Bugarski, 2006a). Figure I shows a schematic of the basic 
concept of filtering where engine emissions (blue arrows) enter at one end of the filter 
and then must physically flow through the filter wall, which removes the DPM. before 
exiting the filter. Figure 2 presents a picture of both the inlet and outl et of a filter 
showing that the black diesel soot is only seen on the inlet side of the filter. 
Disposable and non-disposable filters have been successful in efficientl y removing 
DPM on mining equipment. 

Figure I: Basic concept of filtering Figure 2: Entrapment of soot at inlet of filter 

NIOSH has completed extensive research on the effecti veness of DPPs, DFE's anJ 
DOC's to control DPM and a summary of the results from these studies arc presentetj 
in Table I. The results presented in Table 1 are from three types of OPF systems 
representati ve of the systems currently available to the underground mining industry 
to curtail DPM emissions from diesel-powered equipment. 

1. A OPF system manufactured by Catalytic Exhaust Products (CEP), Toronto, ON, 
Mcxld 912-SXT with uncatalyzed Corning EX-80 Cordierite e lement (31 cell per 
cm~ and 0.3 mm wall thickness) (Cordierite DPF). 

2. A DPF system manufactured by DCL International Inc., Concord, ON, Model 
Minex Sootfilter 5.66)( 10 with uncatalyzed Ibiden silicon carbide element (31 cell 
per cm1 and 0.36 mm wall thickness) (SiC DPF). 

3. A OPF system manufactured by Mann+Hummel GMBH, Speyer, Germany, 
Model SMF-AR with uncatalyzed si mered metal element (lO}.Im mean pore size, 
45% porosity, and 0.38 mm wall thickness) used with Satacen 3 fuel additive (SM 
DPf'). 

The DPF systems with Cordierite and silicon carbide wall flow monoli ths arc listed 
by MSHA as being 85 and 87 percent effi cient, respectively, in the removal of total 
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DPM mass (MS HA 2007). The SM DPF system was recently added to the MSHA list 
as 81 percent efficient. As shown in Table I NIOSH resulLS agree well with the 
MSHA efficiencies. 

Table I: Efficiencies of DPF's 

Cordierite OPF SiCOPF Sintered Metal OPF DFE 
> 87% >90% >9 1% >80% 

When compared with DPFs and OFEs, the DOC produced relatively modest effects 
on aerosol mass concentrations. The effects of the tested DOC on total mass 
concentrations were found to be influenced strongly by engine operating mode. 
However, the most substantial reductions of 42 percent in .tnass concentration 
occurred when the engine was operated under the highest work load scenario 
(intermediate speed and 100% load). 

2.5 Biodiescl 

Allhough OPF systems are gradually becoming more utilized for controlling DPM 
emissions from underground mining vehicles (Bugarski 20063, b) their acceptance 
has been hindered by their relative complexity, implementation issues and expense. 
Changing the fuel supply from petroleum diesel to biodiesel blends is considered by a 
number of underground mine operators to be a viable alternative for controlling OPM 
emissions. The major advantages of biodiesel over petroleum-based diesel fuels are 
greater cetane number, absence of aromatics and sulfur. and high oxygen content. In 
addition. biodiesel was shown (Wi lliams, 2006; Boehman, 2005) 10 lower the balance 
point temperature of passively regenerated OPFs and therefore could potentially 
facilitate regeneration and the implementation of DPF systems in underground mines. 

In NIOSH testing, biodiesel fuels reduced total mass concentrations for all engine 
operating modes. With few exceptions, reductions in total mass concentrations rose 
with an increase in biodiesel fraction with 100% biodiesel reducing the DPM 
concentrations by slightly greater than 50%. 

3. MONITORING 

The previous section in this paper discussed a strategy to be used to reduce the 
concentration of OPM in underground mines. However, as mines work toward 
implementing this strategy it is essential that they understand the importance of 
monitoring the effectiveness of this strategy. A proper monitoring program will 
enable the mines to identify and quantify problems with the implementation of their 
controls. A monitoring program should include a regular sampling schedule for both 
ambient concentrations of OPM and concentrations emitted from the equipment 
tailpipe. This data will allow the mine personnel to constantly assess the effectiveness 
of the OPM controls. Once the controls are implemented, continuous sampling wil l 
show .a failure of these controls through a resulting increase in measured OPM 
concentrations. This section of the paper will present information and data about two 
different types'of monitors that can be used to accurately measure the concentration of 
OPM or a reason'able surrogate. 
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Diesel exhaust is a complex mixture made up largely of particulate elementa l carbon 
(EC), commonly referred to as "soot", and panicle bound organic carbon (DC). Total 
carbon [fC) is the summation of EC and OC. In the US, DPM is regulated in MfNM 
mines through the measurement of TC. The standard sampling method requires time 
weighted personal samples to be collected during a work shift and then sent to a 
laboratory for NIOSH 5040 analysis. This process may take several weeks before a 
miDe receives the sampling results making it difficult to ascertain the effectiveness of 
control strategies. As a resull, NIOSH has been developing and testing two 
continuous monitors to give mine personnel real-time infonnation on the 
effectiveness of implemented controls. These monitors arc the DPMonilOr and a 
personal dust monitor modified for diesel measurement (D·PDM). 

3.1 The DPMonhor 

The NIOSH developed DPMonitor is capable of measuring EC, at concentrations 
typically m~asured in underground mining operations, in near rea! time. This 
instrument uses a laser diode absorption technique similar to that used in conventional 
NIOSH 5040 analysis instruments. However, the DPMonitor is portable, lightweight 
and designed for ncar real' time analysis. This instrument can be attached to a miner's 
belt or to a piece of equipment to provide measurements of current EC concentrations, 
which can then be plotted against time. This infonnation can be used effectively when 
evaluating DPM control options. A picture of the DPMonitor is presented in 
Figure 3. Figure 4 presents data from the DPMonitor during tests evaluating the 
efficiency of an environmental cab. This data clearly shows that the environmental 
cab is effectivc in reducing the EC concentration and is an example of how this 
instrument can be used to assess the effectiveness of a control program. 

8:24 9:36 10:48 12:00 13:12 14:24 15:3 

TIme IMinutesl 
L ________ TIme (mInutes) _____ -' 

Figure 3: DPMonitor 

3.2 The Persona l Dust Monitor 

Figure 4: Interior and exterior cab EC 
concentration using a 5-minute 

average durine test I 

A second real-time monitor being evaluated by NIOSH is a modified personal dust 
monitor (manufactured by Thenno Fisher scientific) or D-PDM. The D-PDM uses a 
tapered element oscillating microbalance to measure ambient submicrol11ctcr 
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particles. Typically, more than 90% of submicromet.er aerosols in underground mines 
are DPM. The D-PDM has the advantage of measunng the mass, in near-real-time, of 
many types of aerosols regardless of size, chemical composition, or refractive index. 
An example of results from preliminary tests of this modified instrument is shown in 
Figure 5. In this example the D-PDM data shows an increase in the concentration of 
submicrometer panicles with the arrival of the diesel equipment (G illies, 2009). 
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Figure 5: Diesel vehicle activities as measured by D-PDM 

4, SUMMA RY 

As US mines continued to increase the utilization of diesel equipment in their mines, 
MSHA was enacting successively stricter diesel exposure limits. These factors created 
the need for improvements in diesel engine performance and control technologies. 
Through implementation of the integrated approach, US mining companies have 
substantially lowered the exposure of their workers to OPM. The continued 
development and refinement of real-time instrumentation to monitor diesel exhaust 
will further aid mining operations in -their pursuit to limit exposures to OPM. 
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